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Abstract

Quite a new approach to the ventilated wind
tunnel wall interference problem is proposed in
this paper, in which, instead of assuming a doubt-
ful mathematicel model for the ventilated wall
characteristics, velocity components of flow near
the walls inside & test section are used as bound-
ary conditions for solving a boundary value problem
of the flow field. Then the wall interference on a
wing model installed in a test section is estimated
no matter how complex the wall characteristics may
be. Besides, the velocity need not be measured in
detail on the whole tunnel walls. Various quanti-
ties related to wall interference can be estimated
with sufficient accuracy if only transversal lower
harmonics of the streamwise distributions are
available. The effect of suction from the side
wells in a two-dimensional test is also investi-
gated. The sbove method for calculating blockage
and 1ift interference corrections was applied to
a two-dimensional test section configuration of
the NAL 2m %X 2m transonic wind tunnel. The configu-
ration was such that the open area ratio of side
walls was set at O % and that of the top and bottom
walls at 20 %. The 1ift interference parameters
and the blockage factor ratio, which are tradition-
ally used in wall interference correction methods,
were evaluated in a reasonasble manner by using the
formulation derived in the present theory. The
values of these parameters thus obtained were shown
to depend on the 1ift coefficient but not so sensi-
tively on uniform Mach number between 0.6 and 0.8,
nor on the difference in the tested airfoil sec-
tions. Consequently, it becomes possible by the
use of the sbove characteristics to make correc-
tions without measuring the pressure distributions
near the walls each time.
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I. Introduction

The wall interference problem still remains to
be solved in a proper manner theoretically as well
as empirically as far as transonic wind tunnel
equipped with ventilated walls is concerned. It
becomes, however, more and more urgent today to
solve this problem because more accurate test data
are needed to design aerodynamically more efficient
aireraft. This problem is difficult to solve mainly
because the characteristics of ventilated walls are
extremely complex; they depend on the flow condi-
tions at the walls which are far from being ex-
pressed by a simple mathematical model. In this
connection, the theoretical models proposed in any
previous methods are all inadequat§ to simulate
1
properly inferred from the recent experiments of
M. Mokr§2gnd J. Kacprzyns£§)in Canada. Considering

the above fact, quite different approaches to this
{8)-(12)

the real flow in & test section. This may be

problem have been prposed recently by severa
authors. They all need static pressure or velocity
components of the flow near the walls inside a test
section. A common feature of these methods is to
use those quantities as boundary conditions for
solving a boundary value problem, instead of
assuming a doubtful mathematical model for the
ventilated wall characteristics. The present author
has also proposed an approachEYaf these papers,
only two deal with three-dimensional wall inter-
ference. Only the case of a test section with solid
side walls was studied in Ref.(5), while the case
with four ventilated walls was studied by the pres-
ent author in Ref.(8). In this paper, the approach
in Ref.(8) is developed further and the effect of
suction from side walls of a two-dimensicnal wind
tunnel is investigated in detail. Besides, the 1ift
interference parameterglégd the blockage factor
ra.ti&lh E(éigen, which were evaluated from test



data by the ald of the formulation derived in the Yc (§): maximum camber of airfoil inyz-plane in a

present theory in the case of the NAL 2m X 2m tran- tunnel
sonic wind tunnel with two-dimensional configured ?c(i}) : maximum camber of airfoil in yz-plane in
test section. free air
A :=H/L
Notations ® : full velocity potential

® : small perturbation velocity potential in &

A : area of winé planform transformed by Eq, (k) tunnel

- : Bernoulli number ¢ ¢ transformed § by Eq.(}4)

: semi-gspan length of wing transformed by $ : transformed small perturbation potential
Eq. (k) in free air by the same transformation to
¢ : cross-sectional area of tunnel Eq. ()

C, * 1ift coefficient i : 9 except s, plane

c, : drag coefficient Q {(x,y,z);lx_|_<_R,|y|§L,|z|_<_I-I}

cp : pressure coefficient in a tunnel oft : boundary surface of #

E"p : pressure coefficient in free air 1(x): unit step function [ 1 for x>0

¢ : airfoil chord length parallel to uniform flow 0 for ¥<0

¢ : reference chord length sgn(x): signal function 1 for x>0

H : semi-height of tunnel transformed by Eq.(L) [ -1 for x<0

L : semi-breadth of tunnel transformed by Eq.(4)

M : uniform stream Mach number Subscripts and others

n : outward coordinate normal to boundary surface

R : downstream limit of x-coordinate of tunnel » ¢ Genotes velue of undisturbed stream

transformed by Eq.(k4) () : denotes average value

R%® : three-dimensional Euclidean space ~ ; denotes approximately equal relation

B? . R® except s plane 22‘: denotes that(n,m) takes all possible inte-
S(x,y): wing thickness distribution function (m,n) gral pairs except (0,0)

transformed by Eq.{k)
sm,ng: wing planform domain IT. Wind Tunnel Wall Interference
wake: wake planform domain

Sw : sum of swing and Swake Following three fundamental assumptions are
Sa(x): airfoil thickness distribution function adopted in this paper:

transformed by Eq.(L4) (1) Flow is inviscid and irrotaional.
U_ : uniform stream speed (2) Wing is so thin that "thin wing approximation"
Uooc: corrected uniform stream speed may be applicable.
(u,v,w): (¢x'¢y'¢z) (3) Flow is subsonic everywhere.
W, ot tunnel induced vertical velocity
% : distance downstream ( Origin is shown in Fundamental Equations
Fig.l. ) On the assumptions (1) to (3), the flow field

SEL : x-coordinate of wing leading edge equaetion is

S‘rT : x-coordinste of wing trailing edge 6282_$+82_65+82_6 -0, (1)

§ : spanwise distance normal to x-axis ag? g2 3z?

2 : distance upwards from x-axis where B = /1-u% ’ (2)
(x,4,2z): transformed coordinates by Eq.(L) and the small perturbation velocity potential § has
(E,n,L): (x,y,2) been defined as follows:

1 (§): incidence of airfoil section in yz-plane ¢ =vU (x+9). (3)

in a tunnel Transforming § and (%,5,2) by following equations:
1 (§): incidence of airfoil section in yz-plane [q: = 2.8, (4)

in free air (x,y,2z) = (%,85,8%2),
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we obtain
& = o0,

vwhere

(5)

2 2 2
b = 3 +-§——+ 3

?%% 3% 932

(6)

Boundary Value Problem

A function ¥ (£,n,%;x,y,2z) is introduced here
which satisfies the following equation:
&y = 5(5,H:C;X,U,Z) (7)

where § denctes the S§-function defined in ﬁ as

in @,

shown in Fig.2. Using the Green's Formula and Egs.
(5) end (7), we obtain

6 = JI_log-vgas. o)
After Eq.(8) is rearrenged on the second fundamental
assumﬁtion, the upstream and downstream boundary
surfaces normal to x~axis are displaced to infinity,
that is, R > ©, Then Eq.(8) is reduced to

¢ =—J‘J‘Y{ug + vl }{'LdEdC

H
~[[ fun+w] dEan
Mg | SE Vely gt
g+
-f/ SW[ 0170, | r=0%Edn, (9)
where
H
[fgear = [7 aef ac, (10)
L
I1 dkan = [ZaEf_ an, (11)
g = -["Dae, (12)
g%"
_ =
h = Ea—cdi, (13)
tHEm, Y = HE,L,L ~HE,-L,L), (14)
el = tEnm -ten,-n,  as
MHEM, L)1 T= 1im{H(E,N,0) -HEN, -0}, (16)

L0+

uniform flow

(2r4,0)
l Swclke
X

Fig.l Wing Planform

e

R ‘ ' O

Fig.2 0-Domain

In the same way, the following equation for § in
free air is obtained:
§=-[fg sEm ] _dEan
wing

I/ [$]f-$clc=0d5dn, (17)
w

where § (§,n,0:x,y,2) is a function which satisfies
the following equation:
b = 8(En,Tix,y,2) in B3, (18)

where § denotes the ~function defined in R®. Be-
cause [¢]t and [$]t on sW are determined from the
load distributions on Swing’¢ and § can be estimated
by the aid of Eqs.(9) and (17) respectively from
the boundary values and their derivatives.

It should be noticed here that the following
parts of the boundary surface aﬁ,

z, = {x,y,8) sxe(-o,2), |y<L}, (19)
L Uxy,-R)ixe(==,@), |y| <z}, (20)
r, = {(x,0,2)rxe(~,), |2|<n}, (21)
and 2_L= {(x,—L,z);xe(—w,m),Izl:ﬂ} (22)

are control surfaces. They must arround & wing model
and be surrounded with the test section walls.
Provided that these conditions are satisfied, L and
H as well as the sectional shape of the test section
are all arbitrary. Naturally, in the case of a rec-
tangular test section, the walls can be regarded as
the control surfaces if the existence of boundary
layers on the walls is neglected. Hence, these con-
trol surfaces are called "wind tunnel walls™ with
the understanding stated above. Hereafter, only

rectangular test sections will be considered.

Wind tunnel Wall Interference Potential
By the aid of Eq.(9), the small perturbation
potential ¢(x,y,z) can be estimated provided that

825



velocity componentg at the wind tunnel walls, ZH’
Z-H’ ZL and Z—L and S(x,y) and [¢]t distributions

ng are given. It should be noticed here that
the pressure distribution on a wing installed in a

on S .,
wi

wind tunnel as well as the shape and attitude of it
cannot be determined uniquely only by the pre-
scribing uniform flow conditions, wingAplanform,
and thickness and load distributions on the wing.
In addition to these conditions, velocity distri-
butions on the tunnel walls must be known.

All wind tunnel tests presuppose that the load
distribution on a wing in a tunnel should almost
agree with that on the same wing in free air if the
wing attitude and uniform stream conditions are
slightly changed. We shall base on a similar premise
in this paper: there are two wings which have the
same planform and thickness distribution., One is in
a tunnel and the other is in free air. On these
conditions it is assumed that the two wings could
have the same load distribution, but there would
be differences in attitude and shape and pressure
between the two in general. These differences are
considered to be associated with wind tunnel wall
interference. Then the following conditions are
necessary in order to compare the perturbation
potential in a tunnel with one in free air:

1°. Uniform stream conditions, ¥_, p  (pressure),
o, (density), are the same.
is the same.
3°. Thickness distribution S(¢x,y) is the seme.
L°, Load distribution is the same.
On these conditions, wind tunnel wall interference
potential ¢ 1s defined as follovs:
$(x,y,2) = §(x,y,2) ~d(x,y,2). (23)
Because of the conditions 2° and 4°, there is no
difference in [¢]j:distributionon Sw’ that is,
161" = 1877 (24)
Then substituting Egs.(8) and (17) in Eq.(23), we

2°, Wi ,
Wing planform Sw1ng

on S .
w

obtain

Pix,y,2z)= ,rJ'sWiIs’;Ern) -t E‘ C=0-1Tj£ \ §=0) atan

[ o1t v | _~F | _ )agdn
Sw - "L'L=0 "T'g=0

+ff ug + W azaz

+[[ run+ wp]’degdn. (25)

In the right hand side of the above equation, all
of g, h, ¥, w£|C=0' $E|C=o’ 'Dt)-lc____o, and 'ﬁclc_:o can

be obtained analytically, and S(x,y), [¢]t, uln—+L'

v| ’ u| , and w| are all measurable in a

nN=*I, r=tH r=tH

wind tunnel test. So the wall interference potential
¥ (x,y,z) can be determined completely. But it
should be noticed that the lst and 2nd partial
derivatives of # with respect to x, y and z on wing
surface are necessary for wall interference correc-
tion. Hence, only those derivatives will be discussed

hereafter.

Corrections for Wall Interference

Because the wing surface is regarded as coineid-
ing with z=0 plane in the thin wing approximation,
the values of derivatives of ¢ on wing surface is
equivalent to those for z tending to zero from
positive and negative sides. From the conditions 3°

and 4°, the following equations are obtained:

.a—aﬁ = aa—?_ ’ (26)
Z 0+ Z 1 gs0-
w‘ 39

- . (27)
[ PP s

From Eq.(26),
i(G)= 1(6)—%{302(0,0,10) +2G3 48,09, (0,0,20)
+-55azy(o,o,10)-f;} , (28)
where spz(x,y,iO) has been approximated by a poly-
nomial of x and y of the first degree. In the same
way, the maximum camber at § in free air can be
estimated approximately by the following equation:
Y 000 = Y, (9) =35 P,,(0,0,20) ccd), (29)
From Eq.(27), and by the aid of the small perturba-
tion potential theory, the static pressure coeffi-

cient on & wing in free air is obtained as follows:
~ A A A A 2 A an
Cp(x,y) = Cp(x,g) - g2 ?x(x,By,iO). (30)

By the aid of Egs.(28) to (30), the wing shape and
attitude and the static pressure distribution on
the wing surface in free air can be determined
uniquely from the values obtained in a wind tunnel
test. However, the wing drag in free alr is differ-
ent from that in a tunnel because the pressure
distributions on the two wings are different. It is
often the most important purpose of wind tunnel
tests to estimate the drag in free air. Therefore,
wind tunnel tests almost lose their value if the
measured drag is of no use. Hence it is assumed
here that the same wing surface pressure as in a
tunnel sbould exist in free air at some speed qmc
slightly different from U_, that is,

1 -
Ve = Uppl 1~ Ez?xj oot * (31)
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where
P elerso = ills 9
ng

Then the model drag in free air is the same with

dxdy. (32)

z*10

that in a tunnel. But uniform stream Mach number
and uniform stream dynamic pressure in free air
with uniform speed Uwc are slightly changed because
wniform stream conditions in free air are different
from these in e tunnel. Corrections to these
quantities can be estimated by means of blockage

factor eB defined as follows:

£ =

1 —
B 7 B2 Fx|zrxo0 (33)

Ref.{1l4) details formulae for those values,

and i
The solutions of Egs.{7) and (18) are

b (E'U,C;Xrlhz)

arlel g Lo

mm mm
4y ("‘_L |€—x|]cos—i-(n-y)
41TL z z ('—‘|€-X|)Cos——(c—2)
n—l

= BnL

z z-—exp(k|£-x|)cos——(n-y)cos—(l;—z) (34)

2b,L
and
TOEMTrx,y,2)=— -l (-2t M-p)+ (T-22 Y272, (35)
where
k=n/(B*+ (@ . (36)

ITI. Blockage Effect

As was mentioned in the previous section, Sax(x,
,+0) must be known in order to assess the blockage
effect. It can be approximated by 9x(0,0,10) be-
cause reference chord length ¢ and wing spen 2b are
usually small compared with the height end breadth

of tunnel respectively. Then,

1
€p == B2 grx(o,o,w). (37)
In this section, only 9>x(0,0,i0) is estimated. 9x
(x,y,t0) can be estimated in the same way but with

a little more difficulty.

Blockage Factor
From Eq.(25), we obtain

%,(0,0,%0)
3 9]
= [fg scEm —;{%i YJI }x=y=0d€dn
Swing 5=0 st

+2J‘IY'DX(€IL/C;0'0'i0) .Vz(glg)dgdg

+2[[b_(E,11,0:0,0,£0) - (E,n)dEdn, (38)
vhere -
AED = Heennl, (39)
wiEm) = 2w(Em, I . (40)
From Egs.{3l4) and (35),
(3| -5 Y
ax BE BE x=y=0
z>0
=—LZ'{L—3(€;")}I (41)
4W(m,n) Wi ws %3350 ‘
m,n m,n
where
W (EMsx,y,2)= (E-x+ (2Lmim-y) '+ (2mmizf . (42)
And from Egq.(3h4),
’Dx(E,L,C;O 0,%0)
_ 1 ng 1.6 Ty n
= gaptanh (G2 21 Z
P=IVEL f2v-1 %+ (E/L
<Ky (5T frzv-17+ (&/Lf JeosZc, (43)
and
b (E;N,H;O,O,io)
X
o0 ]
ot eamn .l L E _m
= grptanh(z g -3 g 21 _z_
m=1V=1fi2v0-12+ (E/8P
<Ky (rmh/129=17%+ (E/8) )cosTon (44)
where
2v+1
1 (x/2) X 1
K, (x)= ZV—! Tyt N ¢(V*l)"—2(v+1)}"‘>0'(45’
P(vi1)= Z ==y, $1) = -y, (46)
r=1"
Y = IJIM[J, +%+%+--'+%—1nm)]. (47)

K, (x) decreases with x as rapidly as an exponential
function does. For example, K;(9m) is as small as
1.369x10713,

If tunnel walls are solid, the following condi-

tions are obtained:

a _.a ___
VL(E,C) = WH(E,T]) 0. (48)

Using & new notation ?i for yx(o,o,w) in the above
conditions, we obtain from Eq.(25)

5= 3k a 49
Yx_‘”S s.(g n)ax 3 \ _0}x=y=0 Edn. (49)
win £=0 30
For a small wing model with volume V, S(x,y) can be
expressed approximately by the following expression:

stx,y) = B*vS(x,y), (50)
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where § denotes S-function on S . Substituting

wing
Eq.(50) for S(E,n) in Eq.(49), we obtain
€ b -
B_ 1 1.1,v1,1 2
===ty ) T z 2——3" (51)
v 1érm'L° H =i 3“,,=1m=1 (naf?+ (mrf

This expression is identical with Eq.(5.22) of Ref.
(1k).

y) and it gives useful information about the limi-

Eq.(L41) behaves as a weight function for S(x,

tation on dimensions of & wing model. In Fig.3, the
dimensionless weight functions multiplied by (HL)3/2
are conbtoured only in the region where both £ and
n are non-negative because they are symmetric with

respect to both £ and n.

A=t

1.0 1

5

- 1

0.5

0.0
0.0

Fig.3-1 Weight Funetion for S(E,n), (A=1)

Fig.3~2 Weight Function for S(&,n), (A=0.5)

More Convenient Method

It seems very difficult to measure the distribu-~
tions of Vi(E,C} and. w;(g,n) over the whole boundary
walls of test section. They change, however, only
gradually on the walls standing sufficiently far
from a wing model which is the disturbance source.
Then if these distributions are expanded in the

following Fourier serieses of f and n respectively,

we have
(E C)—l a(O) E{V (n)51n——c-+vaén)cos——€} (52)
wZ(E,n):—w2(0)+z{ a(m-51n——ﬂ-+w:ém)cos——ﬂ}, (53)
where
a(n) H a nm
te)= 4] _v3ce,t)cosedr, (n=0,1,2,...), (54)
a(n) 1 H a nm
(€)= of V3 (E,L)singrdL, (n=1,2,3,...), (55)
a(’"’s)— —I Wi (E,n)cosTndn, (m=0,1,2,...), (56)
w2 ()= %I_Lw;(e,n)sinmf"nqn, (m=1,2,3,...). (57)
Fig.h shows v2 (™ and w2™ for m,n = 0,1
g Lo He ’ e
¢
1
wEe
[
T — 2
c— ' F, .u»a(o)
i
!
T
4

\‘_ ?
7vtg’

e 1

Fig.k V‘;{”) and wch”‘), (m,n=0,1)
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We assume that the higher harmonic terms in Egs. Fig.5-2 Weight Functions for V:(n) (n=0,1,2,3,4)
c
(52) and(53) are negligible, so

:én)(g) = V:s(n)(g) =0 for n>n, (58) Weight (f;mctions for wgé ™ are the seme to those
n
2 (m)(g) - a(m)(g) -0 for mou (59) for Vzc if E/H and m\ are substituted for £/L and
He Bs 7 B’ n/\ respectively. Then only the weight functions
where NB and MB are integers. On the above assump- for V‘Z( n) are shown. Weight functions for higher
c
tions, Eq.(38) is reduced to harmonics of V;c(n) and Wz(m) vanish rapidly with n
yx(o,o,i-o) and m as can be seen in Figs.5-1 and 5-2. Moreover,
higher harmonics of vién) and w ém) are also small
a(0
-9’ f oV 1 )5) —tanh( é)67(%) in magnitude. So these higher harmonic terms have

almost no effect on blockage interference except

_Z J‘ a(n) 2nz_L

'L that A is very large or small. In the case of two-
V(Z\)—l) + (§/L)

dimensional tunnel, A usually ranges from 3 to 5.

Ky [)"ﬂ (2v-1)"+ (8/1) ]d(%) Then V?,c(l) and v (2) may have a rather large effect
_fm a(O)E;) --tanh( g)d(% on the blockage interferencé.
2 I w2 E) - 2m 2 S v/ — Rectangular Test Section with Solid Side Walls
1y (2v-1+ (E/8) Provided that the two side walls are solid and
xKy (flﬂf)ﬂ/ (2v-1P+ (E/H)f )d(F%) . (60) that a model and the flow field disturbed by it are
symmetric with respect to xz-plane,’ w; and V: are
Figs.5-1 and 5-2 show weight functions for Vzén) in uncoupled with each other. Then w‘;(x,y) can be
Eq.(60), that is, obtained from measured static pressure distributions
Z-tanh ('" 5) ) on the top and bottom walls., Because static pressure
© coefficient can be expressed easily by x-component
ZTH Z _E—/L"———"Kl [_4n>"rr (2v-17+ (E/L)z] . of the small perturbation wvelocity, %(o,o,w) is
\)=l|/ (2v-17+ (E/L)? reduced to

%,(0,0,%0)
=g - J’T () LeannZ-2)}ack)

T ot G

w0 Lseon G2 1ac)

+ Z [2 5™ (Ba s, (61)
) where
-031 ( 158 - .
sx”’) = Ef_Lﬁ.cosTndn, (m=0,1,2,...), (62)
: 3 (n) 'L
"ig.5-1 Weight Functions for v’ (n=0,1) s(my_ 1" s o am,
Lc Upe = o _ig(Em) cosTndn, (m=0,1,2,...), (63)
50'3‘ n=0 US(EIT‘I)—‘- é{U(E,Y‘I,H) +u(5ﬂ1,-H)}, (64)
o
5 I{™rx)=2m) | —E—— - K (2emAV(2n-1)2+ %), (65)
T n-—l (2n-1) +x°
g 75 2 =2m Z MK (rmAV(2n-1+ x?) . (66)

1 /t2n-12+ x 2

As can be seen in Figs.6~1 and 6-2, higher harmon-
ies of u: have almost no effect on the blockage

[ interference.
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1. R
8 tanh(zx)
0.1
(1]
=y
0
°
c
2
<
o
> |
3
0 m=1 ' '
0 1 2
X

Fig.6-1 Weight Functions for s}((’") (m=0,1)

-03;

n )
.5 —0.21
]
C
<
<
(s)]
2 |
2 -01+

X

Fig.6-2 Weight Functions for u:ém)

IV, Lift Interference Effect

As was mentioned in the p:\;-evious section, (fz (x,

,+0) must be known in order to estimate the 1lift

(m=0,1,2)

interference effect. By the use of Eq.(28), however,
the interference can be estimated with sufficient
accuracy from ?Z(O,O,iO), ?ZX(O,O,iO) and ?zy(o,
0,%0). Only ?Z(O,O,iO) will be estimated in this
section. In the same way, estimated are j;zx(o,o,iO)
easily, and gozy(o,o,w) with a little more diffi-
culty.

Lift Interference Parameter
From Eq.(25),

# ,(0,0,%0)

_“' [¢]+3 oy 3

375 o T } dEdn

| _n x=y=0
‘C“o z+E0

+2ffywz(£,zs,c;o,o,10) v (,L)dEdE
+2[[h_(E,0,1;0,0,20) w7 (E,n)dEan,  (67)

where

a 1 H
uH(E,ﬂ) = E[u(g,n,i)]__y . (68)

We obtain from Egs.{34) and (35)
{B’D __a_l _ __l_ ‘{ ‘l__ 3(2Hn+z)2 }
020l %lrp”  Mmn) Whn  Wh,n

and also from Egs.(13) and (3%)

(69)

'-pz (glLrCr'ozolto)

o o

- 51 1 neKe(B/2v-12+ (€/LF )sin,  (70)

n=1v=1
hz(E;,n,H;0,0,iO)

:l:

1 1
T 3L I+exp(nE/H)
[+ 2] [+]

+lim o ] ) (-1)"
z—>+02H n=1m=1

wla
N

XK (E;0:k) cosTn 'cosnTZ, (71)

where

K(€;x:k) =sgn(E-x) -e”‘l E-x| +2-1(x-€),(72)

and Kp(x) denotes a modified Bessel function:

Ko (x)=- f{"‘”’ Y2 {10k - pev+1)}, (x>0). (73)

Ko (x) decreases as rapidly as K;(x) with x. For
example, Ko(9m) is as small as 1.345%x107 13
If a 1iﬁ'.ing wing and its trailing edge vortices
are modeled by a horse-shoe vortex as shown in Fig.
T, [¢]f can be expressed as follows:
617 = [ e
0 otherwise. (74)

for |y| <b and x € [0,%),
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— e X

e

Fig.T Horse-Shoe Vortex

[} . .
Using a new notation ?z fqr ?z(o,o,_a) in the
case of the top and bottom walls open and the two
side walls solid, we obtain
2n-~ 2n-
gom st 1§
z HL 2Ln=1 (2n)! "n ‘L
+ }%f e_mx-cosech(mrr)\) -sin%}, (75)
m=1 L

because
a _.a _
VL(EIC) = uH(g,T]) = 0- (76)

In general, the 1ift interference parameter is

defined as follows(l3):
vy
8o = U ac " (77)
L 7

Substituting ?z for v, in Eq.(77), we obtain

8o = - f=-Gp . (78)
Denoting 8¢ corresponding to ?; by 83, we get from
Eq.(T5)

se-dedimr e ®

n=1
- %’%f e_mx-cosech(m’rr)\)sinn;’—"b .(79)
m=1

In the case of small 1ifting wing, that is, making
b tend to zero while keeping ' finite, we obtain
LY

1.7 g m
- =4\ - . 80
2722 “)‘mzlexp(an'X)—l (60)

The sbove expression is identical with Eq.(3.1T)
in Ref.(13).

More Convenient Method

u: can be expanded to the Fourier series with
respect to 1:

1 a(0)

a(m)
“2%c

a
uH(Em) He

-]
a(m) , mm, .
+ X{uﬂs “sinTntuy, “wcosTn}, (81)
m=1
where

L
a(m) 1 a FLal
. (E)=5]_ uS(E,n). cosTnan, (m=0,1,2,...), (82)

L
afm),, 1 a L1}
Uy (E)= LI_LuH(g,n) simTndn, (m=1.2,3,...). (83)

For the same reason as was mentioned in the previous

section IIT, higher harmonics of ufrém)and u:s(m) can
be negligible. So

a(m) _ .afm) - s

Upo (8) = uy "(E) =0 for m>M, . (84)

Tt follows from Eqs.(58) and (84) that Eq.(67) is

reduced to

SOZ (0,0 ,i)(\)r;
o0
- 93 LA G Y
a(0)l 1

o

L

-1 0 mu:ém)-{"mTAcosech(nﬂT)\)-Y( -£)
m=1

L gmmm 134

’—,Iwuﬁc ‘2°1 + exp(nE/H)

+ *sgn(§)

2 v 1"
+(mA)+sgn(E) | aire
n=1

-mviE -l-(m}\)2 J_f;-l_

o

_m)\% z ———1— oKIG’m}\ Q\)—l)z‘i'{g/H) d(%—).(gs)
=1/ (2v-1)?+ (E/L)
Figs.8-1 and 8-2 show V; s(") and u;ém).
4
Ve
?
4
vae
u ?
a(n) _
Fig.8-1 Vie (n=1,2)
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He

Weight functions for vzs(n) and u;ém) in Eq.(85),
that is,

27 Ko B/ (2v-17 + (E/LF ),

weight functions

=1
1 1
E'W , ete., |
vanish rapidly with n and m increasing as can be -2 -1 6 ,E/H 1 2
seen in Figs.9 and 10,
Fig.10-2 Weight Functions for u::") (A=5)
'
The higher harmonics of V:S(n) and uzc{m) are. small
\ e § as well as their weight functions. So these higher
§0.3 harmenic terms have almost no effect on 1ift inter
E i ference unless A is very large or small. In the case
g of a two-dimensional tunnel, X usually ranges from
01 3 to 5, then v:s(l) may have an important effect on
7‘_;1:2 ozt 1lift interference.
-2 -1 0 £ 1 2
V. Wall Interference in a Real Two-
Fig.9-1 'Welght Functions for Vis(n) (A=1) Dimensionsl Wind Tumnel
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General Considerstion

In this section, the same coordinates system is
adopted as in the three-dimensional wind tunnel
discussed in the previous sections. An, airfoil
model is two-dimensional and is spanned\between
the two side walls. A small perturbation velocity
potential § in free air can be defined as the
potential produced by an airfoil model of infinite

span:
P X

T
$x,y,2)= -5 J’ S2(8) - F’—"d&
(E-x)%z

*—I‘” 617 —d&
*T (E~x)+ 2%

(86)

where airfoil thickness is defined as S, (E). ¢)in
a two-dimensional wind tunnel is as follows:
O(x,9,2)=- J’ s:(a) e ST
(E~X)2+ 2
S2(E) Z{—x—
2" xp n=1 (2Hn+zf+ (E-x)*
+ E-x }dE
(2Hn—z)2+ (5~x)?
—f“’ d&f Lt 3
C=0
—Hy{ug + v~p}de£;dz;
~f{ jrun +wi® agan, (87)

Even in a two-dimensional test, pressure on an
airfoil model usually change spanwise. Moreover,
the spanwise pressure change is the greater when
uniform stream Mach number is the higher, In this
case, the three-dimensional wall correction must
be made to measured quantities. But adequate suc-
tion from the side walls around a model can mske
the spanwise pressure change very small in some
(see Fig.11.) Then,
‘the side control planes, ZL and X—L’ are taken at

spanwise region, y € [-L",L"].
y = L” and -L” respectively, and L is considered
as L now. There may be velocity component, VL
the control surfaces even if the spanwise pressure
change in this reion is negligibly small and is

also within an accuracy of the small disturbance

, on

theory. If this test section has large A, the lower
a(n) a(n)
Lc Ls

harmonies of v and v may have a great effect

on the wall interference. This will be demonstrated

in the following. For example, Sox(x,o,iO) and Soz(

x,0,%0) are approximated as follows:

9y (/0,20)
f Sz(E){-—zcosecb

71; w2 l0%E) -tanhoz(x-€)dE
" 2 0%e) - tann(x-£) aE
x-§

L2 A °° =
Iw /(2\)-1) + (—E"]2
%Ky (3 f2v-17+ (EL") 2)qE,

P, (x,0,%0)
1 X
= oof Trurlae +—zf - ful Toxe-£)ag
L
s a(O) dE
“21) —"ge 1+exp{1r(£—x)/H} -

-%f:, vis”igl{o (R A2v-17+ [g%‘] )dE.

(E x)= —E———v}dr

(88)

(89)

uniform flow airfoil model

side wall
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(1)

. a (1)
Therefore, Vie

and V:s caen have g great effect
on Sax(x,o,i'O) and 72(::,0,10) even if they are
very small. Consequently, it becomes impossible to
evaluate corrections based on such small gquantities
that are difficult to measure to some degree of
accuracy. So L must be as large as possible, and
at the same time, v; must be as small as possible.
VI. Experiment in the NAL 2m X 2m Transonic

Wind Tunnel

Static pressure distributions along two control
lines, which run parallel to the top and bottom
walls at the same distance from a model, were
measured in the NAL 2m X 2m transonic wind tunnel
test section using two rails designed after Ref.(2).
They were 4250 mm long and affixed to the wind
tunnel top and bettom walls midway between the
tunnel side walls. The test section has perforated
walls with normal holes on all four sides, and the
open areg ratio of them can be arbitrarily varied
in the range from 0 to 20 %. In this experiment,
the open area ratic of thetop and bottom walls was
set at 20 %, while that of the side walls was set
‘at 0 % in order to make the test section two-dimen-
sional. Two airfoil models were used in order to
fined out whether or not the blockage and the 1ift
interferences depend on airfoil sections. One is
Model 70811 which is a shock-free airfoil designed
by S. Takanashi.(ls) This model is 400 mm in chord
length, 2000 mm in span, and 10.4 % in thickness
ratio. The other is named " Airfoil X " which is
not an advanced airfoil but of a conventional
design. This model is 350 mm in chord length, 2000
mm in span, and 14 % in thickness ratio. This exper-
iment is detailed in Ref.{17).

Assuming the flow in this test section to be
two-dimensional, we can substitute zero for Vi,
2™ ana w3™ (m=1,2,3,...) in £q.(88) and (89).
Then
@, (x,0,%0)

- 57) :ZSz (E)dE + 4—;‘;5»[ 252 (E) - (E-x)2dE

1 a(0)

kij
+Z§'~wch (E).tanhEE{x-E)dE, (90)

?z (x,0,%0)
1 xT + m XT +
= zgfx [u]_d5'+5252fx [u] - (x-E)dE
L L

1 a(O%

T 20! - He

1
g)'1+exp:['n'{£-x)/HF dt. (91)
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These equations are equivalent to Eqs.(32) and (3k)
in Ref.(6). In the same way as in the previous
section with subheading Rectanguler Test-Section

with Solid Side Walls, W;éo) can be expressed by
0
uZé ). Therefore, using the static pressure distri-

butions along the control lines, both blockage and
1lift interference corrections can be estimated.

The blockage factor ratio Q and the 1lift inter-
ference parameters §p and §; are shown in Figs.1l2
and 13. As cen be seen in these figures, the results
indicate that these parameters do not depend on the
tested airfoils nor Mach number between 0.6 and 0,8,
but depend on lift coefficient. Then by the use of
the above characteristics, it is possible to make
corrections for both the blockage and 1lift inter-
ferences without measuring the pressure distribu-—
tions every time. Refs.(17) and (18) detail the
resulting features of the 1lift interference param-

eters and the blockage factor ratio, respectively.
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VITI. Conclusions

(1) Formulae for the tunnel wall corrections of
three-dimensional test section have been estab-
lished which neeéd the velocity component distri-
m Zop Ipe

and. Z—L in addition to the pressure distribution

on g model.

butions on four control surfaces, I

(2) It is possible to correct test results for
wind tunnel wall interference with a sufficient
accuracy by the use of the lower harmonic com-
a(n) Va(n) a(m) a{m)

’ .

d
ponents of Vie * Vis Ve an Uy

(3) Suction from side walls can have a great
effect on wall interference in a two-dimensional
wind tunnel. The distance over which the pressure
on an airfoil model does not change spanwise

must be made as long as possible by means of
suction from side walls, but the suction velocity
must be as small as possible at the same time.
() The blockage factor ratio { and the 1ift
interference parameters &, and §,; depend on 1ift
coefficient of a model but not so sensitively
on the difference in the tested airfoil sections
nor uniform Mach number between 0.6 and 0.8.
Consequently, it is possible by the use of the
above characteristics to make corrections with-
out measuring the pressure distributions near

the walls each time.
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