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Abstract

An airplane with supersonic flight
capability can be expected to have con-
siderable steady state aeroelastic effects
as it operates at high dynamic pressures
in a speed range giving large variations
of the load distribution.

For calculation of the aerodynamic
loading the transonic small perturbation
potential method is used. One version has
been developed to allow for two wing sur-
faces with wakes. The method is of suf-
ficient accuracy for aeroelastic studies.
The wing deformations are assumed to be
linear functions of the load distri-
butions.

The iterative procedure used to solve
the transonic small perturbation potential
equation in finite difference form is cap-
able of treating the flow field around
given wing shapes. As the shape of the
elastic wing is, a priori, not known tem-
porary wing shapes have to be determined.
These depend on temporary load distri-
butions and are quantified through the
deformation matrix of the wing. When ex-
ternal aerodynamic loads are in equilib-
rium with internal elastic forces the
final shape of the wing has been produced.

The results obtained are compared with

results from earlier computations and
tests.

Symbols
A matrix of aerodynamic influence

coefficients for subsonic flow

by half span of the airplane

c local chord

Cy, lift coefficient

Cy rolling moment due to &4

Ch moment coefficient

cn sectional normal force coefficient

Cp pressure coefficient

D deformation matrix

2 aerodynamic load

M, free stream Mach number

q dynamic pressure

U, free stream velocity

X,y,2 Cartesian coordinate system

o angle of attack

dg local mean line slope of loaded
elastic wing

@, local mean line slope of unloaded
wing

Aa deformation of elastic wing

Y specific heat ratio

[} elevon angle

84 aileron angle

€ scaling factor

ratio of aerodynamic coefficients
for deformed and undeformed wings
canard sweep angle

main wing sweep angle

total velocity potential
perturbation velocity potential

3

© B> >
o}

I. Introduction

The transonic small perturbation poten-
tial method available at FFA has been de-
veloped to treat two wing surfaces with
wakes. The evaluation of steady state
aeroelastic effects has been implemented
as an option. The vortex roll up and lead-
ing edge separation have been neglected.

As a test aeroelastic characteristics
have been computed for the SAAB 37 Viggen
They have been compared with results from
wind tunnel and flight tests but also with
earlier comy%%ations as reported in the
ICAS~paper concerning the same air-
craft. It was found that these character-—

istics varied rapidly in the transonic
speed range where no reliable computa-
tional methods were available at that
time.

Rigid canard-wing interactions at tran-
sonic speed hazf)recently been treated by
other authors ( .

II Equations and Interior Boundary
Conditions

The transonic small disturbance equa-
tion 1is written in ¢, the disturbance
potential

{(1-1,2)-[3-(2-y M2 M2 €0, )0 pt

+ =0 (1)

¢yy+¢zz
where ¢ 1is defined in terms of the full
velocity potential &,

d(x,y,z) = U_[x + eo(x,y,2)]

with ¢ = 62/3/M_. The equation is trans-
formed into finite difference form and
solved by the successive 1line over relax-
atio rocedure introduced by Murman and
Cole?3 )p

At the wing and canard surfaces no mass
flux through the surface, z(x,y), is per-
mitted. This boundary condition is appl%z?
at their mean chord planes. It is given
by



¢z={% * (l—Mw2)¢x" % (3—(2-Y))M£5¢§}%%
dz
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For field points adjacent to the body

the velocity vector is required to be par-
allel to the configuration surface and the

boundary condition is given by
_ (1
b, = (5 + 040, + ¢y fy
where z = f(x,y) describes the body sur-
face.

A consistent pressure coefficient(4)
has been used
Cp= {-2e0, ~ €2 [(l-Mi)¢§+¢§+¢%] +
+ e3[3-(2-yIM2] M2 03/3 }

Across the vortex wakes there will be a
jump in the perturbation velocity poten-—
tial ¢ which will be considered in the
calculation as a boundary condition at the
grid points neighbouring the wakes.

III. Exterior Boundary Conditions

As the computation domain 1is rather
small the disturbance potential cannot be
set equal to zero at the exterior sur-
faces.
flow

a) Subsonic

The potential at the exterior surfaces
depends on airplane 1lift and volume for
the three streamwise surfaces. The latter
influence may be neglected and the former
is estimated from gar field expressions
derived by Klunker(5 . The bound vortex is
positioned along a straight line (x = Xa,
z = 0), where XA can be taken as the pos-
ition of the airplane center of gravity
and z = 0 is situated vertically midway
between the wing and the canard. The span-
wise distribution of vorticity equals the
sum of wing and canard 1lift distri-
butions.

At the upstream and downstream planes
the influence of the d¢x term is small and

the two-dimensional Laplace equation is
used.
b) Supersonic flow

For supersonic flow the conditions at
the outer boundary surfaces are different.
The upstream plane is free from influence
from the computational domain and all per-
turbation velocities are zero. The poten-
tial at the downstream plane has no influ-
ence on the calculations in the interior.
At the upper (z= maximum) and lower (z=
minimum) streamwise surfaces d¢ /dz is put
equal to zero while dy/dy is put equal to
zero at the third streamwise surface (y=
maximum).
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IV. The Treatment of Steady State

Aeroelastic Effects

The wing deformation 1is expressed as
rotations, Aa, normal to the x,z-plane due
to vertical loads, &. The deformations are
for small wing deflections 1linear func-
tions ot the loads

{aa} = [p] {2}

where D is the deformation matrix evalu-
ated from measurements on the real wing.

{agl = {ay} + {aq} (3)

@, is the mean line slope of the wing when
unlocaded, and « is the local angle of
attack for the same elastic wing when
loaded.

(2)

The aerodynamic relation between load,
%, and a, is linear in subsonic flow and a
direct solution for the equilibrium load
can be obtained.

{2}= a[a] {ag}

[A] is the matrix of the aerodynamic in-
fluence coefficients.

{2}= al[1] - q[a] [P]]7' [A]{a,}

However, for transonic flow with non-
linear aerodynamic relations no such di-
rect solution is possible, but instead an
iterative procedure is used. As a first
apyf?ximation to the wing deformation
Aa , 1 is substituted by the rigid wing
load in Eg. (2), and a corresponding ap-
proximation t?lfhe elastic wing mean sur-
face slope « is obtained from Eq. (3).
A flow fielg that matches this deformed
wing better is computed by Eq. (1), and
the pressure distribution is used to
determine a sefgyd approximation of the
deformation Aa by Eq. (2). The process
is repeated until the external aerodynamic
loading is in equilibrium with the inter-

nal elastic forces.
V. Numerical Procedure
a) Mesh Requirements

The small perturbation potential Eq.
(1) is given and solved in Cartesian coor-
dinates and the airplane configuration has
to be described in a mesh of straight
lines in this coordinate system. Some
requirements on the generated mesh have to
be fulfilled in order to solve the Eq. (1l).
The leading edge of each wing has at every
y-station to be situated midway between
two x-stations. This is hard to meet in

Cartesian coordinates in the case of
closely coupled canard-wing configur-
ations, unless the canard and the wing

have either the same angles of sweep of

the leading edges, Ay o+ Or have no x-
’
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Fig. 1 Fine grid arrangement in

station in common along with no change in
A, behind the whole canard wing. In prac-
tice some modifications of the main wing
may have to be allowed for in order to
produce an acceptable grid for both wings.
The projections of the mesh and the stud-
ied canard-wing configuration of SAAB 37
Viggen on the z = O plane are given in
Fig. 1. The tips of canard and main wing
are preferably placed midway between two
spanwise (y-) stations in order to get
proper evaluations of 1lift and moment. As
can be seen from Fig. 1 the distribution
of points is rather smooth.

b) Solution Procedure at Subsonic Speed

As mentioned in Section II the success-
ive line over-relaxation procedure is used

to solve Eq. (1) in finite difference
form. The wvalues of the potential field
at the computational points along any

vertical line are computed simultaneously.
In one relaxation cycle each line is
passed once. The outer boundaries are
updated after a number of cycles but when
better convergence is reached these are
updated more often and finally at each
cycle.

When the above procedure is applied to
an elastic wing and the local angles of
attack due to loading have to be evaluated
(see Section 1IV) some relaxation cycles
are performed before a new evaluation of
the deformation is made. For faster con-
vergence the changes in local angles of
attack are usually damped to begin with.

c) Solution Procedure at Supersonic Speed

The solution procedure used at subsonic
speed was not satisfactory at supersonic
speed. Oscillations appeared and it seemed
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the surrounding of the canard-wing configuration.

to be easier to get oscillating than
steady solutions. A steady coarse grid
solution would tend to develop into an

oscillating solution during some 100~200
cycles of the type described in Section b,
in the fine grid. A slight oscillation
introduced somewhere in the computational
grid seemed to spread out in the domain,
grow and die out again. This problem was
solved by not letting the solution proce-
dure to continue to the next x flow field
station until some desired degree of con-
vergence had been reached at the actual x-
station. No limits have been specified on
how many times an x-station can be iter-
ated but, when the desired degree of con-
vergence 1s reached the iterative proce-
dure 1is continued at the next x-station.

One relaxation cycle means here passing
each =x-station at least once. Before
starting a relaxation c¢ycle and after

finishing it the 1local angles of attack
due to loading are evaluated. The number
of cycles necessary for convergence varies
but in no case has 1less than 14 cycles
been carried out. The required degree of
flow field convergence 1is 1increased from
one cycle to the next during the first few
cycles performed for each case,.

VI. Results

The SAAB 37 Viggen was selected because
information on its aeroelastic behaviour
was available and its complexity offered a
challenge to the method.

The airplane 1is approximated with a
wing-body combination consisting of a cyl-
indrical body with a pointed nose, a high
mounted canard and a low mounted main
wing. All computations - except prep-~
aration of the deformation matrix - were
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Fig. 2. Spanwise normal force distribution at
Meo=0.9, a=2.865° and 5=0°

performed on a CDC CYBER 175 computer (in
Stockholm). The aercelastic matrix was
delivered by the SAAB company and produced
on one of their VAX machines. The finest
grid that could be stored in the actual
computer was 57x36x40 = 82080 points which
meant that the canard was described by 52
guite equally spaced points while the main
wing was described by 280 points. The fine
mesh for the canard-wing configuration is
shown 1in Fig. 1.
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Fig. 4. Comparison of local slopes ag/8
at the trailing edge of the main
wing for M=09 and 1.1, ¢ =0°
6=2.865% q=60 kPa.
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My=1.1, a=2865%and §=0°

The computations have been performed at
M, = 0.9 and 1.1 with three different com-
binations of small angles of attack and
angles of elevon; « = 0°, 6§ = 0°; a« = 0°,
§ = 2.865°; a = 2.865°, § = 0°. All these
combinations have been run at different g-
values, including g = 0. In addition there
were four cases run at M_ = 0.7 and two at
M,= 1.4. Consequently a considerable
amount of data is available.

Figs. 2 and 3 show the spanwise distri-
bution of normal forces at a« = 2.865°, &=
0° at M,= 0.9 and 1.1 resp. The agreement
at g = 0 with values evaluated from press-
ure measurements on a rigid wing in wind
tunnel is very good. The computed values
close to the body are somewhat higher for
the canard and lower for the main wing.
The computed total 1lift for the wings is
in excellent agreement with the experimen-
tal total 1lift for the wings - see C
values written at notation explanations in
Figs. 2 and 3.

Fig. 4 shows the 1local angles of
attack, «,, at the last computational grid
point on the main wing at each section for
the case a= 0° and 8= 2.865° at M_= 0.9
and 1.1. The elevon command system is
shown 1in the same fiqure in order to
demonstrate how the spanwise variation of
ae/6 reflects the support of the elevon by
three hydraulic jacks. The major differ-
ence due to Mach number is seen at the
inner part of the outer elevon which also
can be expected from the larger hinge
moment at the higher Mach number.
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Fig. 6. Wing surface pressures for rigid and elastic (q=60 kPa)
configurations at M, =11, a=2.865°and §=0°.
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Fig. 7 Wing surface pressure for rigid and elastic (q = 60 kPa)
configurations at M_=0.9, a=0° and &= 2.865°
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Fig. 8 Wing surface pressures for rigid and elastic (q=60kPa)
configurations at M_ =11, a=0° and 6=2.865°

64




(R S

——
T‘CLQ x i O)
37 | __ Flight tests"
O Present calculations
x Earlier e
0. T T T — q{kPa)
0 30 60 30 120
I S
-ncmu X\@\\
~ g~ o
.5
0. r T 7 - _qlkPa)
0 30 60 90 120
1.-\
e g X
51 \Q\\
\7\\@
0. T ' Y 3 qlkPa)
0 30 60 9 0
i
nCmJ\X\@\
.54 X )
0. - T —~ ; q{kPa)
0 30 60 90 120

Fig.9. Aerodynamic effectiveness
parameters at M =0.9.

Fig. 5 presents computed pressure dis-—
tributions at M ;= 0.9, ¢= 2.865° and 6= 0°
at three span (y-) stations. The main wing
span stations chosen to be shown are situ-
ated behind the canard, Jjust outside the
canard and outside the saw-tooth of the
main wing. Above each pressure plot the
change of local angles of attack due to
the elastic effects can be seen. The
dashed 1lines in all plots are the values
computed at g equals 60 kPa. The elas-
ticity of the wing causes in this case the
local angles of attack to be smaller than
the actual angle of attack (= 2.865°) by
up to 40%. Fig. 6 contains the same in-
formation as Fig. 5 but at M_= 1l.1.

Fig. 7 presents some results for the
case a= 0°, §= 2.865° at M,= 0.9, while
Fig. 8 shows the corresponding results at
M,= 1l.1. The dashed line describing the
local angles of attack should be compared
with the broken line situated at level O
and at level 1. Level 1 shows where the
elevon (deflection angle & = 2.865°) is
situated. Very large deflections and load
reductions can be seen due to elastic ef-
fects. The efficient angle of elevon is
reduced and the reduction is as large as
30%.
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Fig- 10. Aerodynamic effeciiveness
parameters at Mg =1.1.

of the pressure distri-
butions gives coefficients for 1lift and
pitching moment. In order to compare the
coefficients for the elastic wing at dif-
ferent dynamic pressures a parameter, here
called elastic effectiveness, 7, is intro-

Integration

duced. The case of the rigid wing is rep-
resented by the dynamic pressure being
equal to zero.
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Fig.11. The rolling moment through
the transonic speed range'’



Four different effectiveness
meters, nCL ¢ Mg ¢ Ne and ule)
m

para-
have
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been compute% for all cases treated. nCL

is defined as @
(c
La elastic
Tey, T Ty
o a rigid

and the other n's are defined in the same
manner. Fig. 9 contains the results for
the four n's at M = 0.9 and shows a com-
parison of present results with earlier
computations with 1linearized theory and
tests. Fig. 10 presents the corresponding
results at M_ = 1.1. At M = 0.9 the agree-
ment is very good for all four effective-
ness parameters shown while the results at

M,= 1.1 are quite similar to the results
obtained from earlier calculations with
linearized theory.

has

Finally the rolling moment, Cxé '

been evaluated at M, = 0.9 and M_= 121 for
qg = 60 kPa. The values obtained have been
indicated in Fig. 11 showing the variation
of CR(S through the transonic speed range.

a
The rolling moment at M_ = 0.9 is on the
curve of Fig. 11 while at M = 1.1 it is

somewhat off that curve.
VII. Conclusions

A transonic small perturbation (TSP)
method has been modified for calculations
of canard/tail configurations. As an op-
tion to the program the possibility of

evaluating aeroelastic effects has been
implemented. The aeroelastic deformation
is obtained by balancing aerodynamic loads
against interior forces.

The results presented here show that
aeroelastic characteristics can be pre-

dicted in the applicability domain of the
transonic small perturbation equation even
for such a complicated configuration as
SAAB 37 Viggen. A special effort has been
made to calculate the characteristics at
M_= 1.1.
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