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Abstracts

An analysis of identification and of its
mathematicael-physical variant was perfor-
med from gnoseological point of vief. To
verify the absence of a significant syste—
matic error a testing quentity has been
suggestede To prove the significance of
differencies between the considered attri-
butes of a system and of its model a glo-
bal test of identity or of closeness has
been deduced. To facilitate aerodynamic mo-
del analysis a clessification. of nonsta=
tionary aerodynamics according to two cri-
teria is given and the distinguishing the
angle of attack changes into the "path®
and "attitude® onces is introdused. There-
fore for the both sorts of the le of
attack changes there could be derived com-
parable expressions for aerodynamic free
quency transfers of the whole aeroplene
which are composed from normalized dimen-
sionless transfers of the wing, of the tail-
plane and of the interaction of the wing
on the tailplane. To prove the Strouhal
number effect on complex aerodynamic deri-
vatives the "weighted" values of these de~
rivatives have been deducede. The correspon-
ding weight functions are determined by the
frequency spectrum of a time history of the
elevator deflection and by the frequency
transfers for responses of the given aero-
plane. An exemple is attached.

l. Introduction |

When analysing results of flight measu-
rements carried out in 1969 with the A 145
light trensport seroplene at ¢onstant speed
of flight in a calm atmosphere, some diffe-
rencies were noticed in frequency transfer
functions of the aeroplene responses to
different deterministic time histories of
elevator deflections, that were of trian-
gular, step and sinusoidal shape.("

Besides it, differencles in.aerodynamic
nature of the aeroplane were observed, as
values of some aerodynamic derivatives dif-
fered according to having been mesassured at
steady or unsteady flights. The greatest
differencies reaching 23 percent were sta-
ted at the down-wash angle derivative accor=
ding to the angle of attack at the horizon-
tal tail surfaces.

When estimating the model parameters of
the considered seroplane motioh, a model
based on the quasi-stationary: aerodynamics
was used. At that time the hypothesis was
expressed that this using of quesi-statio-
nary aerodynemles instead of the more com-
plicated nonstationary one could be the
reason of the mentioned differencies. To
the analogical conclusion the authors of
ref«(2)and (3 have come as well.,

By the analysis of flight meesurements
results the identification method wes asser—
ted as & method of recognition the nature of
the aeroplane longitudinal motion and of its
aerodynamicse The identification method us—
ed in this way, however, could Jjust point
out the sicnificance of the stated diffe-
rencies between the aseroplane and its model
behaviours but it could not lead to the ex=
planation of their ceuses. Therefore in later
studies attention was focused on the identi~
fication errors analyslis and to the condi-
tions needed to be fulfilled to transform
the identification method to & method of
recognition thet would be able to confirm
or to refuse the suitability of the used mo-
del hypothesise. 1In the case that the errors
analysis and their significence confirm
that the cause of stated significant diffe~
rencles might be an unsuitable model, then
there must be proved by a further analysis
whether this may be csused by the used qua~
si~stationary serodynamics. To this purpose
the weighted averages of complex aerodyna=
mic derivatives were used. They are the
weighted mean values of complex derivatives
for circuler frequencies which are involved
with different weights in the frequency spe-~
ctrum of the time history of exciting eleva-
tor deflection. To estimate them one must
know analytical expressions for aerodynemic
frequency transfer functions of the whole
aeroplane. They were derived on the basis of
expressions for the isolated wing and for
the horizontal tail surface,(® and of ez~
pressions describing the wing influence on
the tailplane at an unsteady flow on the
wing. (/) The proper method of estimating
the weigheted values of comp:l?x derivatives
was in comparison with ref. (! improved.

2+ Identification as a Method of

Recognition
2.1 Introduction into the Problem

The identification of a cybernetic system
nay fet & recognition method Just when the
model hypothesis was built up on the basis
of an analysis of the lnvestigated system
behaviour and of its nature, i.e. when the
system is not considered to be a ®black box".
From the gnoseological point of view, the
cybernetic systems identification as a met-
hod of recognition the obJjective reality
has the following three stages, see figel:
1, The statement of the behaviour of a sys-

tem defined on the lnvestigated object
ﬂ the given initial and external condi-
OnS o
2 The statement of the behaviour of the sy-
stem model hypothesis under the same con=
ditions as in l.
3, The identity verification of signs selec-
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ted for behaviours of the system and
of 1ts model hypothesis.

If the selected signs may be measured,
the system behaviour is staded by measure=-
ments of time histories of input and output

quantities, see fige. 24 As for the state-
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FIGURE 1~ BASIC DIAGRAM OF IDENTIFICA-
TION PROCESS
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FIGURE 2 - SCHEME DIAGRAM OF ERRORS
OF THE STAGE 1

ment of the model hypothesis behaviour

this process 1s more complicated as a{ the

system itaelf, see fige 3.

The identification in order to be a recog-
nition method, the second stage of identifi-
cation is composed from the following three
subatages:

a/ The selection of the model hypothesis
form on the basis of an analysis of the
behaviour and nature of the investigated
system.

b/ The estimation of the model hypothesis
parameters by a sulteble optimisation
method from the values of input and out-
put quantlties measured and corrected on
the system at tlée given conditions, see
eege Tofe & , O ana application in dy-
namicas of flight see eege ref. (¥ , 1 (12

¢/ The calculation of the output quentities
of the model hypothesis for the input

quantities values measured (and corrected)
on the system and for the estimated values
of the model hypothesis parameterse.
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FIGURE 3 — SCHEME DIAGRAM OF ERRORS
OF THE STAGE 2 OF THE
MATHEMATIC~ PHYSICAL VARIANT

As for the third stage of ldentification,
to prove the identity of the behaviours of
the system and of its model hypothesis. the-
re must be found suitable objective diseri-
minstive criteria in the sense of Leibniz
principle, according to which "identical ob-
Jects are those that cannot be.distingui-
shed by means of sccessible discriminative
criteria®, (13) The identification process
?uﬁz be able to be carried out in finite

L]

For analysis in dynamics of flight , the
"mathematical-physical variant®” of identifi-
cation was usede It is characterised by the
fact that the model hypothesis form is deri=
ved from a physical analysis of the investi-
gated motion and from the nature of the sys-
tem defined on the aeroplane and that the
estimated values of the model hypothesis pa-
rameters have a physical sense.

As values of the selected quantities to
be identified are contaminated im the first
and second stages by errors of different
origins and sorts, the verification depends
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on their magnitudes and it is , therefore,
relative.

2,2 Identification Errors

In the first and second stages of the
identification process, some systematic and
random errors, £, and £., appsar. By indi-
vidual measurements they have concrete va-
lues. That ere unrecognisable, however.
They may be simply algebraica summarised
into a total error €. = £, + £, that is
unrecognisable as weil.

At random errors, there msy be recogni-
sed just estimates of statistical characte-
ristics of random errors sets in the case
that the identification process was repea-
ted several times by the same method, with
the same instrumentation and under the seme
conditions.

Systematic errors are deterministic quan-
tities. They can be recognised and corrected
just in the case that there are known phy-
sical laws by which they are governed and
values of influence quantities by which they
are excited. As the influence quantities va-
lues are gained by measurements, the syste-
matic errors estimates have also a nature
of random quantities with nonzero mean va-
lues. Besides, there remain residuals of sy-
stematic errors that cannot be corrected
and that for a given series of repeated mea-
surements have originated from the "frozen®
values of random errors, e.g. when using
the same curves for graduation of measure-
ment instrumentation etc. The residuals of
uncorrectible systematic errors are thus de-
termined by conditionsally constant random -
errors in the glven series of measurement.
If the influence quantities change by ran-
dom, then a deterministic transformation of
random quantities is in question.

There remains thus the problem of the
significance of residual incorrected syste-
matic errors of measured quantities that
should be solved. The estimate of these re-
8iduals in the form of constant paremeters
involved in optimal paremeter estimates of
the model hypothesis gives Jjust the cons-
tant component of the uncorrectible syste-

matic errors that depends on the model hy-
pothesis form. n
The identification errors €, =y = yu

may be recognised just as estimates

&= § - §H .

2,3 A Quantity for Checking the Signifi-
cance of Systematic Errors Residuals

For the time t¢; , where j = l,eeeyk ,
with repetitions for every J in one series
of measurements vV = 1,.ss,n; , One gets the
mean values of one of the measured lnput

quantities uy, = gugj\,/nj and of one of the
measured output quantities jy,, = L ygj\;/nj .

As by flight there is usually not possible
to fulfil the same nominsl conditions of
measurements and insignificantly different
time histories of repeated input controlling
quantities, there must b¢ incorporated bet-
ween the first and second stages:

a/ a correction of the measured data for
nominal conditions;

b/ at a linear system the averaging of
frequency transfer functions just after
their Fourier transformation Fy,u(ic.g,-)for
every iw; .

As for given series of repetitions, the
optimal values of the model parameters K,
(r=1eee4nk. } are conditionally cons=
tant, the estimate of the identification
error on the level j (for one output) is

63j=YMJ—9Hj = EJsJ-l- EJI'j (1)

According to figures 2 and J the systematic
component estimate of the identification er-
ror is a function of partial systematic er-
rors, respectively of itheir uncorrected re-
siduals,

SJSJ.‘=fJ [gsj(un)v SSJ‘(Yn)i ij, EKJ‘] (2)
The identification process to be a recogni-
tion method , it must be proved that %
&s; (Up) = Eg5(yn) = &; =0

Then the systematic component of the iden-
tification error is a function just of mo-
del form error, i.ee &;;=f;(&;)-

To prove the significane of &g;(yu),
one can use the checking quantity v, (t;)

which is defined by the kinematic relation
between the necessary and superficient out-
put quantities, l.e.

v v !
W (t.i) =Vy[ylj’ yv_j] =0 (3)
where Krlj (1=1,se04n,) are the measure=-

ment and corrected output quantities nece~-

sary to describe the investigated motion
of n, degrees of freedom (ise. the measu-
red state quantities ) and y, are the mea-

sured and corrected superficient output quan-
tities.

If the both mentioned sorts of output
quantities are influenced fust by random
errors, the checking quantity value changes
by random in proximity of zero only. If
significant uncorrected systematic errors
are present, then the mean curve vy ()

has a deterministic shape, see fige 4 »
4 0 2 trseci 3
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s-UNCORRECTABLE SYSTEMATIC ERRORS
¢-CORRECTION A-Aw,-k,4n,
FIGURE 4 -THE SCHEME DIAGRAM OF THE
CHECKING QUANTITY . (r)

In this case the time history of wy({j)
may be used according to the nature

-

®) The iterations number being sufficient,
&g O is valid. According to the input

quantity nature, one can oftten suppose
6Sj (um) =Q
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of uncorrected residuals of systematic er-
rors either for a supplementary correction
of the measured and corrected output quan=-
tities or for the exclusion of the rele-
vant realisation from the further usage in
the series of repeated measurements.

As an exemple, the checking quantity
for the aeroplane motion in e calm atmosp-
here v, (t) can be stated that was derived
in ref.() from the kinematic relation
0 -¢-ux =0, see fige 4. It serves to
check the absence of significant residuals
of systematic errors of the measured and
corgected quantities wy, n; and « and it
reads

* g !
v, (t) =f (wy-5%3 %"n:)d’t-(“-o‘o)éo (4)

]
244 A Global Test of the Model Hypothesis
Closeness )

It follows from the identification de~
finition that in the third stage a proof
should be done for every value of the inde~-
pendent variable t; or 1w; respectively
that the mean value of every output quanti-
ty In; is identical with the value ¥,

which was estimated by means of the model
kgpothesis form, see fige 3+ The zero hypo-
thesis then may be defined so that the mean
value In; belng a random variable differs

from the conditionally deterministic value

then nonequality is valid *
(ts)j’:(ym—?“j)/ s(yMj) £ tu,(nJ'-1) ? (5)

where the random quantity ( tg ); has the
Student distribution with ( nj = 1 ) deg-
rees of statistical freedom and with its

eritical value te ¢n;-1) o The quantity o

is here the degree of statistical signifi-
cance ( esgex = 0,05 ) and

. nj 2. k173 -
somp=[Z = {5z, In; . (6)

E%iv
ni(n;-1)

From the zero hypothesis (5) the probabili-

ty (1=« ) follows that the estimated

value y, j lies in the intervel defined by

the relation
P {ynj—fw s (9:1,') < 9H_j<yMj+ by S(.YMJ)}=1"°‘ n
In the case when the estimates J, dis-
tribution about the values Iu; is just by

random, the confidence bounderies are pas-

sed over also by random with the probabili-~
ty x o When the identification deviation es-
timate &;; = Yuj = Tnj involves systematic er-

rors residuals, the nonequality (tg); > t

¥ The symbol tg was used to distinguish
from the symbol for time t. In statistical
literature t, is usually denoted by t.

Y Just by random. For every level +t i
STEP CHANGES Ao,
|
. i 1
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FIGURE 5 — CLASSIFICATION OF THE LIFT CHANGES IN UNSTEADY AERODYNAMICS
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appears more often and tends to appear in
groups. For this last case & global crite-
rion of closeness was derived in ref. %) to
make easier the decision sbout the suitabi~
lity of the model hypothesis. This crite-
rion follows from the t=tests of the zero
hypotheais for indiwidual levels Jj when
using the relation X (t.).

J=1
For this reason the estimates of the fol-
lowing variance must be known:
a/ the estimate of the average variance of
the measured values round the mean velues
Yu; On every level j , which is called

the “experimental variance", and is given
by the relation
2
SE =

sylks L Legi[ke (8)
b/ the estimate of the aversge variance of
the mean values b/ round the condition-

ally deterministic velues s'u.n on every

level J , which is called the "identifi-
cation variance” and is given by the re-

lation )
sf = nj %835/‘(;, (9)

In the relations (8) and (9) the sym-
bols denote: k. = k(n;~ 1), k; = k = n; e
degrees of statistical freedom;

Cepo = Fejw = Ymj 9 €35 = Yw; = Yu;j oeexperi-
mental and identification errors. For the

frequency transfer functions the number of
levels is 2k instead of k .

In the case when s% > 82 , the global
closeness test is given by the relation:

F=s§ /sé E4 o 5 Kyake (10)

The test quantity F has the F-distribu-
tion and the critical value F, , . for

the statistical significance degree o< and
for statistical freedom degrees k, and k.

Other supplementary statistical tests
are given in ref. %) .

3+ A Model of Nonstationasry Aerodynamics
of an Aeroplane.
3.1 A Short Introduction into the Problem.

The research of nonstationary aerody-
nemics problems was started in 1923. 4 de~-
tailed s of literature on this prob-
lem until 1940 is in ref, (5)+ A scheme of
classification of nonstationary aerodyna-
mics is seen in a block~diagram on fige 5.
Two classification points of vief are con-
sidered:

a/ the point of view of the shape of the
angle of attack change, l.es the step or
sinusoidal chenges as well; '

b/ the point of view of the mode of origina=
ting the angle of attack on the wing
i.e. the change begins instantaneousiy
on the whole winﬁ or it penetrates gra-
duelly from the leading edge.

The dimensionless similerity paremeter
for these phenomena is the Strouhal numbere.
It is defined in the time domain by
s = Vt/1 = t/tr, and in the frequency domain
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by w” = wTs , where %, = 1/V is the aerody-

nemic time unit,

In the fig.5, there are shown for a two-
dimensionsl incompressible flow four basic
function:

a/ for a step change of angle of attack the
Wegner function k,(s) from 1925 and the
Kbssner function k,(s) from 1936; they
are both normalized transition functions,
which are called also serodynemic admit-
tances or indicial 1ift functions; -

b/ for e sinusoidal change the Theodorsen
function Céiw"g from 1935 and the Sears
function ¢ (1w*) from 1940, which are ae-
rodynamic normalized dimensionless fre-
quency transfer functions.

In the fig. 5 the functions for a gra-
dusl angle of attack change are considered
with the coordinates origin placed in the
leading edge in contradiction to their ori-
ginal form with the origin placed in the
middle of the chord. The modified Sears
function is also ¥l

H(iw®) =¢ (iw™). e )

The symbols in fige 5 and in the fol=-
lowing text were arranged according to cur-
rent practice in dynamics of flight and ac-
cording to the Standard ISO 1151.

The change of the 1lift force for a unit
span igs defined by means of the mentioned

functions as follows:
AAjcs) = %Vz- l.2ar.kj(s).Aoc  [Nm™] (12)

where j = 1,2 (the Wagner or Kissner func-
tions) and | is a wing chord lenght;
/C (iu*)\

A iw™s
NHGeo*)” XK. ©

?

VZ
AAcs) = % 1.24. (13)

where A «,are the angle of attack amplitu-
des. For a wing with a finite aspect ratio
the derivative Cax instead of 2o is to be

used. Between the admittances A, (s) and
frequency tramsfer functions F, . '{iw9) ,

which according to fige 5 correspond one
to another, the following relation is wvalid:
FlA, ()= Fpation = . (14)
For the lift change AA(t) due to an arbi-
trary angle of attack change Ax(t) the con-
volutory integral will be used in the time

domain and the frequency domain the follo-
wing simple relation is valid:

AACicw™) = E,  (iw9. Ax (iw0*), (15)

which will be used further because it is
simple and convenient for identification.

The analytical expressions for k,(s)
and k,(s) are very complicated functions.
They are therefore used to be replaced in
anai;ytical solutions in flight dynamics
and in identification by one or more expo-
nential functions of the form .

n By,
Ki(s)=1-Y ocy6 o (16)
139

where J = 1,2 (the Wagner or Kussner func-
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tion). This exponential function after a
Fourier transformation has a very simple
form:
O S i
FLCu. 8} =iy i~ Cit Toiwr Ty (1T)
The original aerodynamic admittances
and aerodynemic frequency transfers in the
approximate exponential form were in the
fifties extended also for different wing
shapes, for different aspect ratios and foxr
the compressible flowe The originasl Wagner
and Theodorsen functions, which were deri-
ved on the basis of velocity circulation on
the wing section, were supplemented by terms
describing the effect of the air carried in-
to motion by a moving wing, e.ge at a step
change of the wing position or at its oscil=
lationse This change of the lift component
was called the inertisl one AA; in contra-

diction to the circulatory lift component
AA; o A summary of references to these pro-

blems is given in ref.(') ,

The modern computer techniques have oge-
ned new possibilities for improving methods
to estimate normalized dimensionless complex
coefficients of generalised aerodynsmic fore
ces and moments for nonrigid asroplane of
different shapess. The references are summer-
ised in ref.(l5). Nevertheless, for analyti-
cal solutions in dynemics of flight and in
identification of conventional aeroplanes
motions, it is sometimes more convenient to
use approximete analytical ex&:ressions ) 88
the author has shown in ref. (1) already and
whate more recently also in ref.(2) and (3
was shown.

In further chapters, from the four men=
tioned aerodynamic normalized dimensionless
functions the aerodynamic frequency trans-
fer functions will be used, the basis of
which are the Theodorsen and Sears functions
respectively.

32 The Realisation of the Angle of Attack

Chgges .

The angle of attack is defined as an
angle between two semi-straight-lines, one
of them being the direction of the relative
velocity vector of the air and the second
one the direction of a reference axis fixed
on the wing or on the aeroplane. An angle
of attack change may be thus effected by
two modes:

a/ b;ir a rotation of just one of these direc-
tions;

b/ by a simultaneous rotation of both these
directions, see fige 6.

As each of these directions is given by
a physically different object one can expect
that each of the mentioned modes of the an-
gle of attack changes will displgy aerody-
namically in a different way.

The change of the angle of attack due
to the change of orientation (attitude) of
the reference axis of the aeroplasne was cal-
led the "attitude" change Aay= AO ,

A rotation of the velocity veetor may
be realised in different wayse. In aeroelas—

ticity it is usually done by shifting a
wing section perpendicularly to the veloci-
ty vector direction, e.ge when bending the
wing, in flight dynamics it mey be done by
shifi’;ing the whole aeroplane. Because this
shifting means a change %:g the airpath in=-
clination angle Ay = - 5 = -Awy, this

change of angle of attack was called "path"
change Axy =Ay .
Ao =A0 +Aoy

Aoty=-AY AazAO

FIGURE 6 ~ SCHEME DIAGRAM OF ANGLES

Therefore to describe the angle of at-
tack change Ax = AG'AK=A“$A‘7‘J" two genera-

lised coordinates A© and Ax, are needed.

In aerodynamics, in aeroelasticity and some-
times also in fiight dynamics, the two gene-
ralised coordinates AO and Az,are used,

iees 2 rotation of the wing (aeroplane) re-
ference axis and a translation of the ori-
gin of this axise. A disadvantege of the co-
ordinates A9 and Az, is in the fact that

they are dimensionally end physically not
homogeneous and analytical expressions for
aerodynamic forces and moments excited by
them are not comparable.

In flight dynamics the two generalised
coordinates A® and Ax =A® + Axy are used
as well or sometimes with suspect to the
possibility of measurement the quantities

AO=wyand azfA'Z'.; = VAx, are also usede.
In the following aserodynamic considera-
tions the use of physically homogeneous

pair of the angle of-attack changes A© and
Ao, is preferreds Expressions for serodyna-

mic responses may be easily transformed to
other generalised coordinates as well,

33 A Simple Model of the Whole Aeroplane.

At a nonstationar{mlongitudinal motion
of an aeroplane in calm atmosphere the chan-
ges of the lift and pitching moment coeffi-
cients are expressed by approximate rela=
tions which after the Fourier integral trans-
formation have the form:

ATy =Ry {100 Ko * T, o (IIBE #R . (9A (18)

AC = %m’o‘a"(iwx)A:&' +F(;m-9(iwx)A_o * Fém"'l(Lw‘)A"l' (19)

m

The two first frequency transfers in each
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relation consist of aerodynamic frequency
transfer functions of the wing and of the
tailplane into which the interaction of the
wing must be involved, see ref. () % The
effect of the fuselage is not considered
heres The third ones are determined just by
aerodynemic transfer functions of the tail-
plane. To express all these transfer func-
tions the formulae from appendisea of the
book by Scanlan end Rosenbaum ) have been
useds As a reference point for both the
wing and the tailplane a common point in
the aeroplane centre of gravity was consi-
dered. For the relative distance "a® in ref.
(6) of the reference point behind the midde-
le of the lifting surface chord length the
fo%ldow:i.ng values have been therefore substi-
tuted:
a/ for the wing &= afl=%-05 ;

b/ for the tailplane &=a,~ &[l,-- [i,+025)

A survey of characteristic lengths on an
aeroplane is given in fig. 7.

Ne Of S'_Ner Ny Oy Ngy
X 12 | a &y b4 )'i/a
$Ne_ L *Nes -ay
i Xs T
I | y

FIGURE 7 - SCHEME DIAGRAM OF LENGTHS

After having transformed the expressions
from ref.(®) into contemporary symbols of
flight dynamics according to the standard
IS0 1151 and after having them algebraical-
1y arranged and synthetlzed for the whole
aeroplane the expressions for aerodynemic
frequency transfer functions dependent on
angle of attack changes are obtained that
are convenient to use in practice. _

For the lift coefficient change AC, the

aerodynemic frequency transfers for the who~-
le aeroplane are of the form:

R G0 =B o (0 + R, o (i) (20)
By 00 = By (i) + 107 B o (1) (21)

where

Bp.ox (10D=F, g2 (09 + e, 5% (iw™) (22)

The individual aserodynemic frequencx trans-
fers of the lift coefficient in (20), (21)
and (22) are given in the form: .

B g (99 Ap C (i) + Ay [ €y (i) + )
= hyGiw®) % . Caa(’:wx)J .

fenyi ((0)(Acs Ayp). ic0* =Ky 5 - T _(24)
F(;A. (i) =Ars.Co(iwX) + Ay, Cy (idX) Fzs)
FcA,éxi(z'w*> =(-Agy, +Apy). 10*= K, 5. ico™ (26)
For the pitching moment coefficient
change AC,, the aerodynemic frequency
transfers for the whole aeroplane are:

AR SIRCOLL SN D

27

B (00 = B (1004 i B g0 ‘(28)
where
%m'éx(iwx)= E:m.é"c(l‘wx)"' Fém.éxi (l‘G)x)

(29)

The individual aerodynamic frequency trans-
fers of the momént coéfficient in(27), (28)
and (29) are: . .

. o= My Colicw )+ m, - [ Cy (0™ + 30)
~ hyCier S22 G (o™ ]
f‘&m_“ri(iw") = (Mg M) iw™= Kp, 4 t0* 31

R 6% (100 = My ColiwD+ My, Cuiw™  (32)

o i (1070 = '(mni" My )=(Mg g Myyg). W% = (33)

= % . {COX
= Kmms* + Kmg -t

Expressions to calculate the constants A.,,
eeey M, from (23) up to (26) and (30) to

(33) are given in table 1', where one can
find also examples of their values for the
A 145 light transport aeroplane. Main chara-
cteristics - of this aeroglane are given in
table 3 taken from ref. (!) . Approximate ex-
pressions for normelized dimenslionless fre-
quency transfers C,(iw), C,(iw*), h,(iw)

and Cy, (icw*) are présented in appendix to

this papér and values of their contants for
the A 145 aeroplane are to be found in
table 4.

There follows from (20), (21), (27)
and (28) that the frequemcy tramnsfers F,

and F. o contain the transfers I .. and

F, .« ¢ One can therefore express in (18)
and (19) the sum of the first two terms on
the right=hand side as follows:

%y oAy’ A_‘;‘r +( Fc_y “r+ I%y.o)' ho= E‘y.u;(A—O‘&*A_E))""(

34)
+ R, (1w 80) ‘

where y = A, m, It follows therefore that
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WING VALUES TAILPLANE VALUES
Ag, a +4,735 AL, +a, kS, +0,581 043
Ay aK,y 126333 | A, | s k3K T, +0,147 983
A, | 2% = 2 075-%) +2,381705 | A, ra k8, (220507, +2,232 788
Ay | aKy (%-050) —031963 | A, ray kS (37025)K,, T2 +0,541 B15
m,, Yoy 2 +0,572935 | m,, -%,a, k3, -1,939 427
m, | (%o050)aK,, 0319623 [ my, |+ (Br025)ak 8Tk, +0,519 690
mey | Sys.2-075-%) +0,288186 | m,, - %, 2,k 8 (3050) T -7,452 683
me, 025K, +0,315833 | m,,, +0,25 3,k S, +0,036 996
m |[(%-050)3K #1/1281a  |+0,17857 | m; | +a k8,1, [(}+025)1K,;¢ 12817,  |+2,624703
a= 3C,¢ [, a;= 3Ca, | I, Fo= o=, N =Tl K,

Kogt (Aryt A= +1,411314 K= *+ CA,+ A, )= +0,861438 ;

Kmg= + (M- my; )=-0,839313 ; Koo -(mpgemy, )= - 0,352829; Kng=-(mdmy )= -2,742 560

TABLE 1 -PARAMETERS OF AERODYNAMIC FREQUENCY TRANSERS EXAMPLE FOR

THE A 145 AEROPLANE

instead of the generalized coordinates Aoy,

A® there may be used the generalized coor-
dinates Ax =Aa, + A0 and wAO=A0 =f

It is evident from (23) to (26) and
(30) to (33) that from a comparison of the
corresponding coefficients 4., and A,, ,

eie 3 m_. and m,s one can estimate the

participation of the wing and that of the
tailplane in the considered frequency tran-
sfer.

From the given expressions the formulse
for the quasi~-stationary aerodynamic model
ney be easily deduced when teking

C (1w = Cy(iw®) = hy(iw) = 1 and when
using for C,, (iwx) the usually considered
quasi~stationary model

Cor (0% = 1- iw*. T (35)

where by

Ty v, % ia the transport lag of

A
the trailing edge vortex on the path from
the wing to the tailplane. The definitions
of the length §, (often §, = r, is used)
and of the velocity V, are considered

with different opinions, see ref,(?) ,3) ,
{7)'e The transport lag :f.s also difficult to
be estimated from m?asured values of the
downwash, see ref.(l) ,

From the expressions one can also see
that to the aerodynasmic transfers for w*= O
the complex aerodynamic derivatives corres-
pond in quasi-stationary aerodynemics, l.c.
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there is valid
By.x©) = U, ,(0) +iw* Vey.x (0)
(36)

and therefore __ .
C

y. X

X~
Cy.xt t" Cy 3

where y = A , B and X =&, ,0,7 -« Thus
the following reletions are valid:
Ve, (0)=wx. Vg, (0)and U (0) =

=C_y.x ’ Vé.y‘x(o) =Cy.

To have an idea of aerodynamic frequen-
¢y transfers some examples for the A 145
seroplane are given in fige 8 , 9 , 10 &«
The values of complex derivatives are there
drawn tooe. One can see here that imaginary
components may be remarcably different at
the circulation terms and at the resultants
comprising inertial terms. The real compo-
nents remain unchanged except at the trans-

fer F, s« o It is important too that the

circulation terms converge to zero with the
gr frequency w*-o 0r to a finite real
value whilst the inertial terms grow into
infinity.

The correctness of aerodynamic frequen=
¢y transfers depends not only on the corre=-
ctness of normalized dimensionless trans~
fers Cp 4 C, o h, , which are determined

by lifting surfaces and by the Mach number,
but also on the correctness of the function
Cx, (1) which involves the evolution of

the circulation on the wing, the develop=-



ment of the velocity field around the wing
and the transport lag of the trailling edge
vortices. The expression of the function
Cx, was teken from ref, () where it wes

proposed on a basis of the lidentification
analysis. It is given with the constants
values for the A 145 aeroplane in the ap~-
pendix, see table 4.

4. Weighted Values of Complex aerodynemic
Derivatives for a Longltudinal Motlon
of an Aeroplane at a Constant Veloclty.

4.1 Bagic Relations.

A longitudinal unstead¥ motion of a ri=
gld aeroplane at a constant veloeity that
was excited by an elevator deflection at a
steady flight in the calm atmosphere is des=
cribed by a system of two differential equa-
tions of the second order. Their matrix
form convenient from the cybernetic point
of wiew with matrices physically homogene=-
ous after the Fourier transformation is gi~
ven in the appendix, equations (47). In the
case that starting from a certain value of
the Strouhal number w* the effect of non=-
stationary aserodynamics begins to be evi-
dent one must substitute in the matrices of
motion equations for aerodynemic responses
forces and for input forces the aerodyna=-
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mic frequency tramsfers for the aerodynamic
complex derivatives.

An elevator motion may be replaced by
Fourier series by means of & sum of harmo=- -
nic components with a spectrum A~ (iw})

Every harmonic component of the deflection
excites a harmonic response of the aeropla-
ne of the form: F;(_,,l(iwj‘). A (iW}) ,

X
where x = « , © , The effect of gserodyna-
mic frequency transfers F, (i) , where

y =%, Ch s Cyn and x=<x,'éx,"z, may

be replaced in the motion equations in a
certain interval of the Strouhal number by
weighted mean values of the form

(C_y.x)w=(uy.x)w + i( Vy.x w

The values of these complex derivatives
may be defined as follows

(37

>J: [Cuy.ou + 10 (G ] Bx (iw]) =

_ (38)
= L Fyx(iw}). A% (i) ‘
WETe Nk Giw]) = Fun(iw]). A7 (i0])
are weighted functions which are determined
by the frequency transfers of the aeropla-
ne responses

PR (107) U @) + £ e ()

and by the spectrum of the elevator deflec-



tion A~ (iw])

From (38) after rearranging one gets a
system of two algebraic equations with un-
knowns (u,,),, and (v,.), dinto form:

Lo el ]

in which the coefficients are:
a,= JZa'z(w’j) . (40a,b)

(39)

a,= % a, (@),
b1=' sz]‘alg(w:) 3 b2= +Zw’ja;(wj‘), (m,b)
¢, = }J: C;(Wj),

=2 C(wf)  (42a,b)

where the real and me(agina:g'y parts of the
wf

weighted function Ax are:
a) =Axg (W) = Uxq B~ Ve - A7 (438)
a=Ax,(W)) =Uygy A7 ¢ Vg A, (43D)
and , _ _ l
c1=Uy.X'AxR—Vy.X'AxJ (430)
C=Uyx- By, + Vyx Bxg (43d)

The coefficients of (39) contain res-
ponse transfers of the aeroplane F,,.l(iw")

that are given in the appendix and aérody~

Ca T3 YRE:
A . \
& (wa) ] | Y20
Tl
S| 1 [s | e
ucH | X
> ‘*G) ko ! . z 0
z'%o0 e —1% X 5
27 =SNGl &f(w‘ i 2
O i z 2
:< ek | cw
=0 4 [ €1 1,0
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-8 -7 -6 5 (18
REAL PART U_,, Cn o]
NOTATION SEE FIGURE 8,9 o

FIGURE 10- FREQUENCY TRANSFERS £, . (iw”
k_s(w)OF THE A 145 AEROPLANE
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namic frequency transfers F,, (iw) given

in chapter 3.2 . The spectra of elevator
deflections may be very various. The extre-
me cases are the unit impulse A7(iw9)= 1

end ~the step change A7 (iw™)=1fiw"s In prac-

tise a triangular impulse is often found,
see fig. 1l.

From the eqe (40) up to (43) one can
see the weighted derivatives.values for a
given aeroplane to be dependent on the ele~
vator deflections spectrum. The values of
these derivatives with an increasing inter-
val of the Strouhal number cw, € <0;15)>8are

convergent or at least semiconvergent wit-
hin the extent of circular frequencies
which may be considered for the short-pe-
riod motion of a rigid aeroplane as a whole.

442 An Example for the A 145 Aeroplane

The mass and geometrical characteris=-
ties of the A 145 light two-engined trans-
port aeroplane have been taken from ref. (!)
and are given in the appendix, table 3 .
Coefficients values of other used aerody-
namic functions are presented in table 4 .
The calculations were staried with aerody-
nemnic derivatives estimated from measure-

T
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FIGURE 11-EXAMPLES OF WEIGHT FUNCTIONS
OF THE A 145 AEROPLANE



ments at steady flights. The efffective
downwash angle of the tailplane was compu~
ted from measurements of aerodynemic for-
ces on the teilplane at steady and unsteady
flights by means of straingsges. The time
constants of its transfer were estimated
from measurements by means of vane at un-
steady flights, see ref. () & ,

The calculations were performed on the
HP 9825 S table computor. The results are
presented in table 2 together with aero-
dynamic derivatives and transfer functions
of the other origin. For information the
real and imaginary parts of the weighted
ccomplex derivatives are plotted in dia-
grams of aerodynamic frequency transfers,
see fig. (8) , (9) , (10) . Information
about the convergence may be found in fig.
(12), (13) . There it is evident that star-
ting from the limit frequency w3 = 0,8 the
weighted derivatives are practically inde-
pendent on the frequency interval used in
the calculation.

One can sece from table 2 and from the
given diagrams that the real parts of de-
viations from the values of derivatives de=
rived from steady flights are of the same
sense as are the values deviations from un-
steady fllights measurements which were eva-
luated by the quasi-stationery model (as
far as they could be estimated due to ill-
conditioned equations). Some differencies
of the real parts of the weighted derivati-
ves from the derivatives derived from un-
steady flights and estimated by means of
the quesi-stationary model might be caused
by the fact that the normalized dimension-
less transfer function C_(iw*) corresponds

to the wing aspect ratio A = 6 whilst in
fact the aspect ratio is A; = 8,78 . Besi~-

des, an uncertainty is in value of the ti~
me constent T of the transfer function

Cx,(1w%), see ref. ) . The greatest effect

of the Strouhel number on the real parts
of the welghted derivatives is seen at the
derivative (dw, [ da)y s Where the deviation

is =33,6 per cent and the next one is the
derivative (C, ¢),, where the deviation
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is +25,9 percent. At the real parts of
other weighted derivatives the absolute va-
lues of deviations esre in the extent of 1
up to 3 percente. The least deviations are
found at the derivatives (G, s*)w and

(cA,éz ) IS
The effect of the Strouhal number on

the imaginary parts of the weighted deriva-
tives is substantially greater then on the
real ones. 4 comparison with values stated
at unsteady flights could not be effected
as it was not possible estimate them relia=-
bly from an ill-conditioned equations sys—
tem. At the imag part of the derivati-
ve (do,; [de)w the deviation is +83,6 percent

and at the derivative (Cm.s)w it 1s =89,6

percent. At the imaginary parts of the ot~
her weighted derivatives the absolute va-
lues of deviations lie in the extent of
13. to 37 percent. When considering the
inertial component of the lift one can ob=-
serve great deviations at the derivatives
(C,.oxs Jw eand (C,g;s ), which are usual=-

ly neglected in the motion equations when
a quasi-stationary aerodynemic model is
usede.

5+ Conclusions.

The identification and its mathematical-
physical variant are considered here to be
a method of recognition the substance of
phenomena or of structure of systems. If
at ver:lfying the identity of a considered
attribute of a system and of its model a
significant difference is found out then
it can be caused by the incorrect model
Jjust when by the identification process the
absence of significant uncorrectable syste=
matic errors has been proved. For this pur-
pose a testing quantity for systematic er-




lQuan- CALCULATED FLIGHT MEASUREMENTS®
TITY |FROM FREQUENCY TRANSFERS | WEIGHTED VALUES FOR jc0;15)|  STEADY UNSTEADY
Uyx (0) Vyx (0) (Uyx )wxm (vydw 0 c * c ' c)‘|= " C 0
y | x c ™ y | ¢ T c T . 5 y.X y.X y.x y-X
«,| |[+0304 | — [|-,557 | - |+0202| - |-0285| - |+0304 |-1,058 [+0234 | -
Ca |  +5139 1,398 |+0,013 +5,081 1,064 |+0347 | +5140 | +0615 |s5,.. "] -
C, -0,777 -3,091 |-3,930 - 0,978 -0322 |-1461 |-0777 | 2052 T|+0946 | x 'V
Ca| gx|__+48™ -1,553 |-0,691 + 4,481 -0983 |-0122 | - +2,022”. - _
Cm| |-7.164 |-7,517 |+1280 |-1462 |-7083 |-7,435 |+1022 |-1720 | = |-7423 - | x**°
C, ; +0341 | - |-00e5 | - |+0333 - |-00% | - [+0,341 - |+0318 | -~
E 4,138 | - |+0216 | - |-1413 | - |«op87| - [-1200 | - |-1060 | -

0 B,y (i) =U,__(WI+iw' V), (W) FOR w*=0 ;
; ¥x Y. )

* ¢ -CIRCULATION PART, X-TOTAL INCL. INERTIAL PART

xxx) (& R = .
UG = (gt 10 Cxdy 5 P €y =€,y +iW g, C i =V, (03, T CALCULATED BY STEADY

AERODYNAMIC® MODEL FROM (a k) MEASURED AT STEADY FLIGHTS

Chax + € g<=-8,753 ; (Cm.s(w*Cmg)z; ~7,435-1,161=- 8,596

++YILL CONDITIONED EQUATIONS -

Foy=0,A,m, x=(x,é:ﬂ.

TABLE 2 - SUMMARY OF DERIVATIVES VALUES OF THE A 145 AEROPLANE

rors end a global test of identity or of
closeness are suggested.

To facilitate analysis of aerodynamic
models a classification of nonstationary
aerodynamics to two criteris was given. To
improve the physical clearness there was
suggested to distinguish "attitude® and
“path" changes of angle of attack. For the-
se two sorts of angle of attack comparable
expressions have been deduced for aerodyna=-
mic frequency transfer functions of the
whole aeroplane. To this aim , normalized
dimensionless transfers have been used for
the wing, for the tailplane and for the in-
teraction of the wing on the tailplane.
From the expressions one can see the fre-
quency transfer for the "attidude" changes
of angle of attack to be given by a sum of
the frequency transfer for the "path" chan-
ges of angle of attack and of the damping
frequency transfer for a time change of the
attitude angle of attack. From coefficients
in these expressions the participation of
the wing and of the taiplane including the
interaction is evident on the global fre-
quency transfer of the aeroplane. From the-
se expressions one can also easily derive
the formulae for complex derivatives of an
aeroplane in a form which is more correct
than that customary used at a quasi-statio-
nary model.

To prove the effect of the Strouhal
number on complex aecrodynamic derivatives
the weighted values of these derivatives
have been introduced. The appertaining
weight functions are determined by the fre-
quency spectrum of a time history of the
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elevator deflection (e.g. a trienguler im-
puls) end by the frequency transfer func-
tions of the relevant responses of an aero=-
plene. The weighted complex derivatives
show in which direction and to what extent
their values measured at unsteady flights
when using a model of quasi-stationery ae~
rodynamics may be expected to differ from
the derivetives values stated from measure=
ments at steady flights. They meke therefo-
re possible to decide at the identification
whether a cause of the significent diffe-
rence of the serodynemic derivatives values
stated from measurements at steady or un-
steady flights may be the Strouhal number
effect. Further the welghted complex deri-
vatives make possible to estimate flying
qualities by means of a quasi-stationery
model but with the derivatives values chan-
ged by the Strouhal number effect according
to the spectral contents of the time histo-
ry of the elevator deflection.
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6o Appendix

The data of the A 145 seroplane are ta-
ken from ref. (! and are given in the ta-

ble 3 .
m kg 1530 v |m/s 54,20
0w 1 | o859 H | m 1390
X, 1 0,247 kg/m?| 1,070
u 1 | 12,9 T, s 0,0273
T=HuT, | 1 3,084 1/1,| s 36,622
Xge | 1 0,126 Xsng | 1 10,503
Ko | 1 0,121 [ 2,373
| m 1,480 Iy m 1,030
b m 12,25 by | m 3,39
A1 | s7s A | 347
S m? 17,09 Su m? 3,31 )
r m 5119 o m 4,940
3 m 3,770 €, | m 3,512
T | 1 0,696 Tl 9 0,726
A 3,338 I 4,796
Sa | 1 094 [Fr025| 1 | 5046
S, % 1 0,646 |%+05 | 4 5,296

TABLE 3 —CHARACTERISTICS OF THE A 145

SMALL TWIN-ENGINED AEROPLANE
AND OF STEADY FLIGHTS

The aerodynamic normalized dimension-
less transfer functions C, , C, , H, ac~

cording to eqe (17) are given by a formulae:

LW*Ti*

Clw)=1-3°C; Trio T (44)

The function h, is caleculated to the
point located in 0,251, by the expression:

+2*Tyo,25

hy, (icw*)=H,, (ic™).e , (45)

THO,ZS = 0,25 lH /\’E .

For the normalized dimensionless func-
tion for the downwash angle the formula is
taken from ref. () in the form:

* *

Al °%; [11 | bj 1] T £12

Cp |6 |1] o361 0,762 1312
Cp |3|1]| o.283 1,080 0,926
Cy|3|1| o028 1488 0.672

0,679 1538 0,650
Hy| 3|2

0,227 8,821 0.113
hy T 02 = 0,25.1,,=0,182

T, =0075/T, =2.747
CO(
a T = 0.065/T, = 2,380

K 0,267 Kan 0,351

TABLE 4 - COEFFICIENTS OF NORMALIZED
AERODYNAMIC FREQUENCY TRANSFERS

1 | LTy
1+ iw"T’"

Gy € 1) = (46)

The coefficients values in eq. (44) up
to (46) for t§1e aeroplane A 145 according
to the ref.(!) are given in the table 4 .

The motion equations system for a qua-
si-stationary serodynemic model has the
following dimensionless form:

7/ 4
.2 0,0 o [#1,-1 7 4 [Cor o= Ci
{(‘“’)(“[o,?f ~ it 570 ]+ [ o] +

e
(Cpoc t 10 Cy o), i(.J*/OA‘/éX .I:A§ ] _
H1€C, o+ i Cr i), i0* G 50

Cam+ iw"fzj}, i ]AVL

Cny* 0 Crn

(47)

By solving the equations system (47) one
obtains expressions for frequency transfer
functions for the aseroplane responses of
the form:

~n ~
Ko *ie*Keg

Fr.'z(iwx) "R+ iw* Ky H(iw)? (48)

where r = «,6"
The transfer coefficients in the dimension-
less form are expressed as follows:

27z

@iy k’o =-uC, CA.“. Cho% (492)
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@Ry =Cp i (CpantCrgn |32 (49b)
@iy Rig= = Cy () ~Con. 5% (50a)
@Roy= Con (50b)
@1 Rero = 8,0y Co* Coc IR (51a)
G275 Kesy = =T Cag(@t +Crp g [ T) (51b)

The transfer coefficients values in the di-
mensionless form ere given in table 5 .

Ro 1
Foc. W] +

¢ [+0,01153
Ry (1LY

' FM( w9
Fgxm(iw  |+0,008 940[+0,124 79 |-0,000 393|-0,010 51

+ CALCULATED FROM STEADY FLIGHT MEASUREMENTS
+ UNSTEADY FLIGHT MEASUREMENTS

ar=o,0"

TABLE 5 - COEFFICIENTS OF FREQUENCY

TRANSFERS OF RESPONSES o,&"
OF THE A 145 AEROPLANE

i’(, | Keort Kﬂt]g

-0,01196 0,003 012

+0,146 06
-0,000 510 (0,011 65

+0,009 947|+0,135 17 |[-0,011 56 (-0,002 812

T« Symbols
A, A Ay Lift of aeroplane, of wing or
T tailplane respect:{vely
Ayx() Unit step admittance- response
of the y quantity on a unit
step change of the x quantity
C,=Alg8 Lift coefficient of aeroplane
Cn=M/gS1 Pitching moment coefficient
Cyi= —g—C’L Aerodynemic derivative, y =
x A, m or A, Ay ; X = &, Xy
O 5 M 5 &% O 5 U5 Key Kye
Cuw Drag coefficient
C(iw) Aerodynamic normalized nondimen-
si transfer functions of
the Theodorsen type
C«a (1w%) Normalized nondimensional tran-

sfer functions for the down-
wash angle
Fy.¢ (107) = Uy () + iVyx ()  Frequency

transfer function of the respon-
"se y on the input x or u
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Foyx (1) = U, () + 15V '(w‘) Aerody-
namic¢ trensfer function , y =
A,m 4 Ap ) Ay XS 4 Ky
3] » " 3 9’ .

H(iw*) , h(iw*) Aerodynemic normalized

nondimensional trensfer func-
tions of the Sears type

'i:v =\Jy [mi2 Nondimensional moment of
inertia about the y-axis

k, =g,/9

1l Length of serodynemic mean
chord = seroplane reference
length , m

m Aeroplane mass , kg

q =¢V72 Kinetic pressure , N/m

r, Distance between aeroplene Cege
and tail serodynsmic centre, m

s = Vt/1 Strouhal number

S 4 8y Wing or tailplane area, m

v True velocity of an aeroplane,
m/sec

%, Kg, Ay Angle of attack of aeroplane,
wing or tailplane respectively

=g Downwash angle (positive in
oposite sign of .« )

Aoy, Aoxg "Path" or "attitude" change of
angle of attack

¥ Flight path inclination angle

© Aeroplane inclination angle

7 Elevator angle

€y €50 Es Random, systematic or total

error

€, &y Experimental or identification
error

A Aspect ratio

w=2m[pSL Aeroplane normelized mass

¢ Air density, ke/m’

T=MTs Dynemic unit of time, sec

T, =1V Aerodynemic unit of time, sec

w Circular frequency, sec

W= Ty Strouhal number - reduced fre-
quency

Denominations

Z(iwx) Fourier transform of the x(t)
quantity

% Estimate of x by optimization
method



X Estimate of x from corrected

measurements
¥=%/8,p; X=@x* ; F=gx
°x = x/x(0) Normalized quantity
(x),, weighted value; (x), steady value
Indexis '
R, I Real or imaginary part
e, 1,) Circulation or inertiel part;
sum of the preceding parts
F,H Wing, tailplane
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