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Abstract

A method for determining highly accurate
approximations to families of strongly nonlinear
solutions which are either continuous or discon-
tinuous, and which represent variations in some
arbitrary parameter, is developed and evaluated.
The procedure consists of defining-a unit pertur-
bation by employing two or more nonlinear solutions
which differ from one another by a nominal chahge
in some geometric or flow parameter, and then
using that unit perturbation to predict a family
of related nonlinear solutions over a range of
parameter variation. Coordinate straining is used
in determining the unit perturbation to account
for the movement of discontinuities and maxima of
high-gradient regions due to the perturbation.
Although the procedure is generally applicable,
results are presented here for nonlinear aerody-
namic applications. Attention is focused in
particular on transonic flows which are strongly
supercritical and exhibit large surface shock
movement over the parametric range studied; and on
subsonic flows which display large pressure vari-
ations in the stagnation and peak suction pres-
sure regions. Flows past both isolated airfoils
and compressor cascades involving a variety of
flow and geometry parameter changes are considered.
Comparisons with the corresponding 'exact’
nonlinear solutions indicate a remarkable accuracy
and range of validity of such a procedure. Compu-
tational time is trivial.

Introduction

Given the remarkable growth in capability of
advanced computational methods for the determin-
ation of a spectrum of nonlinear phenomena in such
diverse disciplines as fluid dynamics, structures,
and nuclear physics to name just a few - a capa-
bility which has already made many difficult calcu-
Tations routine and which is certain to improve in
the future - it is apparent that a need exists for
complimentary methods capable of alleviating, at
Teast in part, the usage limitations imposed on
these methods by their run times. The need
becomes particularly compelling when large numbers
of related cases are required as in parametric or
design studies. Techniques such as direct accel-
eration procedures provide an important means of
reducing computer time by improving computational
efficiency of the solution algorithm, but these
and similar methods, which enhance the solution
algorithm itself, represent only a partial answer.
What is most desirable is a means to minimize the
actual number of separate calculations required in
a particular application by extending, over some
parametric range, the usefulness of each indi-
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vidual solution determined by these computationally-
expensive procedures. Two fundamental methods for
accomplishing this are available: a classical
approach involving posing and solving Tinear pertur-
bation equations; and a direct differencing method
employing two or more nonlinear base solutions.

In this paper, both of these methods are discussed;
and an evaluation of the latter method, based on a
large number of different applications is made.

A crucial aspect of such perturbation methods
is their ability to accurately treat regions where
either discontinuities or high gradients exist.

For the results presented here coordinate straining
is introduced as a means of accounting properly for
the displacement of discontinuities due to an arbi-
trary. change in some solution parameter. This is
shown to result in highly-accurate perturbation
predictions in the vicinity of the discontinuity.
That idea has also been extended to improve predic-
tions in the vicinity of other high-gradient
regions.

Although the procedures developed are generally
applicable, the specific results reported here are
for aerodynamic applications. Single-parameter and
simultaneous multiple-parameter perturbation results
based on transonic small-disturbance and fuil
potential solutions are presented for nonlinear
subsonic and transonic flows past both isolated
airfoils and compressor cascades. In order to
enable a critical evaluation of the range of
validity and accuracy of the straining procedure,
emphasis is placed on transonic flows which are
strongly supercritical and exhibit large surface
shock movement over the parametric range studied;
and on subsonic flows which display large pressure
variations in the stagnation and peak suction
pressure regions.

Analysis

Perturbation Concept and Methods

The basic hypothesis underlying the present
procedure is that a range of solutions in the
vicinity of a previously-determined or base solu-
tion can be calculated to first-order accuracy in
the incremental change of the varied parameter
by determining a linearized unit perturbation
solution Qp defined according to the relation



Q

. N
“Approximate solution for
conditions differing from
those of the base solution
by an amount characterized
by A

Q, +
Base solution
for some flow
quantity Q

A e {Qp}

7 o
Linearized perturbation®
solution for a unit .
change of A

(1)

The effectiveness of such a method, of
course, depends upon the ability of the relation-
ship defined by Eq. (1) to remain accurate over a
range A of practical significance, and the fact
that the unit perturbation Qp need be determined
only once. The significance of the unit perturba-
tion Qp is obvious. It represents the local rate
of change of the base flow solution Qg with
respect to the particular quantity, say q,
perturbed; that is Qp = (aQ/aq)o.

Two generic methods exist for determining Q,,
each differing in philosophy and having its own
particular strengths and weaknesses. We refer to
these methods simply as the linear perturbation
equation method and the direct correction method.

The linear perturbation equation method
represents the classical approach for performing a
perturbation analysis and proceeds by establishing
and solving a linear differential equation for the
perturbation. Although in the present application,
we confine our interest solely to the first-order
term, the complete procedure represents a rational
approximation scheme capable of continuation to
any order. The method proceeds by expanding the
dependent variables in an ascending power series
in the incremental change A of the varied param-
eter, inserting that representation into the full
governing equations, and then assembling the
result into a corresponding series of linear equa-
tions in ascending orders in A. Higher-order
solutions in general depend on both base flow plus
lower-order solutions. Determination of the
appropriate boundary conditions is done in a
similar fashion.

The power of the linear perturbation equation
method is that it requires the calculation of only
one nenlinear base solution. With that informa-
tion, any number of individual perturbations can
then be calculated, subject to the particular
governing linear partial differential equations
and boundary conditions which apply. The dis-
advantages are that each perturbation problem must
be posed individually, including differential
equations and boundary conditions. Furthermore,
it may be necessary to simplify the govering
equations and boundary conditions to a point where
they can be solved rapidly relative to rerunning
the base flow procedure. Moreover, the perturba-
tion solutions themselves may be quite sensitive
to the base flow solutions which usually enter
into the perturbation problem through the differ-
ential equation and sometimes through the boundary
conditions as well.

The fundamental Timitation of the method is
the restriction of the range over which the
perturbation procedure remains valid to a linear

325

one. Since this characteristic depends upon the
local behavior of the base flow with respect to |
the varied parameter, no general statement regard- |
ing range of validity is possible. Typical

behavior for a given class of flows must be
ascertained by checks with the base flow procedure.
Initially unknown at the outset of an application
with this technique, then, are the accuracy
requirements imposed on the base soluticn by the
perturbation procedure and the range -of parameter
variation over which the linear assumption is

valid.

For the alternative method, the perturbation
solution per unit change of the varied parameter,
Qy, is determined simply by differencing two non-
linear base flow solutions removed from one another
by some nominal change of a particular flow or geo-
metrical quantity. A unit perturbation solution
is then obtained by dividing that result by the
change in the perturbed quantity. Related solu-
tions are determined by multiplying the unit
perturbation by the desired parameter change and
adding that result to the base flow solution.

This simple procedure, however, only works directly
for continuous flows for which the perturbation
change does not alter the solution domain. For
those perturbations which change the flow domain,
coordinate stretching (usually obvious) is
necessary to insure proper definition of the unit
perturbation solution. Similarly, for discon-
tinuous flows, coordinate straining is necessary

to account for movement of discontinuities due to
the perturbation solution.

The attractiveness of the correction method
is that it is not restricted to a linear variation
range but rather replaces the nonlinear variation
between two base solutions with a linear fit. This
de-emphasizes the dependence and sensitivity
inherent in the linear perturbation equation method
on the local rate of change of the base flow
solution with respect to the varied quantity.
many applications, particularly at transonic
speeds, the flow is highly sensitive, and the
linear range of parameter variation can be suffi-
ciently small to be of no practical use. Further-
more, other than the approximation of a linear fit
between two nonlinear base solutions, the direct
correction method is not restricted by further
approximations with respect to the governing
differential equations and boundary conditions.
Rather, it retains the full character of the
original methods used to calculate the base flow
solutions. Most importantly, no perturbation
differential equations have to be posed and solved,
only algebraic ones. In fact, it isn't necessary
to know the exact form of the perturbation equa-
tion, only that it can be obtained by some
systematic procedure and that the perturbations
thus defined will behave in some 'generally
appropriate' fashion so as to permit a logical
perturbation analysis. For situations involving
perturbations of physical parameters, such as
reported here, the governing perturbation equa-
tions are usually transparent, or at least readily
derivable. Finally, in applying this method it
isn't necessary to work with primitive variables;
rather the procedure can be applied directly to
the final quantity desired.

For

The primary disadvantage of this method is
that two base solutions are required for each
parameter perturbation considered. Furthermore,



both flows must be topologically similar, i.e.,
discontinuities or other characteristic features
must be present in both base solutions used to
establish the unit perturbation.

Previous Applications

Detailed studies of the 1inear perturbation
equation method to sensitive transonic flows, with
a view toward testing the method as an effective
tool for reducing computational requirements,
have not been done. The primary reason is that
such studies quickly become overwhelming.. Each
perturbation problem must be posed individually,
subject to its own particular governing equations
and boundary conditions; and then a separate com-
putational code for the perturbation established.
Generally, the governing equations and boundary
conditions of the perturbation, even though they
are 1inear, are more involved than those for the
base solution. Additionally, the computational
and convergence characteristics can pose similar
or additional problems from those of the base flow
procedure.

In an attempt to examine some of these
problems for transonic applications in at least
a preliminary fashion, an application of the
linear perturbation equation method to transonic
turbomachinery flows was made in reference 1. The
conclusions obtained from that study were that
reasonable results could be anticipated from the
method for blade geometry changes, such as blade
thickness and angle of attack. Less satisfactory
results were obtained for perturbation changes in
overall quantities, such as blade spacing and
free-stream Mach number, a result that could be
anticipated a priori since such perturbations
alter the basic character of the flow more rapidly.
The most significant conclusion of that study was
the demonstration of the primary limitation of the
Tinear perturbation equation method. That is,
for sensitive flows such as occur in transonic
situations, the basic linear variation assumption
fundamental to the technique is sufficiently
restrictive that the permissible range of param-
eter variation becomes so small as to be of
lTimited practical use. Some preliminary applica-
tions of the direct correction method, however,
displayed a significantly wider range of perturba-
tion solution validity, in particular for strongly
supercritical flows when coordinate straining was
employed to account for shock movement.

Coordinate Straining

The concept of employing coordinate straining
to remove nonuniformities from perturbation
solutions of nonlinear problems is well-established
and originally suggested by Lighthil12 three
decades ago. The basic idea of the technique is
that a straightforward perturbation solution may
possess the appropriate form, but not quite at the
appropriate location. The procedure is to slightly
strain the coordinates by expanding them as well as
the dependent variables in an asymptotic series.
It is often unnecessary to actually solve for the
straining. "It can generally be established by
inspection. The final uniformily-valid solution
is then found in implicit form, with the strained
coordinate appearing as a parameter.
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In the original applications of the method,3
it was applied in the 'classical' sense; that is,
series expansions of the dependent and independent
variables in ascending powers in some small param-
eter were inserted into the full governing equa-
tion and boundary conditions, and the individual
terms of the series determined. An ingenious
variation in the application of the method was
made by Pritulo* who demonstrated that if a
perturbation solution in unstrained coordinates
has been determined and found to be nonuniform,
the coordinate straining required to render that
solution uniformily valid can be found by
employing straining directly in the known non-
uniform solution, and then solving algebraic
rather than differential equations. The idea of
introducing strained coordinates a posteriori has
since been applied to a variety of different
problems (see ref. 3), and forms the basis of the
current applications.

The fundamental idea underlying coordinate
straining as it relates ‘to the application of
perturbation methods to supercritical transonic
flows is illustrated geometrically in figure 1.

In the upper plot on the left, two typical transonic
pressure distributions are shown for a highly-
supercritical flow about a nonlifting symmetric
profile. The distributions can be regarded as
related nonlinear flow solutions separated by a -
nominal change in some geometric or flow parameter.
The shaded area between the solutions represents
the perturbation résult that would be obtained by
directly differencing the two solutions. We
observe that the perturbation so obtained is small
everywhere except in the region between the two
shock waves, where it is fully as large as the
base solutions themselves. This clearly invali-
dates the perturbation technique in that region
and most probably somewhat ahead and behind it as
well. The key idea of a procedure for correcting
this, pointed out by Nixon,3*% is first to strain
the coordinates of one of the two solutions in
such a fashion that the shock waves align, as
shown in the upper plot on the right of figure 1,
and then determine the unit perturbation.
Equivalently, this can be considered as maintaining
the shock wave location invariant during the
perturbation process, and assures that the unit
perturbation remains small both at and in the
vicinity of the shock wave. Obviously, shock
points are only one of a number of characteristic
high-gradient locations such as stagnation points,
maximum suction pressure points, etc., in which
the accuracy of the perturbation solution can
degrade rapidly. The plots in the Tower left part
of the figure 1 indicate such a situation and
display typical transonic pressure distributions
which contain multiple shocks and high-gradient
regions. Simultaneously straining at all these
locations, as indicated in the lower right pilot,
serves to minimize the unit perturbation over the
entire domain considered, and provides the key to
maximizing the range of validity of the perturba-
tion method. .

Theoretical Formulation

In order to provide the theoretical essentials
of the correction method, consider the formulation
of the procedure at the level of the full potential
equation, as most of the results presented here
are based on that level. We denote the operator L



acting on the velocity potential ¢ as that which
results in the two-dimensional full potential
equation for ¢, i.e.

L[]l =0 (2)

If we now expand the potential in terms of zero-
and higher-order components in order to account
for the variation of some arbitrary geometrical or
flow parameter g

=9 + eo +
o 1t
_°, (3)
=9, %4q

and then insert this into the governing equation
(2), expand the result, order the equations into
zero- and first-order components, and make the
obvious choice of expansion parameter £ = Aq, we
obtain the following governing equations for the
zero- and first-order components

L[e ] =
° (4)
L [¢ 1+= L[¢ ]=0
Here L1 is a ]1near operator whose coefficients
depend on zero-order quantities and aL[ey1/3q
represents a 'forcing' term due to the perturba-
tion. Actual forms of Ly and the ‘forcing' term
are provided in reference 1 for a variety of flow
and geometry parameter perturbations of a two-
dimensional turbomachine, and in ref. 7 for pro-
file shape perturbations of an isolated airfoil.
An important point regarding equation (4) for the
first-order perturbation ¢] is that the equation
represents a unit perturbation independent of the
actual value of the perturbation quantity e.

Appropriate account of the movement of dis-
continuities and maxima of high-gradient regions
due to the perturbation is now accomplished by the
lntroduction of strained coordinates (s,t) in the

orm

X =5+ ex](s,t)
(5)

y =t +ey(s,t)

where
(s.0- ]
X:(s,t) = 8X:x, (s,t)
] =1

(6)

N
yilsaty= T dy.y, (s,t)
i1

and edxj, edyi represents 1nd1v1dua1 d1sp1acements
of the N strained points, and xq:(s,t), ¥1:(

are straining functions assoc1aled with ea&h of

the N strained points. Introducing the strained
coordinate equations (5) and (6) into the expansion
formulation leaves the zero-order result in equa-
tion (4) unchanged, but results in a change of the
following form for the perturbation

L [¢ 1+ L2[¢ ]+ = L[¢ 1 =0 (7)

Here the operators are understood to be expressed
in terms of the strained (s,t) coordinates, and
the additional operator L, arises specifically
from displacement of the strained points. In

references 6 and 7, specific expressions for L

are provided for selected perturbations involving
transonic small-disturbance and full potential
equation formulations. The primary point, however,
with regard to perturbation equation (7) expressed
in strained coordinates is that it remains valid
as before for a unit perturbat1on and independent
of €.

In employing the correction method, equation
(7), for the unit perturbation is solved by taking
the difference between two solutions obtained by
the full nonlinear procedure after appropriately
straining the coordinates, If we designate the
two solutions for some arbitrary flow -quantity Q
as base Qg and calibration Qg, respectively, of
the varied parameter, we have for the predicted
flow at some new parameter value q (ref. 8)

Qx,y) = Qy(s,t) + % [Q (x.¥)-Qy(s,t)]  (8)
where
X=s+e¢ x1(s t)
y=t+ ey (s,t)
X =5+ éi‘[i - 5] (9)
(o]
y=t+ -7 -t]

.

0
€& =% " 9%

€=q-q

Extension of this result to simultaneous multiple-
parameter perturbations is straightforward (ref. 6);
and that extension is provided in the following
section where applications of the correction pro-
cedure are made to predict surface properties.

Also provided are the particular forms of the
straining functions equation (6) for those
applications.

Current Applications: Surface Pressures

For the current applications, we have employed
coordinate straining with the correction method to
predict surface pressure distributions for a wide
variety of single- and multiple-parameter geo-
metrical and flow perturbations of isolated air-
foils and cascades. In that instance where flow
properties are required along some contour, the
solutions can be represented by

M
Q(x;e) - Q (s) + j§1 elej(S) .

(10)
M
X~S+ }
j=1
where x is the independent variable measuring
distance along the contour or a convenient projec-
tion of that distance, s is the strained coordinate,
and £; a small parameter representing the change in
one o% M flow or geometrical variables which we
wish to vary simultaneously.

ejx1(s) + ...

In order to determine the first-order correc-
tions Q1j(s), we require one base and M calibration
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solutions in which the calibration solutions are
determined by individually varying each of the M
parameters by some nominal amount from the base
flow value while keeping the others fixed at the
base flow values,

In this way, the first-order corrections
Q]j(s) can be determined as

QCJ(XJ) - QO(S)
% () =~ == (1)
J J
where Qg is.the calibration solution correspond-

ing to cﬂanging the jth parameter to a new value
is the strained coordinate pertaining to
é calibration solution, and qc;
represgnts the change in the jth par%meter from
its base flow value. If we now desire to keep
invariant during the perturbation process a total
of N points corresponding to discontinuities or
high-gradient maxima, we can represent the solu-
tion by:

. M
Q(xj;ej) = Q,(s) + jzl ejQH(S) (12)
where
Q. (%5) - Qy(s)
Q) (s) = —L— (13)
J €]
J
- N
x;i =s + Z € (Gx ). X-l (s) (14)
i=1
M
X =5+ JZ1 121 3 J x]i(S) (15)
e‘J? = ch - qu_ (16)
Ej = qJ. - qoj (]7)
s C(sxS 3y = (x§ - x?)j (18)
ej(oxi)y = 0 - Q) (19)
J

Here €$(6 ) given in equation (18) represents
the d1gp1acement of the ith invariant point in the
jth calibration solution from its base flow loca-

tion due to the selected change €3 1n the qJ
parameter given by equation ( 6x1 given
in equation (19) represents the pre%1cted dis-

placement of the ith invariant point from its base
flow location due to the desired change ej in the
q; parameter given by equation (17), and x1;(s) is
a unit-order straining function having the
property that

(20)
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which assures alignment of the ith invariant point
between the base and calibration solutions.

In addition to the single condition equation
(20) on the straining function, it may be conven-
ient or necessary to impose additional conditions
at other locations along the contour. For example,
it is usually necessary to hold invariant the end
points along the contour, as well as to require
that the straining vanish in a particular fashion
in those locations. A1l of these conditions,
however, do not serve to determine the straining
uniquely. The nonuniqueness of the straining,
nevertheless, can often be turned to advantage,
either by selecting particularly simple classes
of straining functions or by requiring the strain-
ing to satisfy further constraints convenient for
a particular application. An example of the effect
of employing two different straining functions for
a strongly-supercritical flow was provided in
reference 6. Here we provide additional results
demonstrating some of the limitations of various
polynomial straining functions and provide some
comparisons with piecewise-continuous functions.
The particular classes of straining functions
employed were continuous polynomial and Tinear
piecewise-continuous. For these two classes, the
functional forms of the straining can be compactly

written. For example, equation (14) becomes, for
continuous polynomial straining
X3 = s + Z L (Xi - xi) (21)
i=2
where Li are Lagrangian coefficients given by
(s - xp)
L.(s) = (22)

where as for linear piecewise-continuous straining,

ij is given by
N-1( x% . -5
xj = s+ g+ (x§ - o)
i=2 Xi+1 - X
0
S - X:
i c 0
"3 AT Xi+1); H(X1+1 s)
X3,q = X
i+l i o
x H(s -xi) (23)
where H denotes the Heaviside step function. As

discussed above, it is usually necessary to hold
invariant both of the end points along the contour
in addition to the points corresponding to dis-
continuities or high-gradient maxima. Consequently,
for the results reported here, the array of
invariant points in the base and calibration solu-
tions have been taken as

x? = {0, x?, xg, veens xg, 1}
(24)
c_ c .C c
Xg = {0, X]s Xgs +eees Xp 13}

where the contour length has been normalized toone.
Figure 2 provides a summary of the various combina-
tions of flows and straining functions employed.



Results

] One of the primary objectives of the present
investigation is to explore the accuracy and range
of validity of such perturbation procedures to
determine to what extent they are capable of
providing results useful in an engineering
analysis. To this end, we have tested the cor-
rection method with coordinate straining over a
variety of different geometrical and flow condi-
tion perturbations, including applications to

both isolated airfoils and compressor cascades.

In particular, since the ability of the method to
account accurately for the movement of disconti-
nuities and maxima of high-gradient but continuous
regions is essential if such procedures are to be
of general use, emphasis was placed on transonic
flows which are strongly supercritical and exhibit
large surface shock movement over the parametric
range studied. Base flow theoretical solutions
were determined from small-disturbance transonic
potential? and full potential solutionsl0»>11s12
In the results to follow, which were selected as
typical from systematic calculations of a much
larger number of cases, the choice of base and
calibration solutions was often made at the limits
of validity of the procedure to observe how well
the method works under such conditions.

Single-Parameter Perturbations

Supercritical applications. In figure 3, we
present results for a thickness-ratio perturbation
of strongly-supercritical flows past a nonlifting
cascade of biconvex profiles at M_ = 0.80 having
a spacing-to-chord ratio of H/C =71.0. The dotted
and dashed results on the figure represent the
base and calibration surface pressure distribu-
tions for t = (0.075, 0.065), respectively, and
were obtained by solving the transonic small-
disturbance potential equation using the code
TSFOIL?. An x-grid having 48 points on the blade
profile was used. These solutions, then, were
used to determine the unit perturbation. The open
circlies represent the perturbation solution for
v = 0.073 in the plot on the left and for ¢ = 0.070
ih the plot on the right. Those perturbation
results are meant to be compared with the solid
lines in the plots which are the corresponding
nonlinear solutions obtained by rerunning TSFOIL
at the new thickness ratios. Quadratic straining
was used with shock point and leading and trailing
edges held invariant. The base and calibration
flow shock-point locations for this example, as
well as for all of the supercritical cases
presented here, were determined as the point where
the pressure coefficient passed through critical
with compressive gradient.

With regard to the results, several points
are noteworthy. Selection of a cascade rather than
an isolated airfoil provides a more sensitive
transonic flow situation. Additionally, the choice
of a highly-supercritical base and almost-sub-
critical calibration solution provides both an
example of extreme separation between the two non-
linear solutions used to define the unit perturba-
tion, as well as a situation where one solution is
near the 1imits of validity of the perturbation
analysis. Recall that both solutions must be
topographically similar, i.e., must contain the
same number of discontinuities (shocks) and other
characteristic features.
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We note that comparisons of the perturbation
results with the nonlinear calculations are very
satisfactory for both thickness ratios, with the
only discrepancy being a slight disagreement at
the lower thickness ratio (r = 0.070) at several
points in the post-shock region. Additional
calculations not presented here in.which a more
reasonable choice of calibration solution is made,
say at t© = 0.070, removes that discrepancy as well.
The main point provided by the results of figure 3
is that for certain classes of supercritical flows
even widely-separated base solutions can be used
to provide reasonable perturbation predictions.

In figure 4, we provide similar strongly-
supercritical results again for interpolation-only
perturbation solutions, but in this instance on a
somewhat finer grid. These results employed full
potential base solutions!®, and represent thickness
ratio perturbations of nonlifting symmetric free-
air flows past NACA four-digit thickness-only
airfoils at M, = 0.820. The body-fitted mesh
employed had 75 points on both upper and lower
surfaces, which is half-again as many as in the
preceding example. For the base and calibration
flows, the thickness ratios were 1 = 0.120 and
0.080, respectively. Comparisons between the
perturbation predictions and the full nonlinear
calculation are exhibited in figure 4 for t = 0.110,
0.105, 0.100, and 0.095. We note that the com-
parisons are remarkably good, in particular, in-the
region of the shock. The first-order perturbation
accurately predicts both shock location and the
post-shock expansion behavior. Reference to the
coarser grid results given in figure 3 indicates
that the finer grid resolution clearly enhances
the perturbation result, indicating that better
accuracy and a larger range of validity of the
perturbation solutions can be anticipated when
fine-grid base solutions are used to define the
unit perturbation.

In the two preceding examples, perturbation
results were provided for interpolation-only
between widely-spaced base and calibration solu-
tions. In figure 5, we provide similar strongly-
supercritical thickness-ratio perturbation results
for extreme solution extrapolation using very
closely-spaced base and calibration solutionsiO,
The upper plots display results for extrapolation
downward from base and calibration flows past non-
1ifting NACA 00XX profiles with v = 0.115 and 0.120
at M_ = 0.820. Perturbation predictions are shown
for £ = 0.105 and 0.100, which represent Ar excur-
sions from the base flow {r = 0.115) that are two
and three times the parameter change between the
base and calibration solutions (Ar = 0.005) used to
define the unit perturbation. For these results,
comparisons with the full nonlinear calculations
are very good. The lower plots display similar
results for extreme extrapolation upward from base
and calibration solutions having r = 0.095 and
0.090. Perturbation predictions are shown for
7 = 0.105 and 0.110, which again represent excur-
sions from the base flow that are two and three
times the parameter change between the base and
calibration solutions. In this instance, while
comparisons of the perturbation results and the full
nonlinear solutions for both cases are good, the
results at t = 0.110 are beginning to display some
not-surprising discrepancies near the shock wave,
indicating that the perturbation result is nearing
the 1imit of its range of validity for this
particular choice of base and calibration flows.



The results indicated in figure 5, however,
clearly demonstrate that not only is accurate
solution extrapolation possible, but that for some
situations even closely-spaced nonlinear solutions
can be used to cover a wide range of related
solutions. Additionally, the range of parameter
variation in this example over which the perturba-
tion results remain accurate - i.e., parameter
changes three times the difference between the
two nonlinear solutions used to define the unit
perturbation - is remarkable, and far beyond what
one would anticipate for a first-order correction.

Perturbation results using a more reasonable
choice of base and calibration solutions are
provided in figure 6. Those results involve Mach
number perturbations of highly-supercritical full
potentialll flows past a NACA 0012 airfoil at
o = 0°. The base and calibration results are for
M, = 0.800 and 0.820, and the comparisons indicated
are for perturbation results interpolated to M, =
0.810 and extrapolated downward to M, = 0.790. As
in the case of the geometric perturbations given
in figures 4 and 5, these perturbation results are
also in very good agreement with the nonlinear
calculations at the new Mach numbers. For this
perturbation, as well as for a number of other
Mach number perturbations, we have separately
determined the perturbation result in two differ-
ent ways. First, we have taken cognizance of the
fact that a Mach number perturbation alters the
governing differential equation for the first-order
perturbation from that of other geometric or flow
parameter changes; and have used the suggestion of
reference 6 to consider such perturbations via a
transonic small-disturbance approximation, whereby
the same perturbation equation can be preserved by
employing a modified expansion parameter ¢. An
alternative procedure is to treat a Mach perturba-
tion directly and interpret e as the difference in
Mach number. We have done these calculations and
compared the perturbation results for a number of
cases using both full potential solutions, as for
the results shown in figure 6, and transonic small-
disturbance solutions, and have observed no
essential difference between the two sets of
results. The perturbation results presented in
figure 6 correspond to those for ¢ equal to the
difference in Mach number.

A1l of the supercritical perturbation results
presented in figures 3 to 6 have been for symmetric
flows and have employed a quadratic straining
function. In figure 7, we present results for an
angle of attack perturbation of Tifting flows past
a NACA 0012 profile at Mo = 0.70. The full poten-
tiall? base and calibration solutions are at o
3.0° and 4.0°, with comparisons of the perturbation
and full nonlinear results shown for o = 3.5° and
2.5°, Cubic straining has been used with the
invariant points corresponding to the Tower trail-
ing edge, stagnation point, shock point, and the
upper trailing edge (see Fig. 2). We note that at

= 3.5°, the perturbation results are very good

everywhere, in particular, in the vicinity of the
shock and stagnation regions. At o = 2.5°, the
perturbation results are still very good in the
shock and stagnation regions and on most of the
upper and lower surface, but near the trailing
edge of a discrepancy has occurred. The cause of
this discrepancy lies solely with the straining
function (cubic) used. It is due to the fact that
although the straining vanishes identically at
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the trailing edge, for the particular choice of
base and calibration solutions in this example,
the straining in the near vicinity of the trailing
edge becomes sufficiently large to introduce a
misalignment in the unit perturbation in that
high- gradlent region. The correction to this is
discussed in the section describing piecewise-
continuous straining functions.

Subcritical applications. Although super-
critical flows are clearly of central concern in
any transonic analysis for which the perturbation
methods presented here would be used, applications

to subcritical nonlinear flows are a]so of
significance. To this end, we have applied these
same techn1ques to a variety of subcritical flows
to examine their accuracy and range of validity
for such applications.

In figure 8, we present some summary results
for four different subcritical perturbation applica-
tions to an isolated airfoil. A1l of these results
are based on full potential solutions!® with
quadratic straining holding invariant the stagna-
tion point and the trailing edge points. The plot
on the upper left displays comparisons for a camber
1ine perturbation of a 1ifting flow with M, = 0.50
and o = 2° past an airfoil having a NACA 0012
thickness distribution and a parabolic-arc camber
1ine having the maximum camber located at midchord.
Base and calibration flows with camber ratio h/c
0.02 and 0.07 were used to extrapolate perturbation
results to h/c = 0.05. Comparisons with full
result is essentially exact. The plot on the upper
right provides similar results for a thlckness-ratio
perturbat1on of a 1ifting flow with M_ = 0.50 and

2° past NACA 00XX thickness-only a1rfo1ls
Base and calibration flows with v = 0.12 and 0.04
were used to provide interpolation results ‘at
o = 0.08. Again, the agreement is essentially
exact even in the peak suction pressure region.
The plot on the Tower left prov1des angle-of-
attack perturbation resuits for M_ = 0.50 flow
past a NACA 0012 airfoil, using base/ca11brat1on
resu]ts for o = 4.0°, 2.0° to predict results at

= 3.0°, with the agreement again being quite
good The final comparisons given in the plot on
the lower left are for a Mach number perturbation
of a 1ifting flow at o« = 2° past an airfoil having
a NACA 0012 thickness distribution and a parabolic-
arc camber Tine with camber ratio h/c = 0.03 at
midchord. Base/calibration results at M, = 0.40,
0.60 were used to predict results at M, = 0.55,
with good agreement with the full nonlinear
calculation.

In figure 9, we present similar summary results

for subcritical perturbation applications to a
compressor cascade having a 4% biconvex thickness
distribution and a 1% parabolic-arc camber 1ine
blade, a pitch of t/c = 0.37, and oncoming Mach
number M_ = 0.770. These results are based on the
full potential solution procedure of reference 11
and have alsoc used quadratic straining to hold the
trailing edge points and stagnation point invariant.
The plots in the upper part of the figure represent
an inflow angle perturbation, with base/calibration
inflow angles g4 = 47.8°, 49.8° used to predict
extrapo]at1on results in the plot on the left for

8i = 44.8° and 1nterp01at1on results in the plot on
the right for 8i = 48.8°. In the lower left plot,
interpolation results are displayed for an outflow
angle perturbation with base/calibration outflow



angles Bg = 31.5°, 39.5° used to predict the flow
at Bp = 35.5°. The lower right plot provides
interpolation results for a rotational speed
perturbation with base/calibration rotational
speeds w = 967, 667 rad/sec used to predict the
flow at w = 827 rad/sec. In all of these results,
the perturbation results are good, including the
regions near the leading and trailing edge where

a peaky behavior due to local grid resolution is
observed.

Piecewise-Continuous Straining Functions

The results presented in figures 10 to 13
illustrate the effect of using different straining
functions to determine the perturbation results.
Comparisons are provided for several strongly-
supercritical flows, demonstrating the differences
in perturbation solutions between using quadratic
and cubic straining functions and corresponding
piecewise-continuous straining functions.

Figure 10 displays a comparison for a sym-
metric supercritical thickness-ratio perturbation
at = 0.110 for which results based on quadratic
straining were given in figure 4. In that figure,
the open circles denote the previously-obtained
perturbation result using quadratic straining,
while the asterisks denote the corresponding
result when using linear piecewise-continuous
straining. The points held invariant are the
leading and trailing edges and the shock point.

For this case there is virtually exact agreement
everywhere between the two perturbation results

as well as with the nonlinear result. An analogous
comparison with a cubic straining result is pro-
vided in figure 11 where the invariant points are
the Tower trailing edge, stagnation point, shock
point, and upper trailing edge. Displayed in that
figure as open circles are the cubic-straining
supercritical angle-of-attack perturbation results
at o = 2.5° which were previously given in fig-
ure 7. Asterisks denote the corresponding linear
piecewise-continuous straining perturbation result.
We note that the discrepancy near the trailing
edge caused by the cubic straining has been
effectively removed in the piecewise-continuous
result. Moreover, the good agreement with the full
nonlinear result which the cubic result displayed
near the shock and stagnation regions, as well as
over the remainder of the airfoil surface, is also
obtained with the piecewise-continuous result.

Finally, we have found that when employing
quadratic, cubic, and higher-order polynomials as
straining functions, for certain combinations of
base flow shock Tocation and shock movement between
base and calibration solutions, particularly when
large shock movements are involved, the polynomial
straining functions will strain some points off
the airfoil surface. This of course, invalidates
the determination of the unit perturbation, and
requires that a different straining function be
employed. Piecewise-continuous straining functions
pr?vide a simple means of avoiding such diffi-
culties.

In figures 12 and 13, we have provided
examples illustrating this effect for both
quadratic and cubic straining functions. Figure 12
provides a comparison of perturbation results
obtained using quadratic (open circles) and linear
piecewise-continuous (asterisks) straining applied
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to a supercritical Mach number perturbation for
symmetric nonlifting flow past a NACA 0012 a1rfo11
Widely-separated base/calibration flowsl® at M,
0.820 and 0.750 were used to predict the flow at
M, = 0.810. The spurious behavior near the lead-
ing edge displayed by the open circles is due to
the quadratic function moving points in the
strained calibration solution off the airfoil
surface. The piecewise-continuous results
indicated by the asterisks display a smooth varia-
tion in that region, and provide good agreement
everywhere with the full nonlinear result. Fig-
ure 13 provides a corresponding comparison for
cubic straining. Angle-of-attack perturbation
results at M, = 0.70 for flow past a NACA 0012
profile using base/calibration results? at a
2.25° and 4.00° are used to predict the flow at

o = 3.25°, The unusual results displayed by the
open symbols near the trailing edge indicate that
the cubic function has strained points off the
airfoil surface in that region. However, the
Tinear piecewise-continuous result corrects that
problem and displays good agreement with the non-
linear calculation in that region as well as at
the shock and stagnation point.

Multiple-Parameter Perturbations

A1l of the previous results presented in
figures 3 to 13 were for single-parameter perturba-
tions of some flow or geometry parameter. In
figures 14 to 16, we provide corresponding results
for the simultaneous perturbation of two or more
parameters of strongly-supercritical transonic
flows. In figure 14, comparisons are provided for
the simultaneous perturbation of thickness-ratio
and oncoming Mach number of highly-supercritical
full potentiall® flows past NACA four-digit air-
foils. The base flow chosen is at M, = 0.820 and

= (0.120, and is indicated in both plots in
figure 14 as the dashed 1ine. The calibration
flow selected to account for Mach number changes
is at M, = 0.800 and t = 0.120, and is displayed
as the dotted line in the plot on the left; while
the calibration flow selected to account for
thickness-ratio changes is at M_ = 0.820 and < =
0.110 and is displayed in the plot on the right.
The comparisons between the perturbation and exact
non11near results are for parameter extrapolation
to M_ = 0.790 and r = 0.7115. We note that the
1nd1cated results for base, perturbation, and
exact nonlinear solution in both piots of figure 14
are the same; the primary reason for presenting two
plots is to indicate clearly the separation between
the base, the two calibration solutions, and the
pred1cted result. The straining employed is 1linear
piecewise-continuous, with ]ead1ng and trailing
edge and shock point heid invariant. With regard
to the results, the comparison between the pertur-
bation and the exact nonlinear result is, as in the
case of single-parameter perturbations of these
flows (F1gs 4 to 6), extremely good, in particular
in the region of the shock. We note that the
particular parameter values of (M,,t)=(0.790,
0.115) selected for the prediction solution
represent reasonably substantial extrapolations
from the base and calibration values. Neverthe-
less, the perturbation method is able to treat
this Targe extrapolation range accurately.

Figure 15 presents analogous three-parameter
perturbation results when angle-of-attack varia-
tions are included for the flows shown in figure 14.



Here, the base flow selected is at o =0.2°,

Mo = 0.800, T = 0.110, and is indicated in all

of the three plots provided as the dashed line.
The calibration flow to account for angle-of-
attack change is at o = 0.25° at the same (M_,t)
as the base flow, and is displayed as the dotted
curve in the plot on the upper left. The
corresponding calibration flow to account for Mach
number change is at M, = 0.810 and is displayed in
the upper ‘right plot, while the calibration fiow
for thickness-ratio change is at = = 0.115, and
shown in the lower plot. The predicted result is
for parameter values of o = 0.3°, M_ = 0.820,

v = 0.700 and again represents reasonably sub-
stantial extrapolations of all three parameters,
as can be observed in figure 15 from the relative

differences between the base and calibration flows.

The reason for selecting such small angles-of-
attack for these flows was to preserve the shock
wave on the lower surface, and thereby create a
set of multiple-shock flows which were highly
sensitive to parameter changes. The comparisons
between perturbation and exact nonlinear results
for this case is again extremely good, with the
prediction of both the locations of the shocks on
the upper and Tower surface given very well, as
well as the pressure distributions in the regions
immediately ahead and behind those shocks. For
these results, Tinear piecewise-continuous strain-
ing was employed with the invariant points being
the Tower surface trailing edge, Tower surface
shock, stagnation point, upper surface shock, and
upper surface trailing edge. The final result
provided in figure 16 is for a four-parameter
perturbation of strongly-supercritical full
potentiall?2 flows past a cascade of blades having
NACA four-digit profiles. The base flow is for an
oncoming Mach number of M, = 0.780, thickness-
ratio v = 0.110, gap-to-chord ratio t = 3.2, and
oncoming inflow angle o = 0.3°. The four calibra-
tion solutions to account for changes in these
parameters are provided in the four plots shown
where the individual values of the calibration
parameter varied are also indicated. The compari-
son of the predicted and exact nonlinear results
are for parameter values of M, = 0.785, v = 0.115,
t =3.1, a = 0.5°. This particular set of flows
was again selected because of the presence of
multiple-shocks and high sensitivity to parameter
change. We note that the perturbation predictions
are once more remarkably accurate.

Nonphysical Applications

The results provided in figures 3 to 16 have
been exclusively for perturbations of parameters
which are physical in origin, i.e. either geomet-
rical or flow quantities. However, many perturba-
tion problems arise from nonphysical bases. An
example which is important for the present
applications is the difference between solutions
representing different levels of approximation to
the same problem. In this sense, finite differ-
ence solutions obtained on a coarse mesh should be
correctable, employing ideas of the perturbation
method discussed, to provide a fine mesh result.
Similarly, various levels of approximation of the
governing equations for the same problem lead to
differences in solutions that can be regarded in
an analogous fashion. Thus, the differences
between transonic small-disturbance, full poten-
tial, Euler, and Navier-Stokes equation solutions
can be viewed in the present context as various
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perturbation problems. Results for grid correc-
tions and level-of-equation approximations have
been successfully carried out and are reported in
reference 8. All of these results, taken in toto,
serve to demonstrate both the power and versatility
of perturbation methods based on such ideas.

Concluding Remarks

An evaluation has been made of a perturbation
procedure for determining highly-accurate approxi-
mations to families of nonlinear solutions which
are either continucus or discontinuous, and which
represent variations in some arbitrary parameter.
The procedure employs unit perturbaticns, deter-
mined from two or more nonlinear solutions which
differ from one another by a nominal change in
some geometric or flow parameter, to predict a
family of related nonlinear solutions. Coordinate
straining is used in determining the unit perturba-
tion in order to account properly for the motion
of discontinuities and maxima of high-gradient
regions. Extensive perturbation calculations based
on full potential nonlinear solutions have been
carried out. These calculations cover a variety
of flow and geometric parameter perturbations
involving isolated airfoils and compressor cascades
at both subsonic and transonic flow conditions.
Particular emphasis was placed on supercritical
transonic flows which exhibit Targe surface shock
movements over the parameter range studied; and on
subsonic flows which display large pressure varia-
tions in the stagnation and peak suction pressure
regions. Perturbation results, for both single-
and multiple-parameter perturbations, characterized
by both extreme solution interpolation using
widely-separated base flow solutions and extreme
solution extrapolation using closely-spaced base
flow solutions, were obtained in order to determine
the accuracy and range of validity of the method.
Additionally, calculation of perturbation results
were made to investigate the effectiveness of
employing piecewise-continuous straining functions
rather than polynomial.(quadratic, cubic, quartic)
functions.

Comparisons of the perturbation results with
the corresponding 'exact' nonlinear solutions
indicate a remarkable accuracy and range of
validity of the perturbation method across the
spectrum of exampies reported. Solution interpola-
tion and extrapolation are both feasible. Results
evaluating the polynomial and piece-wise-continuous
straining functions indicate that the piecewise-
continuous functions are superior. Computational
time of the method, beyond the determination of the
base solutions, is trivial. Based on these results,
we conclude that such a perturbation procedure can
provide a means for substantially reducing compu-
tational requirements in design studies or -other
applications where large numbers of related non-
linear solutions are needed.
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