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Abstract nctm number of coefficients of polynomial
in M for G,
Futurc high performance aircraft will have high ncmh number of Coefficients of polynomial
thrust/weight ratios, will be equipped with CCV in h for C1 i
technology, will be extremely light weight, and pos- ncmm number of Eoefficients of polynomial
sibly have the capability of flying at very high in M for -
angles of attack - in the "Poststall" (PSI) region. ncmd number of Coefficients of polynomial
This paper investigates by using numerical optimi- in § for C ‘ .
zation techniques whether the PST-capability im- n load facto@ in direction of z-axis
proves performance for several tactical maneuvers. z (body axes)
Specifically minimum time turning mancuvers for a n_. load factor normal -to flight path
varicty of-boundary conditions and flight path con- za
staints arc computed i) for aircraft A which has n, normed acceleration of pursuer
PST-capability ii) lor aircralt B which docs not
but is othcrwise identical with A. It is concluded p search direction
that for two combinations of boundary conditions/ .
path constraints [light time can be reduced if high g number of final conditions
angles of attack are utilized. In the majority of S reference areca , .
cases, however, miniman time mancuvers arc [lown N\ resulting force tangential to flight
- load constraints permitting - at or near Clanax® path
X - .
Ly thrust
List of Symbols T, thrust of pursuer
velocity ol sound/cocfficient of u control vector of optimal control
polynomial problem
cocfficient of polynomial v aircraft true airspeced
approximation to llesse matrix VisVyV ’Vn’vt velocity conponents (see Figure 3)
cocfficient of polynomial m :
drag coefficient X state vector of optimal control pro-
blem
lift coefficient X LY. ,Z geodetic coordinates
£7°8° 8
thrust coefficient y vector of decision variables
a angle.of attack
specific fuel consumption cocffi- [ aspect angle
cient Y flight path angle
: _ - - 3 power setting
;iggﬁegf lift coefficient vs o of 4K auxiliary state variables
aerodynamic drag force K speed brake angle
9 parameter in NLP algorithm
distance between pursuer and cvader | . .
acceleration of gravity/vector of g E;t;gnaggéﬁlggoggeiﬁeslgeodatlc axes)
constraint functions e % g bank P 1
altitude ’ bank angle (body"axes/geodatic axes)
variational llamiltonian ¢ /c05ta?§n§tio§ Yy axes/g
Lagrangian function/l1ift force : .
aircraft mass/number of control ) vector of right hand sides
function X Xeloglty ¥aw anglﬁ
Machnumber P ensity of atmosphere .
number of state variables ¥ yaw angle (body axes/geodatic axes)
resulting force normal to flight v vector of boupdaryfpogdltlgns. ht
path wp angular velocity of line of sig
number of cocfficients of numerator .
polynomial for C,(«) Subscripts ‘ 1
number of coefficients of numerator TYef ?e.sye?cefggage e
polynomial for C, (o) o,f initia tates va
nunber of coefficients of denumera- s2»3 eng}?g sta apiable
tor polynomial for C; (a) H . auxiliary var 11
nunber of cocfficienks of denumera- mMaxX,min maximum, minimum values
P pursuer

ncth

tor polynomial for C,(«)
number of cocfficients of polyno-
mial in h for Cr
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Introduction

A future tactical fighter aircraft with a delta
wing and with thrust exceeding its weight may be
capable of flying at very high angles of attack -
in the "Poststall"™ (PST) mode. The analysts were
asked if this capability will improve performance.
It was decided to answer the question in two

ways: 1) by conducting air combat simulations in a
manned simulator with two aircraft participating,
aircraft A with PSl-capability and aircraft B with-
out. Advantages and disadvantages of the PST-capa-
bility were judged by the two participating pilots;
ii) by using trajectory optimization methods with
essentially identical physical data to those

used in the manned simulations. Advantages and dis-
advantages of the PST-capability were obtained by
comparing optimal trajectories of both aircraft for
several typical flight manecuvers. While the first
approach is more general as far as cvaluating the
overall performance is concerned the second approach
is more methodical and provides precise numerical
data about advantages and also clear interpretations.

This paper deals with the sccond approach only. It
is a summary of ref. [1] and is divided into three
parts. The first part contains a description of the
point-mass cquations for threedimensional flight, a
presentation of typicul acrodynamic data for a PST-
aircraft, typical engine data, and the approximation
of those data using rational function.

The second part gives a brief description of the nu-
merical optimization method used, namcly paramcteri-
zation of the control functions of the optimal con-

trol problem and solution of the resulting nonlinear
programming problem via multiplier methods.

In the third part scveral turning mancuvers with dif-
ferent boundary conditions are discussed. Since

fast maneuvering is most important for air combat
flight time was used as cost function in all

cases. With given initial state first minimum

time turning mancuvers (IM's) for i) free [inal
state, i1) free final state except altitude pre-
scribed, iii)} fixed final state, iv) free final
state with fuselage direction prescribed (fuselage
pointing). Next, a slicing maneuver (SM) is computed.
It consists of two sequential minimum time TM's in
opposite direction with the additional constraint
that the fuselage attitude should be positive at all
times. This constraint guarantees certain visibility
conditions for the pilot. Last, two optimal evasive
maneuvers (IM's) arc presented with two participat-
ing aircraft. llere, the objective was to find out if
aircraft A cun evade a pursuer flying strictly ac-
cording -to apure pursuit guidance law. The first IM
with the relative heading of both aircraft of 909,
the second EM with 0°. All numerical results will

be discussed and summarized in the conclusion.

Equations of Motions

System Equations

The three dimensional motion of a point-mass vehicle
over a flat, non rotating earth assuming no side-
slip is described by the differential equations
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W = T-mg siny
mvX = Nsinu/cosy
mVy = Ncosu-mg cosy
ch = VCosYCosy )]
)"g = Ycosysiny
-h = zg = -Vsiny
h = —CmTT
with
T= TTcosa-D, N = TTsina+L . )

The aerodynamic and propulsive forces are determined
by the following equations:

TT = Cr(h,M,(S)Tref
L = CL(Q Mo (h) /29v2 3)
b = CD(asnK’M)p (h)/28v2

with the Machnumber M=V/a(h). For given control-func-
tions a(t),u(t),8(t),n,(t) and for given initial state
variables Vo,Xo,Y0,X 'ol,sr 0320, 9Mo thg system (1) can
be integrated and haS a’ iqﬁe solution.

Approximation of Data

The aerodynamic and propulsive coefficients Cp,Cp,Cr,
Gy arc functions of several variables and given as
tables only. In order to apply any of the existing
optimization algorithms these data must be approxi-
mated by sufficiently differentiable functions. For
the sample aircraft the aerodynamic coefficients are
given as

CL («), CU = Cm () +CDK(nK’M) (4)

where Cpo is the drag coefficient for ng=0 and Cpy
the additional one due to speed brakes nyg$O. The
thrust coefficient is given for three engine states,
namely Cpq(h,M) for ""idie", Crz(h,M) for maximum
"normal power", and Cpz(h,M) for maximum "afterburner'.
"Idle" is defined as 0.1:Cpz(h,m). In between the
engine states Op depends linearly on §. Specific fuel
consumption is given for "normal power", C;,(h,M,8),
and for "afterburner", Ca3z(h,M,s8). To have an analy-
tical expression for the dependence on power setting
we define

?

Cp = as3+bs+c (5)
where the coefficients a,b,c are determined from .
C.r(h,M,O.l) = Cpy (h,M) = 0.1 Cpp(h,M)
Cplh,M, 1) = Cpp(h,M) (6)
C-r(h:M:Z) = Crs(h’M)
resulting in
-2
a= is_.g_c_rg’ b=Cplila, c=0da . (7)

The aerodynamic coefficients are approximated using
rational functions:



nzcl s nncl R
CL = 3 a_unzul 1/ s b.unnul J
S | .
i=1 j=1 -
d d ®)
nzc . nne .
. cd- -
LUO - .§ aianz:., 1/E bJ.mnncd j
i=1 j=1
and a polynomial for CDK:
Cpx =(a ngraany) (Mras) . 9

The engine data arc approximated with polynomials:

ncth nctm

Cri - 5 T a. Mnctm—k hncth-J, i=2,3
=1 k=i
d ncih 1o
ncmd nemh nemm e -
¢ = = T s ai.angmm k, nemh-j cnemd-1
j=t j=1 k=1 Y

The polynomial cocfficients are determined by [it-
ting the tabular data to the functions above which
leads to the solution of a nonlincar lcast square
problem for determining the coefficients in (8) and
to the solution of a lincar least squarc problem for
the coefficients in (9) and (10).

Table 1: Number of polynomial coefficients

nzcl | nncl | nzed | nned
]
5 4 5 0
ncth | nctm
i 5 3
I
ncmd | newh | nenm |
2 3 4

Typical degrees of the approximating polynomials are
given in Table 1. Figure 1 shows thc granhs of (8) and
the given data points. Figure 2 shows thrust coeffi-
cients and specific fuel consumption versus altitude
and Machnumber for two engine states with linear
interpolation between the data points. Accuracy of
the approximation (10) is near 5% for specially se-
lected range of the independent variables.
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Control Construints

The control variables a,8, and ny are constrained by
their minimum and maximuwn values. By introducing new
control variables (subscript H) and with the rela-
tions

a = amin+(umax~amin]5in2uﬂ

6 =6 i (s -6 . Isin an
= — Iin2

K = "min® kmax "kmin) STy

the constraints are satisfied for all values of the
auxiliary controls.

Constraint on load Factor

The load factor is defined as

(T&sina+L)/mg for conventional o

(12)

L}

(LcosatDsina)/mg for Poststall

and constrained by its maximum value. n, measures the
acceleration in z-direction (body fixed reference
axis) which the pilot must endure during Poststall
maneuvers. nza is the aerodynamic load factor. Both
load factors have similar values for conventional
flight. Numerically a violation of the load factor
constraint is avoided by defining the additional dif-
ferential equation and boundary conditions
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nl-n_ il |n{>n
{iH V¢

l:’. ={ max
0 otherwise (13)

t(to) = C(tf) =0 .
Constraint on Pitch
For certain mancuvers it is required that

o(t) 20 (14)
with

$INU = Cosusiny+s iNuCosSpCosy (15)

This constraint. is handled the same way as the load
factor constraint by adding the new differential
cquation and boundary equations

|

K[t() =0

sing il sino<O

1l

G othcrvise

(10)

n

K(to)

Euler Angles

Besides velocity yaw angle x, velocity pitch angle
v, velocity bank angle u it is aseful to have the
yaw angle ¥, the bank angle ¢, and the pitch angle
©. These angles are obtained by comparing cocffi-
cients of angular rotations from body axes to ground
axes (subscript g) with those {rom body axes to wind
axes to ground axes (sce ref. [2]). The result is

tang = ——SIBHCOSY
-$1Nas 1Ny +COSuCOSpCosyY
(173
tany = Cosacosysiny~sina (Cospsinysiny~sinucosy)

cosacosycosy~sina {cosusinycosy~sinusiny).
The expression for O is given in (15). (17) is used

to compute the aircraft attitude at any point along
the trajectory for given control variables.

System Equations of Pursuer

Fig. 3: Velocity components for cquations of motion
of pursuer
260

fior the cvasive mancuvers it is assumed that a pur-
suer (subscript P) follows aircraft A steering strict-
ly according to a pure pursuit guidance law. With
V.t Velocity component along line of sight (LOS)

(see Fig. 3), Vy: Velocity component perpendicular

to the dotted vertical plane and to LOS, V: Velocity
component parallel to vertical plane and perpendicu-
lar to LOS the equations of motion for the pursuer
are

d =V,-V,

VP = (TP-DP—mPgsinYP)/mp

Xp = -V1/(dcosy))

Tp = =V,/d (18)
ip = VbCOSXPCOSYP

?P = VpsinxpcosYP

ﬁp = Vpsinyp .

The velocity components described above are expressed
in terms of the velocity components of aircraft A:

Vk = VXgCQSXp*VyRSinXp

Vi = ngsinxp—vygcosxP (19)
Vm = Vksinyp—vzgcosYP

Vt = ch05yp+vzgsinxa, .

It is assumed that mp=m, Tp=TTy,y and that the pur-
suer has the sume aerodynamic and propulsive charac-
teristics as aircraft A with the exception:
c
Al LPmax
where Cpp, is approximated by some constant.

» = Copgop < C (20)

Since xp and Yp are determined by the trajectory of
aircraft A ap and up could be obtained from (18-2)
and (18-3) by solving the two equations iteratively.
However, it is not necessary to know up, only ap is
required, which is computed approximately via the
resulting angular velocity Wp of LOS:

wp = Jiﬁcoszyp+?§ = V,/d 21)
and the resulting normalized acceleration np:
VP VnVP
Ill, = wp'-g— = —g—d— . (22)
Then ap is:
npm,g
oy = (23)
It Pp )
CLra7 V5 Tp

and the differential equations (18) can be integrated
once some given initial state of the pursuer has been
specified. The aspect angle B of the velocity vectors
of aircraft A and the pursuer is computed from the

_inner product as

CosB = c05yc05ypcos(X-XP)+sinysinYP . (24)

g is important for the interpretation of the results
obtained.



Optimal Control Problem and Numerical Methods

Optimal Control Problem (OCP)

The OCP of the previous section consists of finding
the control functions epj(t),u(t),&(t),ng(t) for
the differential systems (1), (13-1), (16-1), and
(18) subject to boundary conditions that will be
specified in the next section. The system is to be
controled such that the final state is recached in
minimum time. With x: state vector, u: control vec-
tor, ¢: vector of right hand sides the OCP at hand
is stated as:

minimize ¢(x,7m),4 (25)
subject to

X =ox,ur), 0<gt<| (26)

x(0) = given,  ¥(x,m), =0 . (27)

It is assumed that the independent variable time t
has been normalized, the parameter » (a scalar) re-
presents the free final time tp. Necessury condi-
tions for optimality arc:

b=y, H =0, O<ts (28)
(U)1%e ¥ v = 0 (29)
A+ v o= 0 (30)

where A(t) and v are Lagrange multiplicrs and the
Hamiltonian 11 = -ATe.

Numerical Solution of OCP

The most common numerical technique for solving an
OCP is to parumetrize the control function and solve
the resulting nonlincuar programming problem (NLP)
using onc of the many NLP-solvers available (sce re-
ferences [3]-[5]). The method used in this paper is
described in more ‘detail in [5]. 1t consists

of selecting a grid ty, i=1,...,n,, using the values
of the control functions at the gF¥id points u(ti) as
parameters ol the problem, and interpolating in be-
tween using cubic spline functions. The resulting
NLP consists of finding the components of the deci-
sion vector

y = (u1(t,),u1(t2),...,um(tng),n)T (31)
_such that

cj(y) = Wj(x,n]1, J=l,..00q (32)
and also

fly) = ¢(x,7), (33)

is minimized subject to the appropriate differential
system and initial conditions. The above problem is
converted into an unconstrained problem by minimiz-
ing the Lagrangian

L(y,9,0) = £(y)ay(c-9) o (c-9) (34)

where o is a diagonal gxq matrix of penalty constants

and 9 a g-vector of an outer -iteration loop. The NLP
algorithm consists of the following steps:

261

i) select y°,91,01

ii) k= kel
yk = arg min L(y,\‘}k,ck)
i) if | <N, o< <
then o1 = ﬁk-C()'k)
k+1 _ k
o =0
otherwise 851 = o¥
Kook g
. . ki k <
iv) if ¢ < eq and ||Lyl[ < ea Stop

otherwise go to ii).

The differential system is always satisfied by using
4 Runge-Kutta 7/8th order initial value sclver. In
minimizing L partial derivatives with respect to y
arc needed. In this paper. they are computed using
impulsive response functions as suggested in [4].%

Minimum Time Maneuvers

Turning Mancuvers

All turning mancuvers are characterized by boundary
conditions

=O»YO=0:h0vx’y

Vo, Xo g0’ "go

(34)
xp = 180°, vy =0

Free turning has no additional boundary conditions,
final velocity and altitude are selected optimally.
Figures 4 and 5 show trajectories and control actions
for Vo=100 and 300 m/s. Figure 6 depicts the maneu-
vers in a |y|pax-V diagram.
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Fig. 4: Free turning maneuver (Vo =100 n/s)

*The work of D. Kraft is acknowledged here who gener-
ated and tested a general code for the algorithm
which is described in the proceedings of the first
IFAC Workshop on Control Applications of Nonlinear
Programming, Denver, 1979.
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The diagram is valid for flight in the vertical
planc (half loop or split-S) and shows maximum in-
stantancous "turn rates" |y| as function of velocity
and path inclination subject to a load factor con-
straint. The highest "turn rate" outside the post-
stall region is achieved at V=V, V. being the cor-
ner velocity. Inside the poststall rcgion extremely
high turn rates can be achieved. During a half loop
(from y=180°-0°) -exccuted at constant speed - "turn
rates" increase, during a split-S (y=0°-180°) turn
rates decrease due to the gravitational acceleration.
Depicted also is the maximum turn rate for V=0. The
diagram shows the sequence of states for the optimal
maneuvers. For Vo=100 m/s the optimal mancuver is a
split-S flown at nearly constant velocity. In con-
trast to an exactly constunt speed maneuver (m)
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sino+L-mgcosy)/my = max

the angle of attack is in the beginning less 27°
in order not to decelerate too much - resulting
in a decreased turn rate. Only at the end of the
maneuver is o=27° (best instantaneous turn rate)
achieved (see also Fig. 4). For Vo=200 m/s the m.
starts at the aerodynamic load limit. In order to
fly at high turn rates velocity is initially de-
creased (8=0.1, ng=n ). Just before reaching
the corner veloxity,KEgéever, §=2 and ng=0 is op-
timal control action. For V¢=300 m/s the optimal
m. tends toward a half-loop. Here, the gravita-
tional force assists the deceleration process ne-
cessary in order to fly near the corner velocity.
Thrust and speed brakes are used in a similar se-
quence as for Vo=200 m/s. Since the trajecotry is
not exactly in the vertical plane the m. has only
a dotted line since Fig. 6 applies to flight in
the vertical plane only.

A turning maneuver with prescribed final altitude
is shown in Fipure 7. The m.is flown mainly in the
horizontal plane with o near Cpy,x. Figure 8 shows
various m, in the x-V diagram.

3
&1 |8
< B !
o J
. N o ®
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Fig. 7: Turning maneuver with final altitude
prescribed (Vo=100 m/s)
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y =0,7v=
h =500mn

velocity

Fig. 8: Turning maneuvers in %(V) diagram



The diagram illustrates instantancous turn rates in
the horizontal planc subject to the load factor con-
straint. The highest turn rates again are achieved
at V=V and in the poststall rcgion. Also shown is
the turn rate for V=0. lor V¢=100 m/s the optimal
m. is flown along the xpax boundary, final velocity
being somewhat smaller than Ve. For Vo=200 m/s the
m.begins at the load limit boundary, throttle set-
ting and speed brakes are used in the same way as
for the m. in the vertical planc, The m.oends at a
smalier velocity than Vi on the .. boundary and
for the m.with Vo=300 m/s control actions and the
sequence of states are very similar. lepicted, in
addition, is a mwith final altdtud: and velocity
preseribed. llere, the high angle of attack time
history of the corresponding m with free final ve-
locity and fixed final altitude is modified such
that at the end o is decreased to about 10°. For
V=2%V, angle of attack time history varies from
about 7° to 3°.

Control time histories and trajectories of aircrafts
A and B with o900 and 309, respectively, where
final velocity, ablitude and path coordinates are
preseribed are shown in Figure 9.

hor. dist. xp

altitude

hor. dist. x
33

8 I
Q
@ A LN
© ® A
S
? P
© T o J B
o T
o B
(o~
[»~]
time t time

Fig. 9: Turning maneuvers with final altitude, ve-
locity, path coordinates prescribed (Vo=
100 m/s, ho=h¢ ,x o=Xgfs y§0=ygf »striped
wing area indica¥es: airc¥aft“viewed from
bottom)
A has a time advantage over B of 19%. The optimal m,
for A consists of a pull up m., a roll from head down
to head up position, and a return to the initial po-
sition. The optimal m. for B consists of a turn to
the right, to the left, and at the end to the right
again. 'the m, for A is cxecuted mainly in the verti-
cal plane while B flies mainly in the horizontal
plane. Besides time advantages A also needs less
“'space' for the maneuver.

Pointing Mancuver

This maneuver shows the pointing capability of A.
It is assumed that two aircraft pass each other at
time to in opposite direction at x__,y osho (see
Figure 10). Aircraft E (evader) cofttinfids flying in
(-x,)-direction with constant speed VE (Xg(t)=-Vg,
yE(f)=c9nst., hp(t)=const.). Aircraft A - the pur-
suer - 1s to point the fuselage in minimum time to-

wards L. The corresponding boundary conditions are:

C?S‘Pf+(ng-xﬁ(tf))/Tﬂ =0 |

S]Il‘{‘f‘" (ygf_vgo)/rH =0 >

€080 c-1y,/ Ty =0 ,
0

s5in@ £ (hf-ho) /rV

(35)

»

L
with r, =\/;ﬁ+(hr-ho)2 and 0, ¥ from (15) and (17-2).
Fipure' 10 shows the control time histories and the
trujectory in the -horizontal plane. For Vo=100 m/s the
maeuver consists of a turn with o near Cpy, . followed
by a sudden pointing action of the aircraft towards E.
For Vo>100 m/s the mancuver sequences are similar.,

[+3
= «
1) P
P ® _B;
o S 4 .
(1]
vl <
"3 ) =
. s ¥ '
=
g [and
.-8 L 0 § =2 n
nkuo 1
- = -
hor. dist. yg WE time

Fig. 10: Peinting mancuver (Vo=100 m/s)

Slicing Mancuver

The slicing mancuver consists of two turning maneu-
vers in opposite direction. The first part is char-
acterized by the initial conditions

Vo = 100 W/s, xo = Yo = 0, X5 Yo, ho:  (30)
Final conditions for the [irst part are
Xpp = 180%, altyp) = ap,, . (37)

]
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hor. dist. Vg hor. ‘dist. Xg

g 3 =
31 A 8
@ 21 31 @ B A

=

M B

o~ 5 D+

S5

S
® 0

time ] time )
fig. 11: Slicing maneuver (striped wing area indi-
cates: aircraft viewed from bottom)

Initial conditions for the second part are ‘i(.ientical
to the final conditions of the first part. Final con-
dition for the second part is:

263 .



XZ [ = Q° (38)
During the second part of the maneuver €20 is re-
quired. Figure 11 shows control time histories for
aircrafts A and B and the trajectories. While B
flies two turn at a near Cpp,., aircraft A makes
a typical PST-maneuver in the second part consist-
ing of a stationary steep descent with high turn
rates about the velocity vector and ©=0.

The time advantage of A compared with B is 15%. If
instcad of (37) and (38) [usclage direction would
have been chosen as boundary conditions time advan-
tages would have been even greater (approximately
50%). The high yaw required for the optimal PSY
turn {sccond part), however, can not be achicved in
practice and therefore the mancuver will be slower
altogether.

Bvasive Mancuvers

At the beginning of the mancuvers both aircralt A
and the pursucer (index I’) are [lying at the same
altitude. P has visual contact and [lies cither per-
pendicular or parallel to A. Initial conditions are
defined by:

XO,XPO"‘!O ’Yl)o’Vo’vl)o’ho’hpo’do . ('39)
Final condition
Bpr T Mpax (40)

guarantees that the pursuer overshoots his target.
For Ve=Vp =130 w/s und X0=Xp,=90°  Figurc 12 shows
optimal control time history and the trajectory in
the horizontal plane.
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Fig. 12: Evasive mancuver with pursuer coming from
the side (xo-xpo=90°)

The optimal cvasive maneuver consists of a tumm es-
sentially in the horizontal plane with o near Cpjpx.
It ends with a sudden chunge in bank angle in oppo-
site dircction and with small ‘angle of attack re~
sulting in an acceleration in order to achieve a
high velocity component Vy, (see cq. 22), the {inal
aspect ratio B being approximately 90, Again the
high roll rates can not be achieved in practice,
but the character of the mancuver will remain the
same even if limitations are enforced.

For the same initial velocities but Xo-Xxp,=0, 1.c.
the pursuer coming from behind, the optimal evasive
maneuver is shown in Figure 13. It consists essen-
tially of a split-S followed by an acceleration
phase with small angle of attack. At the end of the
maneuver A again trices to fly perpendicular to LOS
by changing the bank angle by 180°, final aspect
angle g being ncar 90° too.
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100
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2

. 3 =
hor. dist. xg time

Fig. 13: Evasive maneuver with pursuer coming from
behind (XO—XP°=O°)

Summary and Conclusions

Several aircraft mancuvers have been investigated in
order to find out if the Poststall-capability of a
future tactical fighter inproves performance. All
mancuvers have in common that cither flight path
heading or fuselage heading are to be changed in mi-
nimum time. Load factor constraints and constraints
on aircraft attitude as well as requirements on fi-
nal velocity, altitude, path coordinates, load fac-
tor of the pursuing aircraft, and angle of attack
characterize the maneuvers in detail. The simplify-
ing principle that governs all optimal control ac-
tions is the tendency to fly at maximum instantanc-
ous turn rate ()’(mx,lﬂnm) as long.as requirements
on [final velocity do not correspond with smaller
angles of attack. lor sufficiently large initial ve-
locities power setting and speed brakes are used
such that {light occures near the corner velocity

( intersection of Crmax a.m_l Ny max-boundaries) as
much as possible because instantancous turn rates
are the highest there. Deceleration into the Post-
stall region - where instantancous turn rates become
very large - and subsequent acceleration to the re-
quired final velocity has only been observed for one
special IM (fixed final state) for sufficiently small
initial velocities. For the SM - which is a typical
poststall mancuver - poststall has time advantages.
because of the extremely large turn rates.

In addition to time advantages due to PST there are
other advantages such as the pointing capability and
the capability of maneuvering in a small area.
Further investigations should include constraints
on maximum pitch- and roll rates.
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