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Abstract

In this paper a procedure is pre-
sented which applies modern techniques
for the determination of load spectra
and for keeping the proof of operational
life of sporting aircraft illustrated by
reference to GFRP sailplanes. These
planes are well suiltable because they
experience a strong mutual influence of
gust and manoeuvre loading resulting
from their way of gaining their flight
energy. It is demonstrated how the meas-
ured data gained during a limited time
interval are prepared by means of comput-
ers, stored in a Markov-transition-matrix
and extrapolated to the total life-time
of the gliders. The possibilities of
forming a load spectrum adequate to the
design life~-time are discussed and the
best suitable method is described. Fur-
thermore, problems are considered which
occur during the serviceablility test
when working down the load collective.
Different possible solutions are shown
and the results taken with the different
solutions are compared to each other.

Introduction

For transport and commuter aircraft as
well as for military aircraft the mis-
sions to be flown or single phases of
these missions are well known. There are
enough flight data measurements allowing
the derivation of load spectra with a
good probability.

For military aircraft the freguency of
their sorties for a mission may extremely
differ from aircraft to aircraft. There-
fore the aircraft loadings are continual-
ly recorded so that the load history of
every individual aircraft is known at
any time.

With the knowledge of crack endangered
areas from the load testing, with the
knowledge of the speed of crack propaga-
tion and the resulting determination of

inspection intervals, and with the verifi-

cation of a damage tolerant design it is
possible to detect cracks in metal con-
structions early enough and to certifica-
te such aircraft with an "open end".

Conditions are totally different for
modern sporting aircraft. Sporting air-
craft are used for the most different
purposes (touring, school flying, exer-
cising, simple acrobatic flying) and
with different frequency without record-
ing of the occurring loads.

The next point is that modern sail-
planes of today with only few exceptions
and modern motor aircraft for sportive
usage more and more are built of fibre
reinforced plastic. At the time being no
test methods are known the application
of which allow the determination of
cracks during an inspection of the as-
sembled aircraft.

The missing knowledge of the load
history together with the impossibility
to detect causes of damage in time thus
call for fundamental reflections about
the derivation of load spectra for the
determination of the life-time of sport-
ing aircraft and shall be illustrated on
the basis of load derivation for gliders.
These planes are well suitable because
they experience an extremely strong mutual
influence of gust and manoeuvre loading
resulting from the way of gaining the
flight energy.

Bases of the fatigue proof of gliders
in Germany at the time being are measur-
ings of gust densities and frequencies
in low flight levels, which had been
made by H.W.Kaul in 1938 on the bases of
c.g. acceleration measurements.(1) How-
ever, he counted only extreme values and
he thus did not consider the elastic
behaviour of the aircraft which is addi-
tionally yielding the overshooting of
the wing and its postvibrating.

Proceeding from these measurings
W.Thielemann/F.K.Franzmeyer of the In-
stitut fir Flugzeugbau und Leichtbau
(IFL) of the Technische Universit#dt (TU)
Braunschwelg formed theoretical load
spectra for the new-developped glass
fibre reinforced plastic (GFRP) gliders
in the mid 60°'s (Fig.1).(2) For influ-
ences not based on measurings estimations
were made representing the state of the
art and the then foreseeable development
and were incorporated into the load

1330



Accelergtion [g)
+*6
*5

+*3
ES 2 Pav—
)

I IJ—J-r.-J
-3 §

-4
-5

E

tloading
ing

Londing Jmpoact

ond Taxiing

B Gust

1642,
1.960.500 Cicles & 3000 Flight Hours

§

+e-300.000%

Fig. 1 Glider Load Spectrum According to

W.Thielemann and F.K.Franzmeyer

spectra. Thus, a life-time of 3000 hours
was supposed l.e. 15 years with 200
flight hours, respectively, and the com-
mon way of flying was considered when
composing the flight phases. Several fa-
tigue tests together with static struc-
tural tests have been performed based on
the above mentioned load collectives and
let suppose that no fatigue damage within
the proven life-time would occur. This
assumption has been proved by day-by-day
flights. Until the present day no fatigue
failure of any primary GFRP glider struc-
ture sized according to these load as-
sumptions has become known.

Using GFRP the aerodynamic efficiency
- the lift-drag-ratio - could be raised
by 50 per cent. At the same time, it was
possible to inecrease the wing loading
yielding higher maximum and cruise
speeds. Additionally, the flight perform-
ance was improved by the more and more
precise knowledge about shape and
strength of upwind distributions and by
the use of better avionies for judging
the upwinds during the flight. As a re-
sult of these facts, today, distances up
to 1500 km are flown at average cruising
speeds of about 110 km per hour. For ex-
ample, a modern glider has flown a trian-
gular course with a range of about 1000
km within Germany with its rather unfa-
vourable gliding conditions for such dis-
tances.

Two facts contributed to the achieve-
ment of these high flight performances:.
a strong change in the way of flying and
a drastic increase of exercising efforts.
For example, it demands special dive-in
manoeuvres to take best advantage of up-
wind arrays which up to now have not been
considered in the load assumptions be=-
cause these loads and their frequencies
were not yet known. The high training
efforts common today result in a higher
annual utilisation of gliders, and thus,

allowable years of service of the low-
maintainance, long-living GFRP gliders
of today are reduced when fixing the
number of total flight-hours allowed and
proved now.

So it is highly necessary to know the
loads and. their frequencies occurring du-
ring present time service conditions.
Otherwise it is neither possible to cer-
tificate the life~time of gliders ex~-
posed to these rougher service con-
ditions nor to permit new materials and
technologies.

A survey. of the possibilities of today
and how to use them is given in Fig.2.
Characteristic signals are measured du-
ring the flight and are prepared to form
load collectives by means of a computer
which are finally existent in a Markov-
transition-matrix. The load collectives
stored in this way then can be fed to a
computer which controls a servo-hydraulic
loading facility. The load cycles for the
loading device are randomly taken from
the Markov-transition-matrix until the
matrix is worked "down", i.e. emptied.
Thus, the load cycle sequence is very
close to the reality. This loading
machine applies the measured loads to
the component to be tested and the life-
time at a given maximum stress-level can
be attained as a result of such tests.
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Determination of Load Spectra
of Sporting Airplanes

Under contract of the Bundesministeri-
um fiir Verkehr (BMV), the IFL of the TU
Braunschweig together with the Deutsche
Forschungs—- und Versuchsanstalt fir Luft-
und Raumfahrt Braunschweig (DFVLR) have
performed in~flight load measurings. The
plane used was the "Janus" glider of the
DFVLR equipped with a 16 channel PCM-unit
and the necessary transmitters.

As the most important primary struc-
ture of a glider is the wing and as its
endurance has to be proved in the fatigue
test, it is necessary to know the time-
dependency of the characteristic value,
which in this case is the statistical
distribution of the bending moment M,__.
To measure it four strain gauges swigghed
to a full bridge were applied in the wing
beam connection area near to the wing
root rib (Fig.3). The calibration of the
measuring devices was performed on the
ground by single-mass loading of the wing
and the standardizing unit was found du-
ring a stationary gliding flight in calm
air (1-g-flight).

Wing-Shelt GFRP-Chord

Strain - Gauge

L 610

Root - Rip

Fig. 3 Location of the Strain-Gauges in
the Wing-Connection-Area

The reception and preparation of the
signals is shown in Fig.4. On board of
the glider the signals coming from the
transmitters are amplified, digitalized,
arranged in a serial manner, provided
with a synchronous value, and recorded on
tape. The individual flight phases like
launch, landing, training flight, etc.
are coded to enable separate assignment.
These measured values must now be pre-
pared in severgl steps by means of com-
puter programs . After synchronizing the
signals the data are examined and digit-
alized to enable computer-adapted tape
recording. Then the serial data are as-
signed to the parallel measuring units
(bending moment, ramming pressure, upward
acceleration of the center of gravity
etec.) and runaway values i.e. obvious
noise data are eliminated. For the digit-
alization the measuring range is subdivi-
ded into 2© = 1024 classes which later
on are densified to 32 classes.
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Fig. 4 Flowchart for the Load Spectrum
Determination from Flight
Measurements

After a respective time interval Ot
the corresponding class is taken from the
measured analogous signal which is run-
ning in that scanning pattern. The digit-
alized value of the measured signal is
formed in this way. If the very fine
class pattern with many little high-fre-
quency oscillations is reduced without
filtering (Fig.5, top) the dashed curve
is obtained. By filtering it i1s possible
to eliminate little vibrations between
two adjoining classes which otherwise
would be stretched to greater vibrations.
This filtering is done by setting the
condition that e.g. at least more than
one class border (DX >1AX) has to be
crossed before the amplitude value is put
to the average value of the reduced class
(Fig.5, bottom).

These prepared data are now stored in
so-called Markov-transition-matrices. The
proceeding for doing this is as follows.
The number of transitions from one class
to another one is recorded in a matrix-
scheme (Fig.6). It must be noticed that
any information on the time parameter is
lost at this proceeding. This will not
cause any problems for metals; for fibre

* Program development was done at the IFL by Dipl.-Ing. W. Reinke
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ses and Amplitude Filtering

reinforced plastics, however, you will
have relaxation processes during the
load-cycles. For instance, it was found
that the number of load-cycles to failure
in a one-step-test is increased by 3 dec-
ades when the loading frequency is in-
creased by one decade (from 2 Hz to

20 Hz).(3) So you must try to preserve
the time history of the measured loading.
This is done by calculating the freuguen-
cies of the half-waves which are also
stored in Markov-matrices divided in
classes of frequencies (Fig.6).

Since each flight phase could be flown
only for a limited number of hours the
frequencies found during the measuring
flights must be increased according to
their part of the foreseen total life-
time.

The loads are statistically distrib-
uted. If the number of flight hours is
increased the height of extreme values
must increase, too, compared with the
measured extreme values of the relatively
short test flying. So, an extreme value
extrapolation has to be performed to com-
pose the real increased Markov-transi-
tion-matrix (Fig.7). This procedure may
be imagined as lofting preserving certain
conditions resulting from the probability
theory.
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By means of several random samples it
was found out that every intersection AA
through the maximum of the Markov-transi-
tion-matrix (Fig. 8) yields a different
distribution of cumulative frequencies
but that the traces of the curves begin-
ning the cumulation at the right-hand
side and at the left-hand side up to the
intersection point, respectively, can be
approximated by a distribution function
of the form

H(x) = e (Dex)

where x denotes the class of the Markov-
transition-matrix.

The distribution function itself can
be derived the more precisely the bigger
the number of classes of the Markov-tran-
sition-matrix and thus the less the re-
duction of measured data is. A bigger
number of classes, however, requires an
exponentially increasing need for stor-
age.

This distribution function enables a
relatively simple mathematical treatment
of the extrapolation problem. By loga-
rithmizing the distribution function to-
gether with the equation

log H(x) = log e . 1n H(x)
becomes
log H(x) = k + mx
where
k = log e (ln%+ b)
m = ¢ log e

With a semi-logarithmic scaled dis-
tribution function and spatial view we
get at ideal conditions a cone above the
Markov- transition-matrix with its top
above the place of the maximum number of
transitions (Fig.8).
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Fig. 6 Derivation of the Markov-Tran-
sition-Matrices Classified in
Frequency~Classes
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Fig. 7 Extreme Value Extrapolation

The intersection BB cutting the cone
parallel to its axis thus represents a
parabolic conic section at semi-logarith-
mic scale.

By extending the cone up to the de-
sired plane of extrapolation, thus, the
extreme values in this new plane can be
calculated from the single conic sec-
tions.

If you now want to derive a total load
spectrum there are two possibilities:

1.) You find out or estimate the time ra-
tio of the individual flight phases
during the life-time of an alrcraft
and then compose the Markov-transi-
tion-matrix for the desired total
life-time out of the summed up shares
of the individual flight phases. They
can be derived for every arbitrary
value by an extrapolation of the
measured values.

The time ratio of the flight phases
in Germany in 1979 has been investi-
gated by the IFL by means of an in-
quiry: It was answered by the owners
of almost 1/3 of the about 6000 glid-
ers registered in Germany.

This method to compose a total load
spectrum, however, envolves the dis-
advantage that the individual shares
of the flight phases vary extremely
according to the usage of the respec-
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Fig. 8 Extrapolation Procedure

tive glider as a school, training or
high-performance glider. So an addi-
tional uncertainty for the special
case of application exists, when the
shares of the individual flight
phases contributing to the total
life-time shall be determined.

2.) You extrapolate each flight phase to
the desired total life-time and de-
velop the envelope of all flight
phases. In this case all different
uses of the aircraft during the fore-
seen life-time are covered. That is
the reason why this method for the
derivation of a new load spectrum is
to prefer.

Measurements have been performed for
the following flight phases:

Cross-Country Flight

School and Training Flight
Cross-Country Flight in the Alps -
Mountains

Lee-Wave Flight

Traffic-Circuit, Aerotow-Launching
Traffic-Circuit, Winch-Launching

The circuit is composed out of one
launch (aerotowing or winch-launching),
one landing and a training flight phase,
resulting in a total flight-time of 10
minutes. On the basis of 6000 flight-
hours life-time this will result in a
total of 36000 circuits.
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Fig. 9 Determination of Transition Cumu-
lative Frequencies from the
Markov-Transition-Matrix

Since loads are randomly distributed
and you may not exclude very seldom oc~
curring extreme loads the measurements
have been extrapolated in this case to
18000 flight hours, that means the appli-
cation of a scatter factor of 3 as used
in fatigue tests, and then they have been
standardized to a life-time of 6000
flight hours. The fractional figures re-
sulting from dividing by 3 have been ap-
proximated to the next higher integer
figure and thus the most severe load=-cy-
cle occurring during 18000 hours has been
preserved.

If the number of load transitions of
a Markov-transition-matrix is plotted
above the corresponding fields of the
matrix, you get a three-dimensional graph
which is, however, very difficult to draw.
Therefore, the Markov-transition-matrix
is transformed into a plain, namely
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two-dimensional appearance, for better
explanation. The load-cycles then are
plotted as class transition cumulative
frequency. In Fig.9 the procedure is
demonstrated by a schematic example.

The individual columns of the positive
and the negative part of the Markov-tran-
sition-matrices are summed up, respec-
tively, and thus, the positive and the
negative class transition frequencies
are set, By summing up the individual
rows of the matrices containing the class
transition frequencies you get the class
transition cumulative frequencies for
the positive and negative part, respect-
ively. The result found in this way can
now be plotted in a two-dimensional way.
Above the average value the class transi-
tion cumulative frequency of the upper
values and below that value the class
transition cumulative frequency of the
lower values is drawn. The class transi-
tion cumulative frequencies for the dif-
ferent missions found this way are given
in the following figures.

In Fig. 10 cross-country flight,
school and training flight, cross-
country flight in the Alps Mountains and
lee-wave flight are represented. Con-
trary to general expectation, the lee-
wave flight curve is covered by the
curve of the high-mountain flight though
the load factors occurring during the
climbing through the rotor for gaining
the lee~wave are included.

Cross-country gliding results in even
bigger positive loads and in a higher
frequency of smaller ones which is prob=
ably caused by the overshooting of the
wing and its postvibrating. The curve of
school and training gliding covers nearly
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Fig. 10 Class Transition Cumulative Fre-
quency of the Flight Phases:
O Cross~Country Flight
© School and Training Flight
X Cross-Country Flight in the
Alps Mountains
V Lee-Wave Flight

Fig. 11 Class Transition Cumulative Fre-
quency of the Flight Phases:
O Traffie=~Circuit:Aerotowing
® Traffic-Circult:Winch~Launching
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the whole range of the three flight pha-

ses mentioned before. Take notice of the

higher negative load cycles of the school
and training gliding.

Fig. 11 shows the curves for cir-
cuits with either aerotowing or winch-
launching. Here, as expected, it is the
winch-launching that is reponsible for
the higher positive loading while the
aerotowing yields more load cycles with
little amplitudes. The negative loads re-
sulting from landing are identical in
both cases. This result is not surprising
since the relevant negative loads are
only influenced by the way of landing.

The envelope
the envelope of

of Fig. 10 representing
all cruise phases and

the envelope of Fig. 11 representing the
envelope of the two different kinds of
traffic-circuits are compared in Fig. 12.
It is obvious that the total envelope is
clearly ruled by the circuit. The Thiele-
mann-Franzmeyer collective for 3000
flight-hours has been linearly increased
to 6000 hours and is now shown in a cor-
respondingly adapted manner in Fig. 12,
too.

You can see that this semi-theoreti-
cal collective is rather a good approxi-
mation to the presented measured and
extrapolated data. The higher positive
values at lower numbers of cycles result
from Thielemann-Franzmeyer s assumption
of higher speed-flight gust loading. The
measured higher negative values at high
numbers of load-cycles obviously result
from a stronger influence of the wing
mass during the taxiing after the landing
impact.
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In the previous section the total en-
velope has been derived for better illus-
tration by superposition of class transi-
tion cumulative frequencies of the indi-
vidual flight-phases. In a similar manner
a Markov-matrix can be derived from the
matrices of the individual flight-phases
with a computer then representing the
Markov-transition-matrix of the total
envelope.

Proof of Operational Life Time
by Markov-Transition-Matrix
Stored Load Collectives

The "envelope-Markov-matrix" deter-
mined this way yields the load collec-
tive which has to be worked down for the
proof of life-time which is 6000 flight
hours in the given example (Fig.2).

Such a test is performed by means of a
digital computer controlling a servo-hy-
draulic loading facility (Fig.13). The
computer takes the reversal points from
the Markov-matrix, interpolates between
these points a cosine half-wave and
transfers this nominal value as a signal
via a D/A-transducer to the control unit
of the loading device which applies the
analogous loads.

Fig. 13 Two GFRP Cantilever Beams during
Fatigue Testing by Means of Mar-
kov-Transition-Matrix Stored
Load Cycles

If reversal points of the Markov-tran-
sition-matrix are to be worked down ran-
domly, the sequence of these extreme val-
ues to be taken from the matrix must be
determined by a random generator in such
a way that a positive transition is al-
ways followed by a negative one and vice
versa. If not any further conditions are
implemented, however, the Markov-transi-
tion-matrix is generally not completely
worked down, because the computer sooner
or later comes to a column of the matrix
the positive or negative part of which is
already worked down. Thus, no transition
to further yet occupied places is possi-
ble.



For completely working down Markov-
matrices with a Gaussian frequency dis-
tribution a method is described in (4).
This method can furthermore be applied
if only the partial row and the partial
column sums for all matrix classes are
identical, i.e.

gH 322 H d %H % H

.= . an .= .

ok Kk kT Kk

where
Hi' Markov-transition-matrix element
i* index of columns
J index of rows

Markov-transition-matrices derived from a
load sequence measured under operational
conditions, normally do not show a symme-
try with reference to the main or second-
ary diagonal. Furthermore, they generally
have a difference between the sum of the
positive and the sum of the negative load
transitions, caused e.g. by elimination
of erroneous measurings. So the above
mentioned method (reference (4)) cannot
be applied in the given status.

For completely working down a Markov-
transition-matrix the necessary condition
must be satisfied that as many transi-
tions to a class as transitions from a
class must be given. This postulate,
which is satisfied if the corresponding
partial column and row summations are
equal, can principially be achieved on
three ways: by addition, by subtraction,
and by a combination of addition and sub-
traction of transitions.

If the contents of the existing load
collective shall be altered as little as
possible it is demanded that:

a) The total sum of transitions shall
not be less than the one in the
originally given load collective.
The number of changes in the matrix
shall be as little as possible.

No transitions shall be added which
lead to classes beyond the range of
the original matrix so that the
given maximum load level is not in-
creased.

Load transitions occurring very
rarely should be neither increased
nor decreased, i.e. changes should
be done at load cycles occurring
often.

A limit for the maximum allowable
number of classes to be skipped
shall be set, i.e. changes are al-
lowed only in the proximity of the
main diagonal so that the original
load collective is not adulterated
by addition or subtraction of big
load skips even within the allowed
range.

b)
c)

d)

e)
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By the postulate a) the three possible
solutions are reduced to two methods:
i)
ii)

Addition of load transitions.
Addition and subtraction of load
transitions.

For both possibilities computer pro-
grammes have been developed considering
the conditions mentioned above. The se-
lection of transitions is done by means
of a quasi-random method, i.e. the random
generator calculates the new random fig-
ure from the previous one after the ran-
dom figures had been standardized to the
range 1 to 32 according to the number of
the given matrix classes.

The initial class of the first load
transition is determined by taking serial
random figures as long as an occupied ma-
trix column is found. In the same way an
element greater than zero within the col-
umn thus found is selected. The row-index
of this element then denotes the class
into which the first skip is done. For
the new initial class thus gained, again
an element greater than zero is derived
by means of the next random figure and so
on.

At the same time the contents of the
corresponding element is reduced by one
after every transition so that all ele-
ments yield a zero after completely work-
ing down the matrix. For selecting the
matrix transitions approximately corre-
sponding to their frequency the following
method is applied: The transitions of a
partial column are standardized to the
range 1 to 32 with the largest element
in it. The values of the standardized
elements are compared with the derived
random figure and in the direction of
increasing element numbers the first
element is chosen which is greater than
or equal to the random figure.

The addition or subtraction of transi-
tions can be done at different moments:

In case 1 it is performed after the
load transitions have been worked down
so far that for the continuation of the
process a manipulation becomes necessary.
Then additional transitions have to be
found for the remaining rest. This con-
tributes to a number of additional tran-
sitions as little as possible, for at
this moment the range of yet occupied
matrix elements and so the possibility
for the addition of transitions is al-
ready restricted. Considering the limita-
tions mentioned in ¢, d, and e, at adding
a transition in the beginning that class
is taken which contains the maximum num-
ber of remaining matrix transitions. The
transition is determined by means of a
random figure.



Demonstrative calculations have shown
that for completely working down a Mar-
kov~-transition-matrix following method 1)
with only adding transitions averagely
3% to 4% additional transitions are ne-
cessary.

In case 2 adding (method i)) and ad-
ding and subtracting (method ii)) of
transitions is performed at the original
matrix which 1s then worked down accord-
ing to (4). Here, the number of changes
is minimized in the following way:

Every matrix element H.. (i not equal to
J) exists in a partial Ycolumn sum of the
class 1 (i.e. sum of transitions from
class i) as well as in a partial row sum
of the class j (i.e. sum of transitions
to class j). If thus two classes i and j
are found in which differences with dif-
ferent signs exist between the number of
transitions to these classes and the num-
ber of transition from these classes,
then the necessary changes become a mini-
mum if the addition or subtraction of
transitions is beginning at the element
Heoo This method is applied to all clas-
s&% of the matrix in a certain seguence
and the total number of modifications de-
pends on the selection of the initial
class. The minimum is then found by com-
paring the number of the respectively de-
termined necessary additional transitions
after every class has once become the in-
itial class.

Demonstrative calculations have shown
that the number of additional transitions
for case 1 and case 2 of method i) are
equal. Comparing methods i) and ii) for
case 2 it can be seen that method 1)
needs four times the additional transi-
tions of method ii).

With these methods i1llustrated in the
previous sections it is possible to de-
rive a representative load collective
from load measurings performed during
the various flight-phases. This load
collective is stored in a Markov-
transition-matrix and covers for an
intended life-time all flight-phases of
sporting airplanes. PFurthermore, possi-
bilities are shown enabling a complete
work down of the load collective stored
in the "envelope-Markov- transition-
matrix".

According to the lower part of Fig. 2
there is now the task to determine by
random fatigue testing the allowable
stress level at a given life-time for
common wing and beam designs of today.
If the relaxation of GFRP is also to be
looked at the selection of frequency
classes has additionally to be con-
sidered in the work down procedure.
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