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Abstract

Flight dynamic model is given by equations
of motion of unconstrained deformable body
under aerodynamic forces, thurst load and
weight. Dynamic model of deformable struc-
ture under aerodynamic forces is defined
using finfte element method. Reducing me-
thod is general for mechanical systems,
which is based on the fact that very fast
modes have a small energy and great dampi-
ng. First step in procedure is to find no-
nlinear vector transformation of generali-
zed coordinates which transform basic non-
linear model to a linear one. By using me-
thod of decoupling linear systems to sub-
systems of slow and fast modes it is pos-
sible to take out fast structures modes
and find linear dependance between genera-
lized transformed coordinates. Criterion
for neglecting these modes is also presen-
ted. Second step is to find nonlinear de-
pendance between basic generalized coordi-
nates which leads to reduced nonlinear mo-
del of system. This procedure is applied
for constructing reduced flight dynamic
model with less dimensionality than basic
one.

I. Introduction

Dynamic model of rigid structure aircraft,
given in linear or nonlinear forms is usu-
aly used in automatic flight control syn-
thesis. In this paper is presented a syn-
thesis of reduced flight dynamic model of
elastic structure airéraft. Presented pro-
cedure is given in a general form for dy-
namical systems of "unsteady structures".

Flight dynamic model of elastic structure
aircraft is synthesized in three parts. In
first part is obtained dynamic model of

unconstrained motion of deformable body,
which is well known in literature. In this
paper are given a final diferential equati-
ons of motion of deformable body under ge-
neralized forces. Dynamic model of elastic
motion of structure is obtained in linear
form, using variational principle. Struc-
ture is modeled with finite element method
using discrete coordinates. Unsteady aero-
dynamic forces are presented by finite
element method for solving equation of
potential in the case of small perturbati-
on velocites of flow. There are three spa-
tial cases in synthesis flight dynamic mo-
del of elastic structure aircraft which
depend on elastic characteristics of stru-
cture.

- dynamic systems of unsteady structures

with decoupled external and structure dy-
namics. This dynamic model is equivalent

to dynamic model of steady structure sys-
tems with steady aerodynamic flow;

- dynamic systems of unsteady structures
with in undependent external dynamics
whose influence on structure dynamics can
not be neglected;

- dynamic systems with coupled external
and structural dynamics.

In this paper all investigations are pre-
sented for the third case of aproximation.
A procedure of reducing flight dynamics
model of elastic structure aircraft is gi-
ven in the third part of the paper. Forma-
11y, arbitrary nonlinear dynamic system
has anequivalent linear model which is gi-
ven by nonlinear transformation of genera-
lized coordinates as a solution of the
partial differential matrix equation. Ap-
proximate solution of this equation is
obtained using Galerkin’s method. We must
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note that there are no great diference in
system of motion between real and lineari-
sed flight dynamic model of aircraft, and
that is the reason for using of Galerkin’s
method. Convergence of this method is very
fast.
is with complex roots it is neccesary for
this system to be stable because in any
other case Galerkin’s aproximation is in-
possible or very complicated. In this case
we must know all steady points of the sys-
tem wich are defined by relation x = 0,
where x is a generalized coordinate of sy-
stem motion.

If equivalent linear dynamic system

Given equivalent linear system has a new
analitycaly equivalent system, which is
decoupled on subsystems of slow and fast
modes. Linear transformation of generali-
zed coordinates is a solution of the mat-
rix Riccati diferential equation, (/8/ and
/10/). Dynamic system with unsteady stru-
cture is always a system of small parame-
ter with small energy of higher modes,
which are negliable. If number od modes
is less than number of generalized system
coordinates a linear dependance between
them must exsist. On this fact is based
aproximate procedure of reducing. Now,
we can define inverse procedure which gi-
ves nonlinear dynamic model with lower
number of coordinates dimensionality than
initial one. Nonlinear dependance between
coordinates of initial system are also
obtaines using Galerkin’s method.

II. Notation

U, V, W - velocity components in fixed
inertial coordinate system

Py G, T - components of angular velocity
in coordinate system, fixed in
arbitary point

Xes Yo Z¢° coordinates of center of
gravity

m - total mass of airplane
G={FX,Fy,Fz, vector of generalized forces

MyoMy oMy}

x={u,v,w, - vector of generalized coordi-
psq,r} nates of motion

W=w(x,y¥,z,t) - vector of elastic
displacement

[ - vector of generalised surface
lToad
Q={qi} - vector of generaiized coordi-

nates of displacement

Jdos d. , J_- inertial moments

b S z

ny’sz’Jyz

u - vector of control

Y, 2 - vector of transformed
generalized coordinates of
motion

R, P - vector of transformed
generalized coordinates of
displacement

H, J ~ vector function of transformed
coordinates

L, N - transformation matrix of
generalized coordinates

U, Vv - small parameter

1II. Flight Dynamic Model of

Elastic Structure Aircraft

Let us consider a motion of elastic unres-
trained body in dynamic (fixed) coordinate
system. Elastic deflections are defined in
coordinate system which is fixed in arbitra-
ry material point of body. Let T be a radi-
us-vector of material point dynamical co-
ordinate system. If the body is influenced
by surface and inertial forces, denoted by
vector F and E.per unit of surface and vo-
lume, respectively, vector equations of
equilibrium of forces and momenta are

4 s oS av e sr Rav+ 10 Fas
v v
d e dF

= [ff (FxR) dV + ff (v x F) dS
\" S
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where p is a mass per volume unit . Equati-
ons (1) in scalar form can be presented
like:
Fo=m(U+qw-rv)+X _+2(q2 -ry )-( 2+r2)x +

X c c"Yelmla c

+(pa-r)y +(pr+d)z

. . ; s 2

Fy=m(v+ru-pw)+yc+2(rxc-pzc)-(p2+r )yt

+{qr-p)z +(pa+t)x,
Fz=m(W+pv-qu)+ic+2(p9c-qic)-(pz+q2)zc+

+(pr-g)x +(ar+p)y, (2)

Mymdxp*(d =dydar+d, (pr-4)-d,, (F+pq)+

+J (r2

2 . .
yz{ro-q )+pr-szr-J

xyd*
+m[(qv+rw)xc+(w—qu)yc+(Q-ru)zc+wyc-vid +

+q S (xy-ky)dm+r S (Xxz-x2)dm+ S (yZ-§z)dm
m m

m
My=Jyd+(JX-Jz)pr+JyZ(pq-F)-ny(ﬁ+qr)+
2 2 . .
+J,,(p%-r )-nyp+qu-Jer+

+m[(w-pv)xc+(pu+rw)yc+(ﬁ-rv)zc-wic+ui€]+

+p [ (ky=-xy)dm+r [ (yz-yz)dm+ S (Xz-xZ)dm
m m m

My=3,1+(3,-0 )pard,, (ar-B)d , (a+pr)+
+ny(q2-p2)-szp-Jqu+er+
+m[(V-pw)x +(i-aw)y +(putqV)z +vk -uy ] +
+p é (xz-x2)dm+q S (Vvz-y2)dm+ S (x§-Xy)dm

m m

Displacement can be presented by formal
series

Wix,y,z,t) = vy(x,y,z)-a(t)
where y is matrix of interpolation functi~
ons. Linear equations of motion for small
disturbances of system can be formaly pre-
zented by vector linear relation

6 =& (x.Q)

whereSZ; is linear diferential operator.
Using variational principle for small dis-
placement of elastic structure we get a

(3)

Tinear matrix diferential equation (Euler-
Lagrange’s equations) of elastic motion of
structure

MQ+*2PQ*KQ=S$ (4)

where § is a vector of generalized forces
and M,p,K respectively generalized matrices
of mass, damping and stiffness. Motion of
aerodynamic surface is given by approximate
relation

h=y +W-d

Using a derivation of potencial in linear
form and boundary conditions on the thin
aerodynamic surface, we get a linear matrix
relation for unsteady generalized aerodyna-
mic forces

s =,(x.q.u) (5)

where;Z; is linear diferential operater,
and y is a control vector.

Steady aerodynamic generalized forces for-
maly are presented by relation

6 = (X.Q,U) (6)

where;Z;is linear diferential aerodynamic
operator. Using equations (2), (4), (5) and
(6) we get a nonlinear flight dynamic model
of elastic structure aircraft in a vector
form

f(x,Q,u)
FA, X * A,,Q *VB,U

o
i

(7)

Da
L]

or using equation (3), (4), (5) and (6) a
linear flight dynamic model, given in a
vector form

X= A X*A,Q+BU

(8)

Q= ¥A, X + A,,Q tvB U
Given dynamic system presented by equations
(7) and (8) are systems with small parame-
ters u and v, which are a indicators of ela-
sticity influence on aircraft motion. A
procedure for reducing of nonlinear system
(7) is given in the next part of the paper.
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1V. Basic Equations

Let us consider a nonlinear dynamic system,
given in a vector form by equation

X = f(x,u,t) (9)

where y is n-dimensional vector of genera-
lized coordinates, y is l-dimensional vec-
tor of control.

Linear system given by equation

Y = A(t) vy +B(t) U (10)

is formaly equivalent to system (9) if
there is vector function H(y,y,t) presen-
ted by nonlinear transformation

X =Y + H(y,u,t) (11)

which is a solution of matrix partial dif-
ferential equation

Gu/ay){A(t)-y + B(t)-ul+ A(t)-y + B(t).y +

(Guzag-d - F[y + ulv,u), vt =0 (12)

with initial condition

H(YgysUg) = Hy = O

Solution of equation (12) for the case of
independent on time system is given in |3].
Approximate solution of equation (12) can
be presented using Galerkin’s approximati-
on as follows:

Hly,u.t) = T.E(Y,U,t) (13)

where matrix T = [Tij] is a solution of
algebraic matrix equation

aj'Tj“"" Y; * Bj(Tj) (14)
where are
t
% =] B, /av[a(t) -y + B(t)-u] +
0
+ (B /3u) B} E5(y,u,t)- dt
t (15)
By = {' fly+ uiv.) v, t}Ei(y,u,t)'dt
+]
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ty
v =/ [Alt)-y + B(t)-UJEsLY,u.t) dt
kot

0

Galerkin®s approximation presented by
relation (13)is given in a real time. If
system (9) is indenpendent on time than
aproximation (13) is defined by generali-
zed coordinates which needs a possition
of steady points of system motion. It is
possible only if the system (10) is stab-
le. If system (9) is steady, than matri-
ces A and B are constant. In this case
equations (14) has a different form, given
by equations

o, = [I{EE 73Y(A-y *+ B-U) +(3E,/3y)u}"
k= ITE
- By (y,y)-dy-dy
(16)
B, = S5 £ [ (v *+ HIY,U)» UJ-E{(Ysu)-dy-dy
YU
Y = /S (A-y + B-U)Ej(Y,u) - dy-dT

YU

Integration of equation (15) carried out
in generalized coordinates, with condition
that system (10) is stable. In this case
vector of generalized coordinates cannot
be known. The approximative equation (13)
can be also presented like

H(y,u,t) = T(t)-e(Y,u)

Equations (14) can be integrated over ge-
neralized coordinates and control. Equati-
ons (14) are than transformed as follow:

o = iﬁﬁ?Ek/aYXA(t)y + B(t)y) +(E /du)u)
- By (ysu)-dy-dy
B = J1 fly + T{t)-E(Y,0), ust]
Yu (17)
“Ey (y,u)-dy-dy
Yy = 56 (A(t)y + B(t)-WE;(y,u) dy-dy

where matrix 7(t) is a solution of functi-



onal matrix equation

a(t)-T(t) + v(t) = 8[T(t)] (18)
This procedure does not need a knowledge
of motion of system.

Let us consider a dynamic system with un=
steady structure, given in subvector form
by eguation

n

X = f,(x.Q.ut)
(19)

[> X
]

= fq(x,a,u,t)

Linear unsteady dynamic system given by
the next equation

-0

AR A ()] Ly

= . +
A (t) A (t) IR

21 22

Bl(t)

U
(20)
Bz(t)

o0

is formaly equivalent to system (19) if
there is a solution of matrix partial dif-
ferential equation (14). A linear transfo-
rmation of generalized coordinates

Y I -M YA

(21)

R L (1M (e

gives as a decoupled dynamic system prese-
nted in a form

z| et 0 z
= . +
P 0 c,kt)f |p

D, (t)

U
D,(t) (22)
Block-matrix of transformation (21) are

solutions of Riccati matrix differential
equations

L=LA,L-LA, *A, L"- A,
. . . 3 ) (23)
N=A,N-A,- A,LN

-N (A, *LA,)

For the case of steady dynamic system (19)
equations (23) are algebraic Riccati matr:
ix equations given in a form

LA

12

L-LA *A,,L-A =0
(24)
LN-NA +*LAL)=0

AN T ALTAL,

Matrix of system (22) are defined by rela-
tions

c,(t)= A -a,L D{t)=s+ NDI(t)

(25)

c(t)=na,, + A D,(t)=B,* L B,

22 12

Using transformation (21) , transformation

(11) has a final form given by next rela-
tion

x| il N T T

11 12

z e{z.p.u)

Lo (et

(26)

Q PL T T,,

21

Egz,P,U)

If there is a change of generalized coordi-
nates (26) systems given by formulas (19)
and (22) are formally equivalent.

If we write vector @ in a block form
a ={a, q,}

where and are 1; and 12 dimensional

subvectors, respectively, system (19) can
be writen in a mixed form

x = f(x.q,.q,,u,t)
o

= 21
Ql A11Q1+ A12Q2+ CIX * BXU ( )
Q2= A21Q1+ A22Q2+ CZX + Bzu

A next linear system, given by relation

Y=A Y+D R*DR*BU

o

1= AllRl+ A12R2+ C1Y + Bxu (28)

RZ= A21Rl+ A22R2+ CZY + BZU

is equivalent to system (27) if there is
transformation (11) presented by change of
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generalized coordinates in form

x|y | |0 (Y,R.R))
QR *+[J (Y.R R)) (29)
Q, |R,| [|J,(Y.R .R,)

which is a solution of matrix partial dif-
ferential equation, given in form of equa-
tion (12). Transformation (21), writen in

a form

(30)
v, [1-NL: N|[R,

transformes system (28) into new decoupled
one, given in a form

Z| |F,, Fi. 0 {|Z K,
ViITIFa Fan O 1ViFIK, (31)
v2 Y Y F33 v2 K3
where block-matrix are given by the
formulas
Fll sz A Dl Dz
F21 F22 cl All sz
F, s
1. = A
33 22
3
A (32)
12
K1 B B
n{B + v [}
2
K, B, B,
K, = B, L
B

Matrices and are solutions of Riccati

matrix differential equations, given by
relations

. D
= - 1 -
L=1L Az L-L . AL -|C, A,
12 1 11
. |A D D
N £ NP +LN) - (33)
cl All 12

2

-n (A, +L

)

sz

If we assume that vector V2 of the system
(31) has a fast modes with small energy and
great damping we can neglect these modes by
relation

V, = 0

2 (34)

which leads to linear dependance between
coordinates, given by relation

Y
R, = L~ R (35)
1
Matrix L can be writen as
I i
L=jLy Ly | (36)
Using relation (35) we can obtain reduced

linear dynamic model of system (27), given
by vector equation

Y| A -D, L-D-D, L ||Y B
T B +
_ — (37)

R 1AL, A”inc1 ALLIIR B

1 1 1

If retation (35) transforms into matrix
partial diferential equation (12) it gives
modificate partial matrix diferential equ-
ation in form (12). It is very easy to pro-
ve that there are no reduced system whose
structural dynamics is described by linear
submodel, as in equation (27).

Using relation (35) between transformed ge-
neralized coordinates, transformation (29)
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gives new form

XY ] [H (R -LY-L,R)
Q15 R} 19, (Y,R ,-L Y-LR) (38)
Q,| |R,| [J,(Y,R ,-L Y-L,R))

Relation (38) is a parametric dependance
between initial generalized coordinates
X, 01 and QZ Formally it can be writen
in explicite form by equation
which leads to a final reduced nonlinear

dynamic model, given by vector differenti-
al equation

X =f[x.q . q,(a,.x),u.t|

(40)
° = +
Q=A Q+a 0. ,x)+cx+BU

Let us consider now vector function as a
vector series given in a form

e, (@, .x) = F.ala,.x) (41)

we can find approximate solution of equa-
tion (39) as a solution agebraic linear
equations given by Galerkin’s method.

On the figure (1) it is shown influence of
elasticity of aircraft structures on its
dynamics. Criterion for neglecting higher
modes of structures cannot be presented
explicitely. In some cases on the Bode s
plots there are a new parts of curves with
high frequency and great damping, which
are not of interest. We shall define cri-
terion for neglecting in a dynamic. model
of a rigid structure aircraft.

The criterion is defined by frequency with
zero amplitude ratio on Bode“s plot given
for dynamic model of rigid structure air-
craft. A1l higher modes with great frequ-
ency than certain one can be neglected.
This criterion is based on a fact that the

Bode “s curves for elastic structure air-
craft are in domain of less amplitude ratio
which means that frequency with zero aplit-
ude ratio is less than certain one.

Example

Influence of elastic structure on motion of
the system is presented in this example
using Bode”s plots. Numerical example is
based on the example shown in 2 for the
aircraft F-89, which is presented on figu-
res with dashes. Full line presents plots
for the case of short period approximation
of elastic structure aircraft with two de-
grees of freedom of motion and one degree
of elastic torsion of the wing, which stif-
fnes is hypothetical.

Conclusion

A numerical method for solving of system
motion and for synthesis of automatic con-
trol using flight dynamic model of elastic
structure aircr.aft is very complicated be-
cause time constant of the system is very
small for higher order modes. The influence
of these modes on motion and control is ne-
gligable so we can consider the system
without their influence. Number of modes of
reduced dynamic model is lower than initial
one, what gives a linear dependance between
generalized coordinates. Using this method
we can obtain dynamic model which includes
only slow modes with lower number than ini-
tial one. In engineering first ten modes
are of interest because their damping can
be very small or , in the case of flutter
there is negative damping, i.e. gaining.
For solving vector function of transforma-
tion of generalized coordinates is used
Galerkin”s approximation.
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