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ABSTRACT

This paper surveys the current techniques used in
implementation of estimation algorithms for avi-
onics navigation systems. A general model of gqui-
dance, navigation, and control processes is intro-
duced. Recursive estimation of the craft's state
is identified as the central and critical function
of a multisensor, multiple measurement navigation
system. Kalman filters are introduced as the most
commonly used estimation algorithms. The implica-
tions of choosing a microcomputer as the basic
hardware building block on the design of navigation
real time software are examined. Partitioning of
workload into concurrent and interacting processes
is introduced as the hasic technique for overcoming
the constraints imposed by the hardware. Two lev-
els of partitioning are defined. On the lower
level, the conventional form of an estimation al-
gorithm, such as a Kalman filter, may be dras-
tically changed by its decomposition into concur-
rent processes. Several basic techniques for parti-
tioning the navigation functions in general and
the estimation algorithms in particular are
illustrated. Other interesting issues and problems
-- such as the screening of outlier measurements
of the modeling of system statistics are briefly
ment ioned.

1. INTRODUCTION

In his recent and informative review of new tricks
in avionics, Smyth (1980) states that "great chang-
es, propelled by microprocessor technology, are
sweeping avionics and control” and that they will
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continue in the decade ahead." In the introduc-
tion to that survey, the author 1ists the following
factors and technologies which, according to him,
will most 1likely influence the next generation of
systems: "NAVSTAR/GPS, ring-laser gyros, air-traf-
fic-control update, digital fly-by-wire, full-au-
thority digital propulsion control, flat-panel dis-
plays and integrated data-control centers, modular
and distributed avionics architecture, cost of air-
borne data processing, digital buses including po-
tential of fiber optics, modern control theory
including Xalman filters and optimal-state estima-
tion, direct digital synthesis, high-Tevel software
languages, VLSI/VHSI <circuits, and actuation and
power-generation devices made possible by new rare-
earth magnetic materials." Subsequently, that re-
view proceeds to survey in some detail avionics
and controls in the following five broadly applic-
able technologies:

(i} Flight-path-management technology (navigation,
quidance, and air traffic control), (ii) automatic
control systems (autopilots, engine controls, and
active controls), (iii) crew station technology
(displays and controls), (iv) integration and in-
terfacing technology (system architecture and in-
trasystem communications), and (v) fundamental
technologies (analysis and synthesis techniques,
software methodology, sensors, etc.).

The present paper is a tutorial survey which ad-
dresses only a narrow cross section of the above
1isted technologies and proceeds to do it at a slow
pace. Furthermore, to preserve its own tutorial
nature, the paper refers only to readily accessible
sources such as introductory texts or journal arti-
cles.

As the title of the present paper suggests, it is
a survey of techniques used in design of navigation
estimation algorithms for implementation on a micro-
processor {or more generally, on small computers).
Such algorithms are designed as an integral part
of the navigation real time software. Thus, the
paper also addresses general problems of navigation
software design.

Typical microprocessor system architectures under
consideration are constructed from small building
blocks (microcomputers, standalone, direct access
memory units, and digital 1interface units, the
latter needed for communications with the "outside”
world) which are interconnected by a single or




several bus systems. Smyth. (1980) mentions the
DAIS and the Draper Laboratory Fault-Tolerant
Multiprocessor as prototypes of such new architec-
tures. We shall loosely refer to such architec-
tures formed from “small" building blocks as dis-
tributed microprocessor systems. Consequently, the
paper starts (Section 2) with a brief review of
software engineering problems associated with the
development of real time software for distributed
microprocessor systems.

Since a typical building block of a distributed
system, 1in particular a processor element, is
"small", partitioning of navigation functions into
concurrently executable and interacting. processes
is the fundamental technique for fitting software
to hardware so as to satisfy the real time process-
ing constraints of the system. This partitioning,
as described in the sequel, may have to be per-
formed on two levels: on the higher (natural
partitioning) level various functions are grouped
into processes without decomposing individual
algorithms; on the lower (algorithm decomposition)
level, individual algorithms are decomposed.

Thus, for example, an estimation algorithm, such
as a Kalman filter, is transfigured on the lower
level into a set of concurrent algorithms. Such a
transfigured form of algorithm may loose all
desirable properties of the original algorithm.

To partition the workload properly, one must under-
stand the processing functions to be performed,
their real-time constraints, and the interactions
among these functions. Hence, the paper proceeds
(Section 3) with a brief overview of guidance,
navigation, and control processes to provide a
perspective for navigation functions. HNext recur-
sive estimation of the craft's state, which is
usually performed by a Kalman filter, is identified
as the critical navigation function on which the
stability and the integrity of navigation depend.
The criticality of the recursive state estimation
funct ion becomes especially evident in multisensor,
multitype-measurement navigation systems (Section
6). In such systems, this function synergetically
combines diverse types of measurements to optimize
(or to improve statistically) the quality of esti-
mates, and at the same time to increase the stahi-
lity and the robustness of the estimation process.
Section 5 summarizes some of the more commonly used
techniques for mechanizing recursive estimation sche-
mes and for partitioning the functions of such sche-
mes into concurrent processes. Two examples illu-
strate cases of lower 1level partitioning (algo-
rithm decomposition), 1in which an extended Kalman
filter is decomposed into two concurrent processes.

Finally, Section 6 mentions several outstanding
problems and issues not directly associated with
partitioning, such as prefiltering of measurements
in order to screen out the outliers, stabilization
of the estimation process, and adaptive estimation
of model statistics.

2. IMPLICATIONS OF THE USE OF MICROPROCESSORS ON
SOFTWARE DESIGN

The use of a distributed microprocessor system,
formed from "small" elements (microcomputers, me-
mory and interface units, all of them interconnect-
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ed by a bus) has implications not only on the
design of real time software but also on the devel-
opment methodology of such software. Before embar-
king on our main theme, we briefly examine some of
these implications.

The most obvious and at the same time the most far
reaching implication is that the workload must be
distributed over the microprocessors of the system.
Consequently, the computational procedures must be
broken up into concurrently executable, interacting
processes.

The term "concurrently" in the present context
means either “interleaving in time" or "simultane-
ously" or both. The term “process" throughout
this paper (except for Section 3) is used in the
same sense as in the operating system theory: It
refers to a program in execution or to one which
is waiting to be executed, and encompasses the
environmental changes caused by execution; it also
implies that the program is visible to (i.e.,
schedulable by) the operating system.

in Section 1, partitioning may
have to be performed on two levels. On the higher
level, algorithms and procedures are “naturally"
qrouped into autonomously schedulable computer pro-
grams without decomposing algorithms into small-
er, concurrently executable units. On the lower
level, such a decomposition of an algorithm (or
procedure) is carried out, which has implications
on the performance (accuracy, stahility, etc.) of
the algorithm.

As already stated

Besides the problems of algorithm performance, the
partitioning of workload has other implications as
well:

(a) Timing and sizing of software become an
important exercise that may have to be reiterated
several times during the partitioning process.

(h) An appropriate operating system (or a real
time executive) is required to control processes in
real time.

(c) Communications among interacting processes
must be defined and -implemented so as to guarantee
the integrity of data accessed by several processes.

(d) Software testing and integration, as well
as prediction of performance, have to be performed

by simulations, some of which require special equip-

ment.

(e) Presently used higher-order programming
lanquages are not equally suitable for the described
structuring of workload.

Principles and Methods of Partitioning

During the past decade there was a great deal of
interest in software design for distributed micro-
processor systems. For example, Jensen and Boebert
(1976) and Gylys and Edwards (1976) describe a
methodology and several principles, such as the
minimization of the resulting bus traffic, to be
used in partitioning. The accumulating experience
of the last few years indicates that the most
important contributors to good partitioning are
(i) the "physical" understanding of the real time
system which one is trying to design and (ii) the
availahility of automated aids to facilitate the
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bookkeeping work associated with timing and sizing
exercises.

Until the trial versions of basic algorithms, coded
in a high order language, become available, the
processor and memory loadings can be predicted by
analytical models. Bjermann{1977) describes such a
model for Kalman filters.  After the trial versions
of software become available, one can harness the
compiler to decompose program units into segments,
each segment ending with a branch statement, and
to estimate the execution times of individual seg-
ments. A1l this can be done as a by-product of
compilation.

Real Time Control of Process & Process Communications

The concept of process state control as well as
other related concepts introduced by recent advances
in operating system theory greatly simplify the
designer's task. In a nutshell, intelligent appli-
cation of these concepts makes it easy for the
designer to define at an early time, all possible
process states, the rules for transitions among
these states, the routines for executing the trans-
itions, the protocol for accessing global data, etc.
Furthermore, he (she) can do all these things with-
out hinding a priori his design to any rigid pro-
cess control scheme. This enables one to try out a
variety of partitioning schemes throughout the de-
velopment cycle. Two important issues about which
the designer must decide at an early time are
(1) the degree of centralization in process con-
trol and (ii) the overall synchronization of the
distributed system. One recommended and simple
approach is to decentralize the process control
hy providing each microprocessor with an autono-
mous real time executive and to synchronize the
overall execution of process by means of timer
interrupts broadcast to the entire system and by
means of data interchange.

The following references are current American texts
on modern theory of operating systems: Coffman,
Jr., and Denning (1973); Coffman, Jr. (1976); Graham
(1975); Hansen (1973). Graham gives a very Tucid
introduction to process states and their control

Hardware

The terms "microprocessor” and "microcomputer" are
used loosely in literature. In this paper, the
term "microcomputer" emphasizes that the micro-
processing element under consideration has its own
memory unit. In real time applications (even when
several microprocessors are comhbined as a distri -
buted system) this memory typically used to store
executable code and perhaps also local variables
upon which this code operates.

The present trend in the navigation applications
that require a non-trivial amount of processing is
toward the use of 16-bit microprocessors. Davis
(1979) compares three typical 16-bit microproc-
essors: Texas Instruments 9900, Zilog 8000, and
Intel 8086. :

Another issue 1is the availability of hardware im-
plemented floating point arithmetic. It is very

time consuming to develop and subsequently rmodify
navigation software if fixed point arithmetic s
used. Therefore, the current trend is toward hard-
ware implemented floating point arithmetic, perhaps
in the form of a “special box." If this cannot be
done then firmware (as a second choice) or inter-
preted {as a third choice) floating point arith-
metic is used.

3. FUNCTIONS OF A NAVIGATION SYSTEM

Guidance, Mavigation, and Control

We start with a brief review of the basic problems
of navigation. Navigation starts with definition
of a destination and selection of a route. A
variety of different factors -- such as minimization
of fuel consumption or travel time, avoidance of
collisions, passing through (or over) preselected
way points -- may influence the selection of a
route. Furthermore, one may want to modify the
selected route in real  time. After the craft
starts moving toward the specified destination,
its progress (route and velocity) must be main-
tained throughout the journey. The maintenance of
the progress is a continuous, repetitively executed
process. Each repetition of this process typically
consists of four steps or functions, executed in
the indicated order: (1) determination of the
craft's position, velocity, and perhaps accelera-
tion at the time of such a repetition; {2) predic-
tion of the craft's future progress based on its
present state (i.e., position, velocity, and ac-
celeration); (3) computation of the corrective ac-
tion (i.e., acceleration) required to maintain the
selected route or at least to bring the craft to
the specified destination; (4) execution of the
computed corrective action by appropriate handling
of the craft.

The functions associated with selection and real
time modifications of the route are known as the
quidance functions. The functions constituting
steps 1 and 2 of an instance of the above described,
progress maintainance process deal with determina-
tion of the craft's progress and are referred to
as the navigation functions. Finally, the func-
tions constituting steps 3 and 4 are concerned
with handling of the craft and will be called the
control functions.

These processes of guidance, navigation, and control
lead to a system of three interacting feedback
loops, with the craft (or more precisely, with the
progress of the craft) linking all these loops
together. Pictorially these jdeas are summarized
in Figure 3-1 which contains canonical model of
quidance, navigation, and control processes in a
craft.

It is worthwhile to note that many existing guidance
and control systems, especially those in smaller
missiles, are a special case of the canonical
model shown in Figure 3-1. In such systems, quid-
ance and control function without explicit knowledge
of position; i.e., only two out of three feedback
loops - the gquidance loop and the craft control
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A Canonical Model of fGuidance, Navigation

and Control Processes in a Craft.

loop -- are present in such systems. An extreme
case of the canonical model is a stationary survey-
ing system which is concerned solely with determina-
tion of position. Such a system operates only
with a single Toop - the navigation loop.

Clearly, Figure 3-1 abstracts an actually more
complex situation. In many actual systems, the
boundaries dividing the three processes (quidance,
navigation, and control) are fuzzy; also, the inter-
actions among these processes may be more complex
and cannot be represented hy means of three nested
feedback 1oops as in Figure 3-1.

A similar and succinct view of navigation is given
by E.W. Anderson (1966). BRasic problems of naviga-
tion are also discussed in the first two chapters
of Kayton and Fried (1969). Farvell (1976) is a
recent reference on integrated aircraft navigation.

Navigation Functions

From the viewpoint of our primary interest in the
data processing aspects of navigation functions, it
is convenient to divide them into two major func-
tions: (1) recursive estimation of the (craft's)
state and (2) relative navigation. The Tatter
function operates on the information provided by
the estimation function and includes tasks such as
prediction of the craft's future course, computa-
tion of waypoints, and various coordinate trans-
formations. Relative navigation is also the func-
tion which transforms the information contained
in estimates of the craft's state to the outputs
which are to be displayed to the pilot. The algo-
rithms used in relative navigation computations
are well known: E.W. Anderson (1966) and Kayton

and Fried (1969) are handy references that contain
further references to the available 1literature.

The computations performed by relative navigation
may be viewed as being a by-product of recursive
state estimation. Thus, the integrity and the
stability of navigation process mainly depend on
the quality of state estimation. With good esti-
mates of the Craft's state, design of the relative
navigation alogorithms for impiementation as real
time software becomes a problem of numerical ana-
lysis, computer memory, and processing rates. In-
adequately low processing rates {due to insuffi-
cient processor resources) may produce aged or
inaccurate navigation outputs, but they will not
blow up the basic navigation process. However, in
certain applications of navigation outputs, such
as the weapon delivery computations, insufficient
processing rates may cause serious problems.

The basic model of the navigation system which we
shall use consists of a recursive state estimator,
a relative navigation subsystem, a control sub-
system, and interfaces. This model is pictorially
summarized in Figure 3-2. We write s to denote
the state vector and m - the external measurements
that help estimate the state.

The only type of estimation schemes considered are
the so-called discrete state, discrete (sampled)
measurement schemes. (Thus, the value of a vector
or scalar x at time ty will be denoted by x(k).)
In navigation work, the components of state vector
s usually model at Teast the position coordinates
and the velocity components of the craft. 1In
addition, extra components may be used to model
the craft's acceleration and to model the uncer-
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Navigation System Operating on Multiseansor and Multitype Measurements.

tainties and errors in various components of the
navigation system itself or in sensors and systems
that furnish external measurements to the naviga-
tion system.

As an example, consider the situation where the
inertial system of the craft furnishes the craft's
velocity, acceleration, and attitude measurements
to the recursive state estimation process, and
where in order to recalibrate the inertial system,
this process estimates the platform misalignment
and gyro drift rate. Maybeck (1979) in Chapter 6
discusses on a tutorial 1level this example in
detail.

4. INTEGRATED NAVIGATION SYSTEMS

The perception of a navigation system changed dras-
tically during the Tlast decade. We are moving
away from single sensor type, limited coverage, and
limited accuracy navigation systems to integrated
navigation systems. These new systems operate by
combining synergetically the measurements coming
from several different types of sources (obtained
through use of various sensors) or from other navi-
gation systems (such as inertial systems) to produce
navigation estimates of superior quality and integ-
rity. In addition, some of these new systems are
designed to work without any geographic restric-
tions, without deterioration in time, and under
the most difficult environment conditions. These
new types of navigation systems were made possible
through the advances of the last decade in digital
technology and software methodology, through the
emergence of new types of navigation data genera-

tors (such as the NAVSTAR Global Positioning System)
and through the accumulation of knowledge and exper-
ience in the design of recursive estimators (such
as Kalman filters) for real time systems.

What characterizes a modern integrated navigation
system is that it is built around a recursive
state estimator {which usually contains a Kalman
filter) operating in time domain. We refer to
such a system as the multisensor, multitype-meas-

urement (or just the integrated) navigation system.

The block diagram contained in Fiqure 3-2 summa-
rizes the structure of such an integrated navigation
system.

James L. Farrell (1976) is a recent text on inte-
grated ajrcraft navigation, written from the systems
engineering viewpoint.

5. MECHAMNIZATION OF RECURSIVE STATE ESTIMATORS

Kalman Filters

Several standard schemes for mechanizing the re-
cursive estimator in navigation systems and for
partitioning the resulting workload are introduced
in the present section. Since such a recursive
estimator is usually built around some form of a
Yalman filter, the basic equations of a Kalman
filter (including the modeling assumptions) are re-
viewed first. This is done only for the case of a
discrete (state) linear system with sampled measure-
ments. These equations and assumptions are sum-
marized in Tahle 5-1. Modeling assumptions and
estimator algorithms for more complex or general



TABLE 5-1

KALMAN FILTER ALGORITHM FOR A
DISCRETE LINEAR SYSTEM
WITH SAMPLED MEASUREMENTS

A. _SYSTEM MODEL

1. zr:pégation of the system state vector from t=tk_1 to
s%k) = F(k, k-1)s(k-s) + G(k-1)w(k-1)

2. Measurements at t=tk:
m{k) = H(k)s(k) + v(k)

3. Initial Conditions at t=t,:
E[s(0)] = 4(0), cov[s(0) - £(0)] = P(0)

4. Assumptions about system statistics:
The processes {w(k) and {v(k)} are zero mean, independent
Gaussian processes with covariances

ﬂmmwuf]=ow)6u

and T
ELv(k)v(3) T = R(K) 85

Furthermore,
s{0) is independent of w(k) and v(k) for any k.

B. ESTIMATION PROCEDURE

5. Propagation of estimates from t=tk_1 to t=tk:

Bk)7 = Fkok-1)8k-1)"
P(K)™ = F(ksk-1)P(k-1) F(k,k-1)T + 6(k-1)Q(k-1)6(k-1

i

)T

it

6. Updating of estimates at t = tk:
K(K) = P(k)TH(O) T [HOK)P(K) THG) T + R(OT 2

P(K)* = [1-K(K)H(K)] P(K)™
8(k)" = &(k)™ + K(k) [m(k) - H(K)YA(K)]

Notation used above:

(1) Upper case letter represent matrices.

(2) Lower case letters represent scalars or column vectors.

(3) “"x{k)" represents the value of column vector (or
scalar) x at t = tk.

(4) "A' represents the transpose of matrix A; if x is a
column (row) vector, then "x'" represents the transpose of
X, which is a row (column) vector.




cases (for example, for -a system in which the
propagat ion of state or the state-~to-measurement
transformation is nonlinear) are discussed in re-
ferences such as Anderson and Moore (1979) and
Schmidt (1976).

Direct and Indirect Formulations of the Kalman
Filter

Two different alternative approaches are used for
formulating the Kalman filter in a navigation sys-
tem. With the first approach, which 1is called
direct (or total state) formulation, the state vec-
tor s of the Kalman filter represents the craft's
(navigation) total state. Thus, the Kalman fil-
ter directly estimates the total state vector s.
In this case, s has three components which repre-
sent the craft's position coordinates, three com-
ponents which represent the craft's velocity, etc.

With the second approach, which is called indirect
(or state error) formulation, the craft's {naviga-
tion) total state vector is not directly estimated
by the Kalman filter. Instead, the Kalman filter
now estimates the state error ds. This estimate of
ds is then subtracted from the best available value
of s in order to ohtain an estimate of s.

The indirect formulation of the Kalman filter is
very convenient in multisensor, multitype-measure-
ment navigation systems. If one has two streams
of measurements coming in at two very different
rates, then the fast rate stream may be used for
rapid  propagation of the craft's navigation
state s (there may be good reasons for requiring a
high propagation rate), whereas the slow rate
measurement stream for driving the Kalman filter.
Here, we tacitly assume the suitability of each

Figure 5-1 illustrates this type of mechanization
for the case where the fast rate measurements are
the velocity and acceleration outputs of an inertial
navigation system and the low rate measurements are
GPS space vehicle range and range rate measurements.
This example also illustrates another point: it
suggests a natural partitioning of the recursive
state estimator of the considered navigation system
into two concurrent processes. The total navigation
state is propagated hy the high rate process;
the state error is estimated by the Kalman filter,
which would be implemented as the Tow rate process.

Maybeck (1979) in Chapter 6 compares the direct and
indirect formulation of a Kalman filter for naviga-
tion applications. - Information on GPS can be found
in Henderson (1980), Milliken and Zoller (1978),
Van Dierendonck et al.(1978). Cox, dJr. (1978)

«discusses integration of GPS with inertial naviga-

tion systems.

Open Loop and Closed Loop Mechanizations

In addition to the two formulations of the Kalman
filter according to the type of the state vector
that is actually estimated by the filter (discussed
in the preceding subsection), mechanization of the
navigation recursive estimator may also differ
depending on whether the estimation outputs are fed
hack or not to aid some of the sensors or external
subsystems that are generating measurements for
the navigation system. Thus, one can speak

of open loop (also called feedforward) mechaniza-
tions and closed loop (or feedback) mechaniza-

tions. Each of these two mechanizations may be
combined with any of the two formulations (direct
or indirect) of the Kalman filter.
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Indirect Formulation of a Kalman Filter for,a Recursive Estimator

Partitioned into Two Concurrent Processes. mote that ds must be propagqted
{perhaps interpolated) and subtracted from S by the fast rate propagation

process.

This is an example of natural partitioning if the slow rate

Kalman filter process is not further partitioned.



As noted earlier, Maybeck (1979) in Chapter 6 gives
gives example of indirect feedforward and indirect
feedback mechanizations in which the fast rate
measurements come from an inertial navigation
system. In his indirect feedback mechanization,
the estimates produced by the Kalman filter are
used to correct the platform misalignments and
qyro drift rates of the inertial navigation system.
The author also compares the cons and pros of each
of these two types of mechanization. '

Another type of feedback mechanization, discussed
by Gylys and Ward (1980), is the case where the
navigation estimates are used to aid GPS receivers.
That example is also interesting from the viewpoint
of Kalman filter formulation (a combination of
direct and indirect formulations is used) and
workload partitioning (which will be briefly
mentioned in the sequel).

Piecewise Recursive Mechanizations

Fven a cursory examination of Tinear Kalman filter
equations immediately reveals to anyone familiar
with matrix operations that the costliest portions
of the Kalman filter algorithm (with regard to the
processor time and wmemory requirements) are
propagation and updating of the state error
covariance matrix P and computation of Kalman
gains K. If the navigation system under design is
supposed to operate only on measurements from
sources of a single type, such as the GPS range
and range rate measurements, and if, in addition,
these measurements must be processed at a faster
rate than the available processor resources allow,
then the so-called piecewise recursive mechani-
zation of the filter offers one (although perhaps
not a perfect) solution to the designer's problem.
This mechanization also offers an interestimg
partitioning of the workload.

Piecewise recursive mechanization works as follows.
The Kalman filter algorithm is decomposed into two
concurrent processes. (Mote that according to the
terminology introduced earlier, this constitutes
a lower level of partitioning, which may destroy
some of the desired characteristics of the
algorithm expressed in its original form). During
each execution cycle, one of these processes (that
one which is executed at a fast rate) propagates
the estimate of the state vector s, processes the
measurements, computes the measurement residuals,
scales these residuals by multiplying them with
Kalman gains K (the latter computed at a slower
rate by the other process), and updates the esti-
mates of s. The other process runs at a consider-
ably slower rate than the first one: each cycle
of the slowly running process spans, say, 10 to 20
cycles of the fast running process. In each execu-
tion cycle, the slowly running process first propa-
gates the state error covariance matrix P, then
computes the Kalman gains K and updates P while
utilizing the information sent to it by the fast
running process. This scheme can be implemented
on a single microprocessor by making the fast
running process a foreground process which is
scheduled on strictly periodic basis, while letting
the slowly running process a background process
which gets all processor time that remains after
the execution of the foreground process, executive

functions, and ad hoc scheduled special tasks.
Naturally, the microprocessor under consideration
for this scheme must have enough throughput, which
often means that the foreground process will
require lTess than 40 to 50% of the total available
t ime.

It appears that piecewise recursive estimation was
first proposed by Dressler and Ross (1979).
Applications of this scheme to actual navigation
problems are described by Gylys and Ward (1980) and
also by Upadhyay and Damoulakis (1980).

6. OTHER OUTSTANDING DESIGM ISSUES

There are many other issues besides partitioning
which navigation system designers face. Some of
these issues, which by no means are characteristic
only to microprocessor implementation, are briefly
examined in the present section.

Adaptive Estimation

Adapt ive estimation 1is concerned with estimation
of the unknown parameters of the system model
{upon which the estimator is built) in addition to
the estimation of system states. If a parameter
of the system dynamics model is unknown, such as an
aerodynamic drag coefficient, it can be estimated
hy modeling it in the state vector. This increases
the processing resource requirement. In many

situations, an a priori model of such a parameter,
perhaps expressed as a function of other known
parameters or state variables and obtained by
means of simulation, is sufficient.

One situation which quite often occurs is where
some or all of the covariances of the process or
measurement noise are unknown and cannot be easily
modeled. This problem has interested many resear-
chers since the inception of Kalman filters, but
no satisfactory solution for all cases exists.
Typical adaptive techniques for this problem are
based on observation and analysis of residual
sequences. Under favorable conditions, the resi-
duals (or their squares) form a stochastic process
with known distributional properties. Thus, at
least in theory, one can perform a statistical
hypothesis test to decide whether the behavior of
residuals is reasonable. If the hypothesis that
the residuals are reasonable is rejected, then the
decision making process faces a dilemna when
nothing is known ahout both types of covariances
(i.e., the process noise and measurement noise
covariances), because in such a situation covar-
iances of hoth types or only of a single type may
be incorrect. Even if this approach to modeling
the noise statistics were reliable, it could not
be used in situations where the noise characteris-
tics are changing faster than they can be adaptively
est imated with the available processing resources.

A reasonable alternative to determination of noise
statistics covariances 1is to vrequire that the
sensors and the other systems which send their
measurements to the navigation system also include
the measurement quality assurance code together
with the measurements. Signal-to-noise ratio is an
example of such a quality assurance code. This
type of information is useful not only for determi-




nation of the noise statistics model, but also for
detection of the leading and trailing edges of bad
data bursts.

- Pecent references on the problems of adaptive
estimation and system model identification are
Brewer (1976), Leondes and Pearson (1973), and Ohap
and Stubberud (1976).

Preserving the Stability of Navigation Process

In many navigation systems, the stability of the
navigation process and the integrity of the outputs
produced by the process are critically important to
the pilot of the «craft or to the automatic
control systems of the craft. If the navigation
system operates on measurements only from sources
of a single type and if, for example, the sensor
equipment starts to malfunction intermittently,
then such malfunctioning episodes will manifest
themselves as bursts of completely bad data. It
is then extremely important for the recursive
estimator of the navigation system to detect the
leading and trailing edges of such bursts in order
to stop incorporation of measurements into the
navigation solution as soon as they go bad and to
stop discarding them as soon as they become accep-
table. One approach is to have each measurement
accompanied by the quality control code (to be
generated by the sensor) which will help the recur-
sive estimator decide, perhaps with some assistance
from the time series generated by the measurement
residuals, whether a measurement 1is acceptable
or not.

It is easier to tackle this problem in the case of
multisensor, multitype-measurement navigation. Then
in such a situation, measurements of one type (or
source) can be used to test the measurements of the
other type (or source).

If the recursive navigation solution starts to
destabilize itself due to a short-lived, intermit-
tent burst of bad data, it is still sometimes
possible to save the solution by censoring the
estimates. For example, if the craft is a missile
and if one a priori knows approximately what accele-
rations it will undergo during the flight, one can
replace the estimates of acceleration with the a
priori established bounds each time when these
bounds are exceeded. This principle, known to

statisticians, is used in the so-called robust

estimation procedures. MNaturally, censoring may
also destroy any remaining optimality.

Numerical Roundoff Errors and Filter Instahility.

The processing and storage constraints of micro-
processor environment usually force the use of

minimal precision digital arithmetic, such as
"single precision" floating point arithmetic.
Certain parts of the Kalman filter algorithm,
especially the state error covariance update
equation (the second equation in Part 6 of
Tahle 5-1), are vulnerable to the destabilizing
effects of roundoff errors.

Fortunately, this numerical roundoff problem has
been widely researched and reported in literature.
Stable and efficient algorithms for the updating
of state error covariances P and computation of
Kalman gains K have been constructed. Loosely,
these alqorithms are known as "square root filter-
ing," a term originating from J.E. Potter who was
one of the first contributors to the solution of
this problem. Recent variants of the square root
filtering algorithms do not require computation of
square roots. Bierman (1977) is a good, up-to-date
reference for further information on these algo-
rithms.

7. COMCLUSIONS

This paper surveyed, on a very elementary and tutor-
ial level, characteristic problems faced by a
person who tries to design (mechanize) navigation
estimation algorithms for implementation on a
distributed microprocessor system. These problems
vere examined mainly from the viewpoint of the
designer of real time software. The need to
partition the algorithms into concurrently extend-
able, interacting processes was identified as one
of the main implications of the use of microproces-
sors. This partitioning may have to be carried
out on two Tevels: on the Tower level, the original
forms of algorithms may become destroyed. It was
noted that efficient software timing and sizing
tools and qood understanding of the “physics" of
the navigation problem at hand are essential to
succeed in this work.
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