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ABSTRACT

A general computer-algebra system has been applied
to derive literal equations of motion for the
aeroelastic behaviour of rotary-wings. Inertia,
elastic, structural damping, aerodynamic, and
gravitational contributions are considered. Modal
degrees of freedom are provided to represent
elastic rotor blades. The program input comprises
mainly a kinematic description of the system. A
weighting scheme is used to obtain the most im-
portant terms in a consistent manner. Multiblade
coordinate transformation is applied to reduce or
to eliminate periodic coefficients. As output,
matrices are written in FORTRAN code, which re-
flect the mathematical model and can be used for
further numerical calculations. As an example, the
suggested procedure is applied to a model of a
two-bladed wind turbine mounted on an elastic
tower.

1. INTRODUCTION

The theoretical investigation of aeroelastic sta-
bility and dynamic response of rotary-wing air-
craft requires considerable effort in mathematical
modeling. Compared to the fixed-wing case, the
inertia forces must now include centrifugal and
coriolis terms. The aerodynamic situation of the
problem is even more difficult due to the complex
unsteady motion of the rotating lifting surfaces.
In some instances, gravity plays a role in the
aeroelastic behaviour of the system. And last but
not least, nonlinear effects must be considered
for a number of aeroelastic problems. Structural
nonlinearities are important for the modeling of
modern hingeless or bearingless rotor designs.
Nonlinear aerodynamic effects occur in the sepa-
rated or transonic flow regimes entered by the
rotor blades. It is not intented here to deal with
the state-of-the-art aeroelastic modeling of all
these physical phenomena, which has been addressed
recently in /1/. Only the general problem of de-
riving equations of motion from a basic kinematic
description will be treated.

The amount of labour spent for algebraic manip-
ulation increases considerably as more detailed
rotor blade and hub descriptions or rotor/body-
coupling are taken into account. The manual der-
ivation process becomes increasingly tedious and
error-prone, although the procedure is straight-
forward. So, only relatively simple models can be
handled in this way. For more sophisticated mod-
els, it appears mnecessary to start with their
numerical treatment very early. For this reason,
two different categories of mathematical models
for rotary-wing aeroelastic problems can be iden-
tified in the literature:

1. Simplified models

This type, characterized by a small number
of degrees of freedom and a large number of
simplifying assumptions, is necessary to
gain insight into specific problems, which
perhaps have been already recognized. The
amount of manual derivation is kept within
acceptable 1limits. A typical example of
this category is the rotor whirl-flutter
model described in /2/. It has been ob-
served that numerous algebraic simplifi-
cations can be carried out, especially with
the introduction of multiblade coordinates.
This results in exact and efficient analyt-
ical formulations for subsequent numerical
analysis, especially for parameter studies.
An additional advantage of simplified mod-
els lies in the fact that the structure of
the equations becomes visible by their
analytical rather than numerical represen-
tation and the effect of parameters enter-
ing the problem can be estimated by their
appearance in literal form. Of course, the
scope of such models is limited and a com=-
plete re-derivation is usually necessary
for incorporating additional features into
the model.

2. Comprehensive models

Due to the large number of design param-
eters of a rotary-wing aircraft, complex
general-purpose models are very important
for qualification of the system as a whole.
The state-of-the-art of this category was
recently documented in /3/. This model type
is characterized by a large number of
degrees of freedom and sophisticated aero-
elastic modeling capabilities. As already
mentioned, the equations of motion of such
models cannot be derived manually. They are
put into numerical form in an early stage
and the bulk of work is left to the number-
crunching capabilities of a fast computer
with large capacity. Usually, such models
are incorporated in the form of a time-
domain simulation of a nonlinear system of
differential equations. For stability in-
formation, the relevant matrices of a lin-
earized model can be obtained only in nu-
merical form. This involves numerical dif-
ferentiation for calculation of the Jacob-
ian matrices, a process which can cause
problems. Due to their general-purpose
character and size, comprehensive models
tend to be less efficient for parameter
studies. Numerous expensive computer runs
will be necessary to gain experience and
confidence in handling of such global
models.

The question arises as to whether it is possible
to attack the problem of derivation of literal



equations of motion for aerocelastic problems of
rotary-wings with the aid of symbolic manipulation
capabilities of computers. By this way, some of
the advantages of manually derived models are
retained in more complex cases and the numerical
process with its associated rounding errors is
deferred. The principal differences between the
discussed approaches are shown in figure 1.

2. COMPUTER ALGEBRA

Symbolic mathematical computation, or computer al-
gebra for short, is the use of computers for per-
forming symbolic mathematics such as algebra and
calculus. Up to now, its application in aeronau-
tical science and engineering is not wide-spread.
Instead, computers are mainly used to perform
numerical work. In celestial mechanics, general
relativity, and high-energy physics, for example,
algebraic manipulation on computers has been ap-
plied successfully to solve complex problems with
too lengthy manual derivatiom.

A number of general-purpose symbolic program
systems has been developed during the last two
decades /4/. Most of them are based on special
programming languages for 1list and string pro-
cessing like LISP, which are unknown to many users
of digital computers and require a large portion
of storage according to their various algebraic
capabilities. To facilitate interactive operation,
programs are translated often by an interpreter
rather than a compiler, but this is considerably
slower. Execution times of symbolic programs writ-
ten by an inexperienced user may sometimes appear
discouraging. For these reasons, it seems attrac-
tive to develop special-purpose algebraic proces-
sors written in a more popular language like FOR-
TRAN. Symbolic Newton/Euler equations of motion
were derived for a system of connected rigid bod-
ies on a FORTRAN basis using index coding /5/.
For generation of helicopter equations of motion a
symbolic processor has been written in FORTRAN and
applied to a rotor/body model with more than two
centrally hinged rigid blades, dynamic inflow, and
in forward flight conditions, /6/.

Up to now, the better choice between general-
purpose systems and special-purpose packages is
not evident. Some program features, which may seem
unnecessary at first view, will become welcome
tools after some time spent with actual program
development. Thus, rather than to write a new FOR-
TRAN program with algebraic manipulation capabili-
ties, which must be checked itself, it was decided

to use an already available general-purpose lan-
guage. Its features should be exploited as far as
can be expected from an "average" user and not
from a computer-algebra specialist with thorough

knowledge of the underlying system.

Initial experience with computer-algebra appli-
cations in the field of rotary-wing dynamics has
been gathered with the derivation of finite ele-
ment matrices for a rotor blade element /7/. This
was done first with the PL/1-FORMAC language /8/.
Later on, it was found that another available
computer-algebra system, REDUCE 2, was more suited
to some desirable operations, like matrix algebra,
see /9/. Therefore the following work was
continued on this LISP-based system. REDUCE syntax
is like ALGOL, so it is not very difficult to
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become acquainted with. At DFVLR/AVA Gottingen the

REDUCE version of August 15, 1979 is implemented -
on a SIEMENS 7.865 computer and requires a minimum
of about 300,000 Bytes storage. It can be used in

batch and interactively under TSO. The latter mode

is a very powerful tool for testing purposes.

REDUCE provides capabilities for

1. simplification, expansion, substitution,
and analysis of algebraic expressions,

2. indefinite-precision integer, rational, and
floating-point numbers,

3. different output
compatible format,

style including FORTRAN-

4. differentation,
arithmetic,

integration, and complex

5. matrix algebra,
6. recursive procedures,
7. check/restart

REDUCE is written in a special mode
of its own language bearing more resemblance to
LISP. For illustrating the REDUCE language and
some of its features, a small self-contained pro-
gram is shown in figure 2, where the derivation of
the equation of motion of a simple plane pendulum
is performed.

among others.

3. EQUATIONS OF MOTION

Several methods can be applied to derive equations
of motion and will give the same answer if the
same assumptions are introduced. Well-known ex-
amples are the equilibrium method, Lagrange's form
of D'Alembert's principle, and Lagrange's equa-
tions. Supposed differences in the results must be
attributed to different choices of unknowns. In
Lagrange's equations only true generalized co-
ordinates are permitted, but it is also possible
to use more favorably some other primary unknowns
such as so-called quasi-coordinates in alternate
methods /10/. For manual derivation of equations
of motion of a specific system it is often advan-

tageous to separate subsystems judiciously, to
introduce constraint forces, and to apply equi-
librium equations including inertia forces. But

then the constraint forces must be eliminated to
obtain a set of equations of minimum order. To
generate equations of motion by computer algebra,
it is desirable to choose an "automatic' method
requiring a minimum amount of user input and in-
teraction. The procedure should be straightforward
for a relatively general class of models. There-
fore in the present case, generalized coordinates
and their time derivatives are considered to be of
primary interest and Lagrange's equations together

with the principle of wvirtual work has been
chosen:

4 (ar\ _ar U, _

dt \3g) ~ 3q ~ 3q © 3q = (1)

where ¢ contain the generalized coordinates, T is
the kinetic energy, U is the elastic potential
energy, D is the dissipation function, and Q con-



tain the generalized forces not covered by the
preceding contributions and which are derived from
virtual work. An additional advantage of (1) com-
pared with the equilibrium method is the ease with
which modal degrees of freedom can be incorporated
in an early stage of development. Modal degrees of
freedom, especially corresponding to eigenmodes of
various subsystems, enjoy a very simple formula-
tion of the linear elastic contributions in the
form of generalized stiffnesses in the equations
of motion. So, if eigenfrequencies, eigenmodes,
and generalized masses of a substructure are known
from prior calculations and/or modal survey tests
and modal degrees of freedom are chosen, nothing
more must be known about the details of the
elastic behaviour.

with
but succeeded only for

The direct symbolic computation of (1)
REDUCE was tried first,
small systems like a simple model for helicopter
ground resonance instability. With increasing
model complexity an error message well known to
users of computer-algebra systems indicated that
storage capacity was exhausted due to "expression
swell." Counteraction of providing larger regions
of (virtual) storage was not very successful,
because the processing of large expressions like
the Lagrangian function was prohibitively slowed
down due to enormous paging activities of the
virtual storage system. Also the expected expres-
sions are very lengthy, because they contain a
whole equation or at least a large part of it.
Obviously it would be better to compute only sym-
bolic expressions for elements of matrices, which
occur in a general structure of the equations of
motion. Thereby, the handling of large expressions
is avoided and only a relatively small amount of
computer storage is necessary. For this aim, the
original equations (1) must be processed further
to obtain a matrix structure. The general form of
the matrix elements is then programmed to evaluate
symbolic expressions.

In general, rotary-wing aercelastic models must
account for mnonlinear behaviour. To investigate
stability it is normal practice to linearize the
nonlinear equations about some reference state and
to study the linear perturbation equations. Thus
the task involves two steps, first, the determi-
nation of the reference state and, second, the
solution of the perturbation equations which may
be a function of this reference state. In the fol-
lowing it is assumed that the reference state is
given. If the reference state value does not enter
the perturbation equations, the corresponding gen-
eralized coordinate is called linear. For appli-
cations up to now, it was assumed that the systems
can be treated for the most part with linear gen-
eralized coordinates qi, but also some generalized
coordinates qn exist,” which cannot be linearized
anyway (the ~rotor azimuth angle, for example).
Accordingly, two sets of equations must be gener-
ated, which are coupled with each other. In the
following a condensed description is given to
obtain the matrix structure of (1). For brevity
the derivation of equations for determining gqp
will be omitted, but in fact this part has been
programmed with computer-algebra also.
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3.1  PRELIMINARIES

Inertial coordinates of a generic point of a rotor
blade are represented as

ry = riag,9,) - (2)
In the following, elements of 43 are subscripted
with italic letters. Column matrices and square

matrices are denoted by a single and double under-
score, respectively. i,j,k,1 are used for sub-
scripts denoting Cartesian coordinate directions.
The summation rule for corresponding subscripts is
applied.

3.2 INERTIA FORCES

Inertia forces are derived from the kinetic energy
contributions in (1). The coordinates of a generic

mass element on a rotor blade in an inertial
system is given by

_ r 1.r
i = Tio Y Gy P Hy G 9 e 3

with i = 1, 2, 3. Expansion into a Taylor series
has been applied with respect to qj. To obtain
consistent linear equations it 1is necessary to
retain all terms in qi up to the second order.

Tio (ri)o (%)
Bri
Jin = <§a;)o (5)
and
32 Ty
Hy < ) > Hign = Bipg (6)
ikn 3qy, aqn 0 L
are the inertial coordinates and elements of the
Jacobian and (symmetric) Hessian matrix, respec-
tively, evaluated at the reference state of q1.

Taking the time derivative of (1) and squaring the
result yields the kinetic energy contribution of
the mass element per unit density. This expression
must be integrated over the blade volume. Putting
the derived kinetic energy into (1) results in the
following matrix form

Mg+ (DK + G0 ) 4

mn 'n mn mn) *n
K K K
= 7
(Kmn * Nmn) 49 = @ 7
for the inertia contributions (superscript K),
where
= J J? J? dm = MK s (8)
mn im “in nm
K _ &K _ K 9
Don = Mﬁn Dom ? ®)
K _ r .r _ it r -
Can T J (Jlm in =7 1n) dm
= - GK s (10)
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mn i0 “imn im “in 2 “mn
_ K
= Knm s (11)
K _ _ lA'K - . K
%ﬂﬂ - 2 Gmn Nnm > (12)
K _ _ r .
Q, = I im Lig dm (13)
The symmetry properties should be especially
noted.
3.3 GRAVITATIONAL FORCES

The same considerations about
generic mass element are applied to the contribu-
tion of gravity to the equations of motions. The
corresponding terms may be generated by the prin-
ciple of virtual work. This results in the follow-
ing terms due to gravity (superscript G)

the kinematics of a

G G
Kan 4 = R (14)
where

G r _ G
Kon = 7 81 J Himn 40 = Ky (15)
and

G r
Q= g J J;,, du (16)
with 1 =1, 2, 3

3.4 AERODYNAMIC FORCES

For aerodynamic forces on the blade the well-known
strip theory is applied. Only quasi-steady lift
and drag forces acting on the aerodynamic center
line are considered, but also the aerodynamic
pitching moment can be included without diffi-
culty. According to figure 3 the components of
the aerodynamic force on a differential element of

the blade are functions of the components of the
(instanteous) local velocity

dF, = dFi(Uk) (17)
with i, k = 2, 3. These components can be written
as

U le(w1 - al) (18)

with 1 = 1, 2, 3, where the difference between the
inertial components of oncoming flow velocity w
and the inertial components of the kinematic ve-
locity of the aerodynamic center &) is transformed
to the blade section system by Ty . The inertial

coordinates of the aerodynamic center are de-
scribed similar to (3) as

_ a 1 ..a
ai T 2 * Jin 94 * 3 Hikn Qg 9p* - (19)

and the elements of
expanded as follows

+ JT +
1k0 tkn I 7o

the transformation matrix are

T = T

1k (20)
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The velocity and force components in the blade
section system are expanded into Taylor series
with respect to q] and its time derivative. Now a
model of aerodynamic force generation must be in-
troduced. With (17) the nominal aerodynamic forces
can be calculated using the nominal velocity com-
ponents in the blade section system

dF,, = dF, (U ) (21)
In addition, with

adF;
Fip = 5 U (22)

the derivative of (17) with respect to the veloc-
ity components is defined. The application of the
virtual work principle yields after some manipu-

lations the following aerodynamic contributions
(superscript A)

A, A A

Dondp ¥ Ry a4y = Qs (23)
where

= 4 ar 4
mn J Tim YT ik BAen (24)
KA = - | dF.. B + A, dF., C (25
mn 0 "imn im ik "kn ° )
A

Q, = f dF;0 Aim (26)

Integration has to be carried out over the blade
span. The structure of the matrices is such that
the force-generating terms are distinguishable
from the kinematic terms, which are represented by

the auxiliary matrices

a

im 3i0 Jjm 27
_ T a a
Bimn = Jiin Y5m T Tii0 Bmn 0 (28)
_ I s _ ;a
% = ™ 7 21y T Tiko Tin (29)
3.5 ELASTIC FORCES
The use of generalized coordinates corresponding
to eigenmodes of the blade simplifies the gener-
ation of 1linear elastic contributions to the
equations of motion considerably. The elastic
energy of the blade is simply
_ 1 E

U = 7% 9% 9% (30)

with m =7 only, where the generalized stiffnesses
are known from finite-element calculations or
modal survey tests. Thus the derivation of the
elastic contributions (superscript E) on the left-
hand side

E

K g

mn n (31

is trivial in this case.



3.6  STRUCTURAL DAMPING FORCES

The same arguments as for the elastic forces apply

also to the structural energy dissipation. Using
modal damping for the elastic eigenmodes, one can
write the dissipation function as

1. D . .

b= 2 Dmn Yy 9y (32)
with m=n only. The derivation results in the
following structural damping contribution (super-
script D) on the left-hand side

D .

mn O (33)
for the individual blade.

3.7 MULTIBLADE COORDINATE TRANSFORMATION
So far the equations of motion of one, say the
k-th, blade have been considered. They can be
written as
N (34)
where the contributions of (7), (14), (23), (31),

and (33) are collected at the appropriate side.
It should be noted that (34) has periodic co-
efficients with a frequency as low as the rota-

tional frequency of the rotor.
sible to generate equations for each blade using
the appropriate azimuth angle and couple them
afterwards at the hub with the nonrotating struc-
ture. But it is more advantageous to introduce so-
called multiblade or rotor generalized coordinates
instead, see /11/. The generalized coordinates of
the individual blades are expressed as a sum of N
terms

It would be pos-

M
G = 5t % (g o m oy + g sinn )
+q (—1)k_1

(35)

where N represents the number of blades of the ro-
tor. M is equal to (N-1)/2 if N is odd and (N-2)/2

if N is even. The last term occurs only in the
latter case. In matrix form, (35) can be written
as

Q% T Ry (36)

with a time-dependent transformation matrix R .
For each blade (36) is introduced into (34), the
result is multiplied from the left with R trans-
posed, and afterwards all matrices are summed up.
The equations of motion appear as

Mrr DR 3yt Ky g (37)
Although the number of generalized coordinates in-
creases compared to the single blade equations,
the new form is more attractive because the lowest
frequency in the matrix coefficients is increased
from 1/rev to N/rev for rotors with more than two
blades. So it is possible and justified to use a
constant coefficient approximation of the result-
ing matrices. In some special cases like hovering
of such a rotor, the periodicity in the coeffi-
cients vanishes altogether, even with anisotropic
support conditions.

% -
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From manual derivation it can be recognized
that many matrix elements simplify with the appli-
cation of the multiblade coordinate transfor-
mation. But unfortunately, the necessary algebra
is awkward because numerous trigonometric simpli-
fications are involved. Rotor simulation programs
can apply the multiblade coordinate transformation
for each time step in numerical form. Using com-
puter-algebra it should be possible to yield
closed-form expressions, which are more efficient
to compute.

4. COMPUTER PROGRAM

In the following a short description of the com-
puter program written in REDUCE for the generation
of literal expressions for the matrix elements is
given.

4.1 GENERAL REMARKS

Parts of the program which are more or less sub-
ject to changes if a new model is generated are
contained in "input files" discussed later. On the
other hand, there are parts of the program which
do not depend in any respect on the specific model
under consideration. Five steps are assigned for
each kind of force and are run successively. This
program structure is shown in figure 4., The step-
wise execution is advantagous, because it provides
the option to view the intermediate results before
going ahead with the next step. It should also be
noted that the REDUCE output from one step can
serve directly as input for the next. Renaming and
reordering steps must possibly be run more times
to find a desired output form, but usually this is
not very time-consuming. If a more general model
has been generated, it is possible, without re-
running the program from the beginning, to intro-
duce certain simplifications at the last steps.
This allows an efficient and consistent derivation
of a series of simplified models from one master
model. The contributions of forces of different
physical origin are handled independently and it
is assumed that they are summed up in the numeric
program.

4.2 PROGRAM INPUT
Table 1 shows the input files, which must be spec-
ified (or modified) by the user for each step.
GLOBI serves for dimensioning purposes. Be-
cause the generalized coordinates and their time
derivatives are handled internally as symbolic
subscripted variables, they are declared "opera-
tors" which have an integer argument.

TIME declares the time dependency of the gener-
alized coordinates 4y and the nominal state values
of qi. -

TRIGO contains a set of trigonometric 'let"-
rules to carry out possible simplifications.
WEIGHT introduces a weighting scheme, which

will be used through the derivation process to
neglect higher order terms consistently. "Weights"



are assigned to parameters. The sum of weights of
each term is checked at the beginning of the eval-
uation of an expression whether it exceeds a given
"weight level."” If this is the case the term will
be deleted.

EVNOM is a small algebraic "procedure,” which
evaluates a symbolic expression using the nominal-
state values of qj.

RNMOD performs the renaming of unsubscripted
generalized coordinates to subscripted ones and
introduces spatial modal functions and correspond-
ing generalized coordinates for elastic displace-
ments of the blade.

DEFMAT defines the matrices necessary to de-
scribe the kinematics of the blade.

MATREX combines the above-defined matrices in
matrix expressions for inertial coordinates of a
generic mass element and a generic element of the
aerodynamic center line, respectively. Also, the
coordinate transformation between the inertial
system and the aerodynamic blade section system is
established in matrix form. This is all done by
using the matrix algebra facilities in REDUCE.

WIND defines the components of velocity of the

oncoming wind in the inertial system as a column
matrix.

GRAVI defines the components of acceleration
due to gravity in the inertial system as a column
matrix.

AERO describes
ship in the blade

the airload/velocity
section system.

relation-

DEFINT declares dependencies of the various pa-
rameters on the generic mass element and the ele-
ment of the aerodynamic center line, respectively.
"Linear operators’ are introduced which carry out
symbolically the integration over the blade volume
and blade span. Thus integrals are left in an un-
specified form and can be renamed by the user for
convenience. In the subsequent numeric program,
these integrals can be calculated for a given sys-
tem once and for all. By this, spatial integration
at each time step is avoided.

ROSUM defines the multiblade coordinate trans-
formation matrix. Dependencies on blade index are
declared. A "linear operator" with respect to the
blade index is used to perform symbolic summation
over all the blades using well-known rules for
simplification.

RNSIM is used for giving new names to variables
and parameters. Also posteriori simplifications
can be introduced. Subexpressions can be replaced
by auxiliary variables to reduce output length.

ORDER allows the user to change the internal
order of variables and parameters. This affects
the non-expanded form of an expression. So the
user has a tool to create a well-structured output
with multilevel bracketing. This is of vital im-
portance for legibility and the efficiency of
created FORTRAN code.

It should be noted that only a minimum amount
of information about a specific model is necessary
to run the program and no manual derivation beyond
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very basic modeling has to be carried out in
advance.
4.3 PROGRAM OUTPUT

The results of the last step are usually given in
three different forms. For visual inspection a
list is printed on which the expressions are writ-
ten with each term on a new line using a "natural"
style with raised exponents. For input to later -
perhaps interactive - REDUCE manipulations the
results are stored on magnetic disk using single-
line style. And finally FORTRAN-compatible state-
ments are written on magnetic disk, which reflect
the derived mathematical model. In the case of
large expressions proper continuation cards and
automatic decomposition in subexpressions are pro-
vided in REDUCE.

5. EXANPLE

As an example, the suggested procedure is applied
to the problem of a two-bladed wind turbine mount-
ed on an elastic tower. The investigation of the
aeroelastic stability of such systems has gained

importance in recent years with the advent of
large wind energy converters with high specific
speeds which require very slender blades for
optimum aerodynamic performance /12/.

5.1 SYSTEM DESCRIPTION

Figure 5 shows the system under consideration.

Only the rotor equations are generated by computer
algebra. A modal coupling procedure is employed in
the numerical program to enforce compatibility and
equilibrium at the interface of the subsystems
rotor and tower. The rotor kinematics is described
with three translations and three rotations of the
hub (due to tower displacements), a teetering mo-
tion of the complete rotor, and bending deflec-
tions of the blades in flapwise and chordwise di-
rections described by two representative coupled
normal modes of the blade fixed at the pitch bear-
ing. Two modes are necessary and sufficient to ob-
tain literal expressions for all possible coupling
elements in the desired matrices. The model de-
grees of freedom sum up to 11 linear degrees of
freedom for the rotor. In addition the azimuth
angle of the rotor and the collective pitch angle
are treated without any linearization. Undersling
and precone are provided. Teetering of the rotor
can introduce differential pitch angles of the
blades due to an arbitrarily large amount of
pitch-flap coupling (tan 8,). The blades can have
an arbitrary amount of pretwist and are modeled as
bodies with spatial extension perpendicular to the
blade reference axis. The blades can bend elasti-
cally, but are assumed to be rigid in torsion. It
is assumed that the first two coupled bending
eigenmodes are sufficient to describe the elastic
blade deflections in the investigation of the low-
frequency behaviour of the coupled rotor/tower
system. Foreshortening is accounted for in the
derivation of the equations. Thus only eigenmodes
of the nonrotating blades are necessary, which can
also be determined by a modal survey test. Aero-
dynamic forces are modeled by two-dimensional



quasi-steady theory for 1lift and drag on the
blades. No dynamic inflow as described in /13/ or
unsteady airfoil theory has been considered up to
now. Only simple momentum theory is applied to
calculate the mean velocity at the rotor disk.
The weighting scheme employed is shown in table 2.

The tower is modeled by generalized coordinates
corresponding to eigenmodes, which result from a
finite-element calculation. The tower model in-
cludes a point mass at the rotor hub, representing
the total rotor mass. Also the polar moment of
inertia of the rotor was modeled at this point.
Certainly, the same contributions of the rotor
model to the rotor/tower system mass matrix must
be canceled in order to include them only once.

5.2 STORAGE AND TIME REQUIREMENTS

Symbolic derivation of equations of motion of the
system described above was executed using a vir-
tual storage region of 1 MegaByte. The CPU times
necessary for each step and each kind of force are
summarized in table 3. The equations for the two
nonlinear treated generalized coordinates are
included. It can be seen that the largest amount
of time is spent generating the auxiliary arrays,
especially the Hessian. The largest requirement of
CPU time for a single job was 3727 sec for iner-
tial auxiliary arrays, followed by 2578 sec for a
part of the aerodynamic auxiliary arrays. For the
complete model CPU time amounts to approximately
3.5 hours. At first glance, this may be considered
large compared to a single purely numeric gener-
ation of equations. But it should be kept in mind

that the symbolic results can save considerable
computer time when they are used to create a more
efficient numeric computer program afterwards,

which shall run many times.

5.3 RESULTS

In figure 6 some input, intermediate, and output
expressions are shown, illustrating the generation
of the (7,2) element of the rotor mass matrix
(coupling between lateral motion of the hub and
teetering of the rotor). The whole output amounts
to about 800 statements on 1800 lines. A further
compression of output can be achieved if common
subexpressions of different matrix elements can be
identified and set to global auxiliary variables.
In the current REDUCE version auxiliary variables
are introduced only for the current expression, so
this must be done interactively using an editor.
With "symbolic mode" procedures it should be pos-
sible to alleviate this problem, but up to now the
use of this more elementary REDUCE was avoided.

Finally, figure 7 shows the deflections in an

unstable Floquet solution which was computed nu-
merically over one rotor revolution.

6. CONCLUDING REMARKS

A general purpose computer-algebra system has been
applied to develop a program which generates 1it-
eral equations of motion for rotary-wing aero-
elastic problems. With this tool, it is possible
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to handle rather complex configurations without
manual derivation and coding coefficients of the
resulting algebraic expressions. Contrary to the
numerical procedures, which are of course indis-
pensable for general-purpose programs, the user
has more insight into the structure of his mathe-
matical model and the generated FORTRAN output
allows for efficient numerical treatment after-
wards. Considering the experience with problems of
expression swell, the extent to which complexity

of models can increase without excessive demands
on the computer is not easily predictable. But
several means have not been used until now, which

may alleviate this problem in the future.

Various details of current modeling techniques
for aeroelastic stability and dynamic response of
rotary-wings should be incorporated, which have
been omitted up to now. Linearized systems should
be treated in the sense that the equilibrium ref-
erence state enters the equations. It must be
noted that the described method is not limited in
this respect. Also equations to obtain an approxi-
mate equilibrium reference state should be gener-

ated. In this context, the problem of geometric
nonlinearities inherent in modern rotor design
should be treated by a modal approach. From an

aerodynamics point of view more accurate modeling
of unsteady airloads is desirable. The first step
towards this goal will be the use of dynamic in-
flow models in the derivationm.

Although a modal approach was preferred in this

paper, it can be easily imagined that symbolic
element matrices for application of the finite
element method may be derived along the same

lines. Contrary to the modal approach, where inte-
grals must be left unspecified in general, the
analytical form of parameter variations and shape
functions now permits closed-form expressions,
thereby avoiding numerical integration over the
element.
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GLOBI
TIME
TRIGO
WEIGHT
EVNOM
RNMOD
DEFMAT
MATREX
WIND
GRAVI
AERO
DEFINT
ROSUM *
RNSIM *
ORDER *
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Table 1. Input files
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Weight level 2
Weights:
Section coordinates 1
Undersling 1
Modal bending displacements 1
Modal axial displacements 2
Precone 1
Drag coefficient/lift slope 2
Table 2. Weighting scheme
S Computing time
t <sec>
e
P Inertia Gravity Aerodynamics
1 3727 - 3125
2 1044 33 2288
3 495 22 550
4 140 15 176
5 136 14 177
S
u 5542 84 6316
m
Table 3. Computing times
Qualitative Quantitative
description description

be——ua= Manual derivation

Equations in symbolic

form

Manual coding of coefficients

Numeric program

Stability and response analysis -s—

Figure la. Manual/numeric procedure




Qualitative Quantitative
description description

e Computer simulation

% EQUATION OF MOTION OF A PLANE PENDULUM

Equations in numeric form

% LENGTH L, MASS M, ANGLE PHI WITH RESPECT TO
% THE VERTICAL X-AXIS (POSITIVE DOWNWARD);

Transfer of numeric data
% COORDINATES OF THE MASS;
X := L*COS(PHI)S$ Y := L*SIN(PHI)S

Numeric program

% TRIGONOMETRIC SIMPLIFICATION RULE;
LET COS(PHI)**2 + SIN(PHI)**2 = 1;
Stability and response analysis

% PHI DEPENDS ON T;

DEPEND PHI,T;

Figure 1b. Numeric procedure

% FORM KINETIC ENERGY;
% USE DIFFERENTIATION OPERATOR DF;
KIN := M*(DF(X,T)**2 + DF(Y,T)*%*2)/2;

Qualitative Quantitative 2 2
description description KIN := (L *M*DF(PHI,T) )/2 <=== ANSWER
% FORM POTENTIAL ENERGY;
‘me——ger COmputerized derivation POT := - M*G*X;
POT := - G*L*M*COS(PHI) <=== ANSWER

Equations in symbolic form

% ORDERING AND FACTORING;

CRDER G,M,L; OFF ALLFAC;

Transfer of FORTRAN code ,

& % LEFT-HAND SIDE OF LAGRANGE S EQUATION;
DF(DF(KIN,DF(PHI,T)),T) + DF(POT,PHI);

Numeric program

2
G*M*LASIN(PHI) + M*L *DF(PHI,T,2) <=== ANSWER

Stability and response analysis wsed

END;
Figure lc. Symbolic/numeric procedure Figure 2. Sample REDUCE program
X3
liftand dng Step 1 Generation of auxiliary arrays
resulfant af;
aerodynanﬂc Step 2 Generation of blade matrices
tenter
dh
Step 3 Generation of rotor matrices
X, U
J Step 4 Renaming and simplifying
-U
2 . .
zero-lift line
Step 5 Reordering and factoring
Figure 3. Velocities and aerodynamic forces Figure 4. Program structure

at a blade section
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elastic bending
foreshortening

/

quasi-

steady
lift and
drag

interface
loading

modal

; rotor
%‘,’fgg%f N\ rotation
Al of Q.9
elastic \| under-
fower sling

feetering

pitch-flap-
coupling

gravity pretwist
. pitch
collective inertia
pitch

6,64,

Figure 5. Wind turbine model
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Input (MATREX) : Inertial coordinates of a generic element of mass; RN, RA, RX, RK, RQ are
(3,1) column matrices and PSN, TEN, PHN, PHK, BEK, BEA, DTK, TET are (3,3) elementary
rotational transformation matrices defined in input file DEFMAT.

MATRIX RI (3,1)$

RI := RN + PSN*TEN*PHN*PHK*BEK*(RA + BEA*(RX + DTK*TET*(RK + RQ)));

Step 1 result: elements of the Jacobian of RI evaluated at ¢ =0

JIRI(1,2) := 0$ JLRI(2,2) := 1$ JLRI(3,2) := 0%

JLRI(2,7) := - X*SIN(QN(1))*BETA + Y*COS(QN(2))*TDEL*SIN(QN(1))*BETA +
Y*SIN(QN(2))*TDEL*COS(QN(1)) - Y*SIN(QN(2))*SIN(QN(1)) ~ Z*SIN(QN(2))*TDEL*SIN(QN(1))*BETA +
Z*COS(QN(2))*TDEL*COS(QN(1)) - Z*COS(QN(2))*SIN(QN(1)) - SIN(QN(1))*ZAS$

Step 2 result: element of the blade mass matrix

BLKM(7,2) := - BETA*TDEL*SIN(QN(2))*SIN(QN(1))*IZ + BETA*TDEL*COS(QN(2))*SIN(QN(1))*IY -
BETA*SIN(QN(1))*IX - ZA*SIN(QN(1))*I1 + TDEL *SIN(QN(2))*COS(QN(1))*IY +
TDEL#*COS(QN(2))*COS(QN(1))*IZ - SIN(QN( 2))*SIN(QN(1))*IY - COS(QN(2))*SIN(QN(1))*IZ$
Step 3 result: element of the rotor mass matrix

RLKM(7,2) := 2*(TDEL*COS(QN(2))*IZ*COS(QN(1)) + TDEL*COS(QN(2))*IY*BETA*SIN(QN(1)) -
TDEL*SIN(QN(2))*IZ*BETA*SIN(QN(1)) + TDEL*SIN( QN(2))*IY*COS(QN(1)) - COS(QN(2))*Iz*
SIN(QN(1)) - SIN(QN(2))*IY* SIN(QN(1)) - ZA*I1*SIN( QN(1)) - IX*BETA*SIN(QN(1)))$

Step 4 result: element of the rotor mass matrix (renamed variables)

RLKM(7,2) := 2*%CP*TDEL*CT*IZ + 2%CP*TDEL*ST*IY + 2%SP*TDEL*BETA*CT*IY -
2%SP*TDEL*BETA*ST*IZ -

2#%SP*BETA*IX - 2%SP*ZA*I1 - 2%SP*CT*IZ - 2%SP*ST*IY$

Step 5 result: element of the rotor mass matrix (factored form)

RLKM(7,2) := 2%(CP*TDEL*(CT*IZ + ST*IY) + SP*(TDEL*BETA*(CT*IY - ST*IZ) - BETA*IX - ZA*I1l -
CT*IZ - ST*IY))$

Step 5 result: element of the rotor mass matrix (FORTRAN code)

1234567 < Card column

RLKM(7,2)=2.%(CP*TDEL* (CT*LZ+ST*IY)+SP* (TDEL*BETA* (CT*1Y~
. ST*IZ)-BETA*IX-ZA*I11-CT*IZ-ST*IY))

Figure 6. REDUCE results
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