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Abstract

Within the frame of flow simulation past
intakes by numerical methods computer
codes were developed for the solution of
the full potential equation by finite ele-
ments and EULER's equations by an implicit
finite difference scheme. The following
items proved to be important for obtaining
acceptable results.

e conservative artificial density scheme
for the potential variational prin-
ciple

semi orthogonal grid generation

characteristic boundary algorithm for
EULER's equations.

Comparisons with elaborate experiments
prove engineering usefulness of the pro-
posed approach.

Experimental Investigation

During the development of the TORNADO
fighter aircraft a 1:6.5 intake model was
tested in the 8 x 8 ft transonic wind tun-
nel at ARA Bedford (fig. 1).

These tests included the measurement of
pressure distributions on the ramps and on
the external and internal cowl lip.

Fig. 2 shows the general arrangement of
the 2-dimensional, double wedge intake.

The first wedge angle was 7 degrees, the
moveable ramps were in the fully open po-
sition for the data shown in this paper.
The AAID's were closed. The mass flow
through the intake model was controlled
by a variable position plug at the duct
exit., The mass flow was measured by an in-
ternal venturi nozzle.

The instrumentation for the data being
used for the comparison with theoretically
derived data consisted of 14 static pres-
sure orifices on the ramps of the port in-
take (5 on the 1st, 5 on the 2nd, and 4 on
the 3rd ramp), and of 16 static pressure
orifices on the cowl lip of the starboard
intake, of which 5 were located on the
lower surface (external) and 11 on the up-
per surface (internal) (fig. 3).
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The Mach number varied from 0.7 to 1.3,
and the test angles of attack were 0 and
3 degrees.

For all test points, the Reynolds number
range was from 1.24 to 1.45 million per
meter.

Numerical Appreoach

Scope of Computational Procedures

The present study investigates choice and
development of computer programs being
able to evaluate the pressure distribu-
tion along the intake walls. For this pur-
pose the flow model is drastically simpli-
fied by assuming two-dimensional inviscid
flow in a mean surface cutting vertically
through the box-type intake. At some dis-
tance downstream of the intake lips the
geometry is thought to be extended to in-
finity by straight parallel lines.

Two classes of approach are possible
e potential theory
e EULER's equations

Numerous codes were developed solving the
full potential equation in the transonic
range [1+3] and successful flow simula-
tions past intakes could be performed some
of which are listed in this paper. However,
if the freestream Mach number exceeds uni-
ty this approach is no more adequate due
to large stagnation pressure losses at
shocks which are not accounted for by the
defining equations of isentropic flow. A
solution to this problem is offered, by
the integration of EULER's equations,
which is, however, no more a trivial task.
Since we did not succeed after having re-
programmed approximately 15 versions well
documented in literature we tried to find
an own reliable solver for EULER's equa-
tions.

Investigations Based on Full Potential
Equation (FPE)

a. Basic Equations

Since numerous codes using a variatio-



nal principle finite element formula-
tion proved successful for transonic
flow computations it was attempted to
use the same method for intake calcu-
lations. The governing equation is ea-
8ily derived for an irrotational fluid
from BERNOULLI's equation written in a
streamline aligned coordinate system

Ps + gqqs =0

Using the chain rule of differentiation
this equation can be transformed into

Py + 9agy = O
with

2 2

q=-¢x+¢z

Partial integration gives
fﬂp¢ + 9qq¢) dxdz =

=ﬂ{p¢ - ¢¢div(9§)]dxdz+§g¢¢¢nds = 0

The second term of the area integral
vanishes due to mass conservation in-
side the flow field. At solid bounda-
ries the surface integral becomes zero
because of ¢, = 0 and at farfield boun-
daries because the total mass flux can-
cels. So our govering equation assumes
the simple form

[[opaxaz = [foqueaxdz = o

Rotated Upwinding Scheme [9]

Equation a. provides no mean for stabi-
lizing a numerical procedure if the lo-
cal Mach number exceeds unity. Since
streamwise density upwinding often used
in finite element methods fails at high
free stream velocity and/or angles of
attack the following new fully conser-
vative artificial density scheme was
developed which depends on the orien-
tation of the computational cell with
respect to the associated pivotal point.

Theartificial density in a cell A adja-
cent to controlpoint P is evaluated by
the following expression (see sketch).

.
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S

0= g, + g [lua*ep) Apa(i+a)
+ (patuc)lboca(1-a) ]
with
_ Adpp - 1
TIZ5§ET' p = max (0,1 ﬁy)

The potential derivative of a. is re-
placed by 8/8¢i, i = 1 ... N, where the
i's count the nodal values of our com-
putational grid. After replacing the
potential distribution in between the
gridlines by bilinear isoparametric
elements the integration can be per-
formed numerically using GAUSS' 4-point
rule. The resulting system of quasi li-
near equations is solved by successive
line overrelaxation.

FPE—~Results

Figures 4 and 5 are results of the pro-
posed finite element method. The grids
were obtained by solving two LAPLACE-equa-
tions for x and z. The example of fig. 4
shows a nicely developed supersonic bubble
above the upper lip which is terminated by
a strong shock. No overshoot in front of
the steep pressure gradient is observed.
The second calculation was performed for

a slightly supersonic freestream. The dots
indicate supersonic cells. Mach numbers
higher than the present caused divergence
of the code.

Investigations Based on the Solution of
EULER's Equations

a. Basic Equations

The following procedure is based on
these equations written in quasilinear
- form for the variables g, m =gu, n =

qw
é gx gZ
m |+ A|lmy |[+B|m, |=0
n ny n,

where A and B are matrices containing
members which are functions of the velo-
city components. Since we are only inte-
rested in steady state solutions the
pressure is replaced by the constant to-
tal enthalpy equation

p=9(1- %;% a*)

b. Boundary Algorithm

Provided system a. should be solved by
a finite difference scheme it is clear
that at all computational boundaries
one sided differences would occur.

Such a procedure is either unstable and/
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or enters an unacceptable large error
exactly at those points where high ac-
curacy is required. So we replaced all
derivatives normal to the boundaries
by characteristic compatibility equa-
tions generating an algorithm which
transports perturbation energy without
reflection out of the computational
flow field.

For this purpose the governing equations
a. are locally transformed in a carte-

sian coordinate system aligned with the
boundary under consideration such that

the x-axis is tangent and the z-axis

is normal to it.

Now system a. is extended by the linear
TAYLOR expansion of the variables along
a characteristic vector pointing from
the present time level back to the pre-
vious with components 0, Az, -At

- 9 °
m

n

m

Q
At +|m Az
n n

Z

Q
m| -
n

leading to
3: . a 9x
n' gx
X

. 9z
+ (B + z) m,
ny

Since each component of this vector
equation is zero the inner product with
another vector composed of three arbi-
trary components (a, b, ¢) also va-
nishes and gives a scalar equation of
the form

ag'+bm' +cn' +3g,+bm,+Sn, = ¢

where &, b, © can be made vanish for
suitable choices of z. Finally two of
the components of the eigenvector (a,
b, ¢} can be expressed as functions of
the remaining component .and the eigen-
values 2z 2,3- After these lengthy ope-
rations the'normal characteristic com-

patibility equation is obtained:
RQ+Mm+Nn

£(9 ,m 24 nglmxrnx)

The coefficients R, M, N and the tangen-
tial derivatives have to be evaluated

at the newest time level which requires
at least two iterates. Base point inter-
polation of 97, m~, n~ is achieved by

a. TAYLOR series expansion around grid
points closest to the latter.

Boundary Value Count

From the considerations of b. it can be
found that as many boundary values have
to be prescribed as eigenvelocities z
point outward of the computational do-
main. The result is summarized in fig.
6.

d. Interior Point Algorithm

160

After all quantities have been computed
along the boundaries for the time level
under consideration we are ready to up-
date the interior points using a simple
semi implicit line relaxation scheme
along the [ -lines of the mesh which
requires only two iterates, see fig.

Since the finite difference form is
written in grid coordinates the trans-
formation from global to local coordi~
nates is computed numerically by the
following formulae.

7.

Ex = zg/D

gz = —Xg/D

Cx = -% /D

Lz = xg/D

D = ng§ - xEZE

For faster convergence the largest lo-
cal allowable time step is used, fig. 8.

Grid Generation

It seems to be inevitable for an accu-
rate EULER code to generate a grid
which is orthogonal at boundaries. For
this purpose the rectangular grid of an
auxiliary computational domain of
simple geometry is mapped into the phy-
sical plane by solving two POISSON-
-equations for ‘each coordinate, fig. 9.

The forcing terms on the right hand
side are evaluated at the boundaries
directly from these equations using
imaginary points outside the grid such
that the first interior row of points
lies on lines cutting the boundary
orthogonal. Inside the grid the source
distribution is represented by linear
interpolation between the boundary
values. A nice by-pass result is the
very fast convergence of the point
GAUSS-SEIDEL procedure due to the for-
cing terms acting as correction to the
previous iterate.

Comparison of Theory and Experiment
(EULER's Equations)

Fig.

10 through 13 are the results of the

present investigation. For all Mach numbers
time stepping was stopped after 50 iterates
since no visible change of the pressure
distribution was observed when using 100
or more time surfaces. This relatively
short overall time was not sufficient,

however,

for shifting the bow shock oc-

curing at supersonic freestream into its
final position. Nevertheless the pressure
distribution seemed to be practically fro-
zen for these cases, no matter whether the
initial shock location was assumed to be
way upstream of the upper pointed lip or

very close to it. The dots in fig.

12 and

13 are supersonic grid points and repre-
sent a transient state of the flowfield



at M = 1.3 and a captured area ratio of
0.836 and 0.665. Since the horizontal mass
flux component at the upper nose is set
equal zero the front shock can be very
close to it but never is attached.

Although no artificial viscosity was used
the pressure distributions exhibit almost
perfect smoothness. No instability was ob-
served when a test case with 200 iterates
was run. The computer time required for 50
iterates was 3 min.CPU on a IBM 3033 with-
out bow shock algorithm and 4 min.with
grid adaption to the bow shock formation.
Fig. 14 through 17 compare computed re-
sults with experimental data.

All measurements are obviously affected
by viscous interaction since in no case
the theoretical inviscid down stream pres-
sure is reached. At subsonic speeds the
internal cowl portion exhibits steep po-
sitive inviscid pressure gradients immed-
iately aft of the nose.

So deviation from experiment may be inter-
preted as local flow separation whereas
the upper ramp is in good agreement (fig.
14, 15). At M = 1.3, mass flux ratio Q =
0.836 (figure 16), no comparison is made
with internal data, since measurements in-
dicated supersonic speed all along the
first ramp, an effect which only may oc-
cur if the oblique front shock is at-
tached to the nose. Due to the low num-
ber of time steps the present procedure
did not detect supersonic speeds inside
the intake. In the last example (fig. 17)
the internal cowl portion is in good
agreement, but the first ramp exhibits
shock-boundary layer interaction. The ex-
ternal cowl distribution shows separation
at the nose because of the strong flow de-
flection, ®local= -30°, see also velocity
vectors of fig. 13.

Conclusion

Two methods based on potential theory and
EULER's equations are proposed for invis-
cid intake flow simulation which seem to
be a useful tool for design considera-
tions. The elements of the computer pro-
grams are designed such that they can be
extended to

e threedimensional flow

e viscid interaction
The latter approach rejects not the prin-
ciples of the proposed boundary algorithm,

if viscous terms are treated as explicit
perturbations to the inviscid equations.
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Boundary Value Count

Mo > 1
mln:g: iS

3RH +1NCCE

Mz=<1:Qpr
m
mINccE
M <1: mpr.
9
n}NCCE

RH  =RANKINE-HUGONIOT
NCCE = normal characteristic compatibility eq.

pr. = prescribed

Interior Point Calculation
( backward EULER)

predictor: corrector:
/C
O, Ail \g
1
0-0" - -z -9 3z .=
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implicit line relaxation along ¢
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Local Variable Time Step
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