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Abstract

The subsystem impedance analysis (SIA) is
developed for the prediction of critical speeds
of flexible support-rotor systems. The flexible
support-rotor system is divided into rotor and
support subsystems. By assuming impedance va-
lues of the coupling points, the critical
speeds of the rotor subsystem can be determi-
ned from its frequency equation. The displa-
cement impedance of the support subsystem is
determined experimentally, or, by theoretical
calculation if the mathematical model of the
support subsystem can be well established.
According to the conformity of the impedance
at coupling points of subsystems, the critical
speeds of the whole rotor system can be obtai-
ned graphically.

Examples of rotor systems with single and
double flexible supports are presented., Calcu-
lations and experimental results show that SIA
is not only accurate and reliable, but is also
an economical method for analytical and experi-
mental research in rotor dynamics.

I. Introduction

Flexible supporis have been widely used
in rotors of modern gas-turbine aeroengines.
The rotor systems operate stably in a range
above the first or second order critical speed
and below the bending critical speed. Flexible
supports are very effective %T %§justing the
performance of the engines. ’

The effect of the flexible supportis on the
dynamic behaviour of rotor systems is very
stronge. In the engine design, some of the fle-
xible supports, which have been studied experi-~
mentally or theoretically, may be adopted to
connect with the rotor, so that the dynamic
behaviour of the whole rotor system will con-
form to the design requirements. In the calcu-~
lation of critical speeds, generally, only the
static stiffness of the support is taken into
account. In recent years, however, the dynamic
behaviour of the support has been more and more
considered.(3,%4,5) 1In this paper, the theoreti-
cal analysis and the calculations of some single-
disk rotor systems by the SIA method are presen-
ted, and the application of the mechanical impe-
dance measurement technique to the study of dy~
namic behaviour of the rotor system is also
introduced, The analysis and experiments show
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that critical speeds of whole rotor systems,
determined by SIA, are in good agreement with
the exact solutions and experimental results,
obtained by other methods. With this approach,
the design period of the rotor system will be
shortened, and the calculation and test costs
will also be reduced.

11, Theoretical Analysis

The dynamic behaviour of the flexible sup-
port-rotor system is quite different from that
of a rigid support-rotor system. There are
many methods for analytical calculation of the
dynamic behaviour of rigid support-rotor sys-
tems.(6) By those methods mentioned in Ref.(6),
the dynamic behaviour of the flexible support-
rotor system can be calculated exactly, when a
constant constraint condition is given at the
supported points of the rotor. But in engine
structures, because of the variable stiffness
and damping of the oil film bearing, the vib-
rating mass and flexibility of the pedestal
and the case, etc., the flexible supports of
the rotor are never under a constant constraint
condition. The dynamic behaviour of the flexible
support varies linearly or non-linearly de-
pending on the frequency and amplitude, so that,
these methods can not be applied.

By dividing flexible support~rotor system
into rotor and support subsystems at the
coupling points, the dynamic behaviour of the
subsystems can be investigated individually.

At the coupling point, the mechanical impedance
value of the rotor and support subsystem must
be identical. According to this coupling con-
dition, the dynamic behaviour of whole rotor
system can be determined. This is the subsystem
displacement impedance analysis (SIA).

Actually, SIA is a variant of the sub-
structure coupling method of the dynamics of
the complex structures.(7) It is an approach,
in which the mechanical impedance technique is
used and the theoretical calculation is thereby
natched with experimentis.

l« The rigid suppori~rotor system.

The equation of motion of any vibration
system can be %enerally written in the force
expression as: 8)

Z-X=4Q (1)



where

% -~ the displacement impedance matrix
of the system;

X -~ the displacement vector of the
systenm;

Q ~~ the external force vector, imposing
on the system.

Bquation (1) can also be written in the
displacement expression as :
Y - Q=X (2)

where

Y -~ the displacement admittance matrix
of the system,

Fig. 1

For a single~disk rotor system, as shown
in Fige 1, taking into account of the mass and
moment of inertia of the disk, the displacement
and force expressions can be written respecti-
vely as :

the displacement expression :

2
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x -~ lateral displacement of the disk;

6 -~ angular displacement of the disk;

e -- eccentricity of the gravity centre
of the disk;

m -~ mass of the disk;

* ® dJ
Jo=dy (-E;- —2 _ 1) - equivalent
d
moment of inertia of the disk;
Jq -~ diametrical moment of inertia of
the disk;

Jp ~- polar moment of inertia of the disk;

® =-- rotating angular frequency of the rotor;

Q -- precession angular frequency of the ro-
tor;
Yll' Y12’ Y21, Y22 -~ influence coefficients

of the flexibility. Which are :
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L ~- span between the supportis;
C -~ position of the disk;
EI -~ flexural stiffness of the shaft.

The frequency equation of the single-disk
rotor system can be obtained from equation (4)
as
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2. The flexible support-rotor system.

Fige 2 shows a single-disk rotor system
with two supports, in which a single flexible
support is used. The motion equation of this
system can be written in force expression as:
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X;, -=- displacement of the flexible support;

Yqp—- laeteral displacement of the disk
caused by a unit displacement of the
support ;

Yop-- angular displacement of the disk
caused by a unit displacement of the
support ;

Y, 4~- the reaction force of the support

A1 .
czused by a unit force, imposing on
the disk. According to the principle
of reciprocity, Ypq=Yq, ;

Ypp-~ the reaction force of the support
caused by a unit couple of force,
imposing on the disk, Similarly,

Ypo=Ypy 3
1 2
——my O = 7y -- the displacement impedance
Ya .

of the flexible support, In which, Yy
and m, are the statical flexibility and
the vibrating mass of the flexible
support, respectively,

The equation (7) can be written in matrix
form as :
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Fig. 3

The matrix form of the motion equation of
a flexible support-rotor system, having two
flexible supports, as shown in Figs 3, can be
written as
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With equation (8) or (9), the frequency
equation and the response expressions of the
rotor system can be obtained. The approach
mentioned above can be applied to the rotor
system with any number of disks,

3+ The subsystem impedance analysis (SIA).

In equations (8) and (9), the displacement
impedance of the flexible supports ZA and ZB
are contained. The equations can be solved
directly when 2, and Z are expressed simply
as a function of the angular frequency o » In
fact, however, the displacement impedance of the
flexible support cannot always be expressed as
a simple function of frequency, so that the
equations (8) and (9) are very difficult to
solve.

By assuming the displacement impedance of
the supports Z, and Z as constants, the equa-
tions (8) and %9) can Bre solved simply. These
are the critical speeds of the rotor subsystenm,
with assumed displacement impedance values at
the supported points of the rotor. Assuming a
series of various values of displacement impe-
dance 2, and 2, , the critical speeds of the
rotor subsystem depending on the values of 2
and 2, can be found. Generally, the displace-
ment impedance properties of the support sub-
systems are determined experimentally. It can
also be determined by calculation if the mathe-~
matical model of support can be well established.
The displacement impedance value at the coupling
point of the rotor must be identical with that
of the support subsystem. Thus, according to
this coupling condition, the critical speeds of
the whole rotor system can be readily determined.

Fig. 4 shows a way to determine critical

1352



Wy Wr
wC!

0 Za
Fige 4

speeds of a single-disk rotor system, having a
flexible support and a rigid support, by means
of SIA. The curves @, are the critieal
speeds of the rotor subsystem with various
assumed displacement impedance values at the
supported point. The curve Z, is the displace~
ment impedance of the flexib&e support. The
intersections of the curves o, and 4, are
points 1 and 2, The frequency « anﬁ D,
corresponding to the intersection 1 and 2, is
the first and second critical speed of the rotor
system, respectively, The vibration mode of the
rotor system can be determined from the impe-
dance values of the support.

When the rotor system has two flexible
supports, the critical speeds can be determined
by a simple way as shown in Fig. 5. At firsst,

a frequency «' will be guessed as near the
critical speed as possible. At frequency o ,
the value of displacement impedance of support
B is 2 , represented by point 1 on curve 2_ ,
A curvé corresponding 2] can be found up from
the curves of the critical speeds of rotor sub-
system, which were drawn for a series of assu~
med displacement impedance values at supported
pointe The curve intersects with the displace-
ment impedance curve 2, of the support A at
point 2, and gives the corresponding frequency
o” o If ©”’=0" 4 it is the critical speed of
the rotor system. And if ©"@” , repeat the
same procedure as above until the values of the
last two © are ideatical. In fact; the repea~
ted procedures are not necessary. A simple way,
mentioned as follow, can be used to determine
the critical speed. The value of the displace-
ment impedance of support B at frequency o~

is Zé’ » Tepresented by point 3 on curve Z..
W
Zs s
Za ZB=Const.
o 2 Zg
y =N
< /6
W 4 !
7 ;5
” Z
Zg 7,
Fig. 5

Another curve corresponding 2 ” can be found

up from the curves of the cri%ical speeds of
rotor subsystem., It intersects with curve 2

at point 4. Draw a vertical line through point
3 and a horizontal line through point 1. They
cross at point 5. Again, draw a vertical line
through point 2 and a horizontal line through
peint 4. They cross at point 6. Connect peints
2,5 and 3,6 respectively., The intersection of
the lines 2~5 and 3-6 is point p, Thus, the
frequency o, , represented by point p, is the
critical speed of the rotor system with these
flexible supports ZA and ZB. The higher order
critical speeds may be determined in the same
WAy e

The comparison between the critical speeds,
that were predicted by SIA and the exact solu-
tions of several rotor systems are presented in
Table. I. It can be seen that the errors are
less than 0.2%.

Figs. 6-8 are graphs for determining criti-
cal speeds of flexible support-rotor systems
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Fige ?
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Table I Comparison between the critical speeds

determined by SIA and exact solutionms.

® rad/sec rotor® Yo, 1 No. 2 No. 5
supports order | exact SIA erre | eoxact SIA 2| exact SIA &
A B
1 rigid ist 220.98 221 .009 { 248,58 248.5 «032 | 269,20 269 «O74
2nd 619,86 620 +023 | 674,40 674 .06 606,80 607 +033
II’ rigid 1st 194,49 194.5] 005 | 190,38 190.5 .063 | 239,90 240 042
2nd | 366.06 366 .016 | 458,36 458 .08 | 353.60 354 0113
, , 1st 190,20 190 »105 | 189,28 189 «148 | 226,30 226 «132
11 1 2nd 356,70 356 «196 | 437,65 438 .08 338,00 338 000
3rd 617,80 618 .03 613,10 614 «147 | 664,90 664 «135

*No.l, No.2 and No.3 rotor is shown in Fige.

6, Fig, 7 and Fig. 8 respectively.

PRy ol
3 |l
F
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6 11

III. Experiments and Results

1. Impedance of the flexible supports,.

The displacement impedance is an important
data to determine the critical speeds of the
rotor system by SIA. In recent years, the mea-
surement technique of impedance property of

the su%gort has been introduced in many pa-
pers. (9,10,11)

Fige 9 shows a scheme of impedance measure-
ment of a "squirrel-cage" flexible support. The
sweeping signal is amplified and then drives a
electro~magnetic vibrator to impose an exciting
force on the flexible support. The impedance
head transmits the signals of the exciting force
and the acceleration response of the support.
These signals are treated by the electric char-
ge amplifier, mass canceller, following-filter,
A/D converter, computer and are sent out by a
X-Y recorder or teletype. They can also be con-
nected to a data processing unit when necessary.

In the mechanical impedance measurement, the
following points must be attended to:

(1) The measurement position.

l-generator, 2-amplifier, 3-vibrator,

4-flexible bar, S5-impedance head,
6~tested support, 7,8-amplifier,

9-mass canceller, 10,l1l~following filter,
12-A/D converter, 13~computer,

l4~phase meter, 15« X-Y recorder,
lé6~teletype, 17-puncher.

The position of excition and measurement
must be identical with the coupling point
of the rotor and support,.

(2) The exciting force,

The exciting force must be imposed
exactly along the normal direction at the
exciting point.

(3) The fit situation.
The fit situation of the tested support
must conform to the actual operation situation.

(4) The mass cancelling.

The additional masses of the jig and other
parts attaching on the tested support must be
cancelled by means of mass canceller or other
ways.

(5) Numerical calibration of the measure-
ment system,
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The numerical calibration of the measure-
ment system is an important key to the experi-
ments. Generally, the calibration can be done

by means of the impedance measurement of a
"free" mass,

(6) The data treatment.,

When necessary, the data may be transformed
into the velocity impedance or admittance and
displacement impedance or admittance.

Figs 10 and Fig. 11 show the experimental
resulis of the displacement impedance of two
"squirrel-cage" flexible supports.
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Fige 11

2. Lateral vibration test of rotor system.

Fige 12 shows a scheme of lateral vibration
test of rotor system. The sinusoidal signal is
amplified and then drives the electro-magnetic
vibrator. The vibrator is connected to the disk
by a flexible bar and excites the rotor system.
The eigenfrequencies and modes are measured by
means of three eddy-current transducers, located
near the disk and supports, respectively.

Table II is a comparison between the eigen-
frequencies, determined by SIA, and the experi-
mental results, It can be seen that the errors
are less than 2%.

l-signal generator,
3~vibrator,
S5-displacement transducer, 6~transformer,
7-displacement & amplitude meter,
8-occilloscope.

2-amplifier,
4-frequency meter,

Table II Comparison between the eigen-
frequencies, determined by SIA,
and the experimental results of
the flexural vibration of the

rotor systems,

Support [fre. -
No condi. Hz 1st 2nd 3rd
a flex, | SIA 29.50 101,00 | wwww=
1 + expe | 29.20 102,10 | =—ewm
a rigid e%r. 1,03 1,08 B
two SIA | 25.00 5567 97.0
2 | flexibld exp. | 24.80 56.15 96.95
support eFre 0.80 0.80 0,05
two SIA 30.4 63.0 102.3
3 flexiblel exp. | 30.95 63.80 | 101.80
supports e;r. 1.77 1.25 0.49
(4
two SIA | 28.70 63.88 96.23
4 | flexible exp. | 28.20 64436 96.50
support% err. 1.78 0.75 0.27

3« The critical speed measurement of the
rotor system,

Fige 13 shows a test rig of a flexible
support-single-disk rotor system. A D.C. motor
drives the rotor by means of a flexible
coupling., The shaft is 20 mm dia. and 800 mm
long. The span between two supports is 650 mm.
The disk is 200 mm dia. and 20 mm width, and
can be set at the midspan or any other position.

(1) The critical speed measurement method.

There are two methods of the measurement.
One of them is to measure the maximum of the
amplitude response, the other is to measure the
change of phase angle (the turn of the eccentri-
city of the gravity centre). The measurement
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Fig. 13

data of these two methods are in good agreement
with each other when the test is in steady sta-
te.

(2) The vibration mode.

The response-frequency behaviour of several
points can be plotted by means of the associa-
tion of the measurement of multi-points ampli=-
tude-frequency curves and the phase-changes.
Then the vibration mode can be obtained. Fig.l4
shows the procedure to determine the vibration
mode from amplitude-frequency curves and phase
changes.

(3) Comparison between the data by calcu-
lation and by test.

Table ITI is a comparison between the cri-
tical speeds, determined by SIA (See Figs. 7
and 8), and the experimental results of several
rotor systems. It can be seen that the results
of the calculation are in good agreement with
those of the measurement. The errors are only
about 1%.

X 1Xa
amplitude

w w

phase angle AJ\;ﬂJ\AN W AN Wy A

X Xa
response J Wer o J k W
4 Wey (%} K “)ﬂm Wer
vibration mode ,4,—/’—‘—_}” ,FLE”
W< w W>w
Ist order 2nd order

Table III Comparison between the critical
speeds, determined by SIA, and
measurement results of several
single-disk rotor systems.

Supports P Critical speed n,rpm
A B meas. SIA errors
%
1st 1820 1819 0.05
rigidq II
2nd 4200 4154 1.10
1st 2257 2291 1.54
IT1 Irigid
2nd 3314 3342 0.84
1st 2182 2158 1.09
II I 2nd 3274 3223 1.56
3rd 6164 6159 0.08

IV. Conclusions

1., The flexible supports have a significant
influence on the dynamic behaviour of the rotor
system. When a single flexible support is used,
an additional resonance of the rotor system will
occur at lower frequency, and the bending cri-
tical speed will be higher than the first cri-
tical speed of the rigid support-rotor system.
When two flexible supports are used, two addi-
tional resonances will occur at lower frequen-
cies, and the bending critical speed is also
higher than the first critical speed of the
rigid support-rotor system. Generally, the vib-
rations of flexible support-rotor system at lo-
wer frequencies are like that of a rigid body.
They are mainly caused by the flexible supports,
and can be damped easily. Thus, the stable ope-
ration range of the rotor system is increased.

2. The effect of the flexible support on
the rotor system can be readily determined by
means of SIA, The dynamic behaviour of the
flexible supports, by which the design require-
ments to the rotor system are fulfilled, can
be graphically determined from the curves of
the critical speeds of rotor subsystem.

3. The design and experimental research of
the flexible support must be dome systemgtically.
So, a flexible support suitable for new engine
design can be found that will satisfy the per-
formance requirements. Thus, the time and cost
of rotor dynamic design will be considerably
reduced.
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