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Abstract

Forced singular perturbation technique (FSPT),
based on artificial insertion of a "small" para-
meter into the equations of motion, has been used
to generate approximate feedback solutions in seve-
ral aircraft performance optimization problems.

This approach has some inherent limitations, not
being exposed in previous works. The paper presents
and discusses such limitations revealed by a recent
investigation. In spite of the restrictions FSPT
provides an attractive methodology for a large class
of properly formulated problems. This potential

is demonstrated by two examples of air combat per—
formance optimization.,

I. Introduction

Optimization of aircraft trajectories has been
a challenging topic, being strongly motivated by
the development requirements of new generations of
high performance airplanes. The only rigorous
method to deal with such problems (even if they are
based on a simplified point-mass mathematical model
of a 1ifting vehicle) is by solving a nonlinear
two-point boundary value problem (NTPBVP) of high
dimension involving constraints on the state and
control variables. Numerical solutions can be ob-
tained by several iterative algorithms all requiring
an excessive amount of computation.

In the preliminary design phase of a new air-
plane a very large number of optimal performance
problems has to be solved in order to allow an
effective trade-off amalysis. At the other end,
the airborne application of optimal control laws
has to be performed in "real time”. TFor both pur-
poses the exact iterative solution may not be prac-
tical and approximation methods, based on mathema-
tical models of reduced order, are preferred. The
idea to obtain a nearly optimal control law in a
feedback form seems to be the attractive goal.

An approach which provides such a solution is
the application of singular perturbation techniques
(SPT). This method of approximation!=7 has been
conceived to be used in problems involving a small
parameter multiplying the derivations of some
state variables. If this parameter becomes zero
the order of the dynamic system is reduced. The
solution of the reduced order model is called the
zero-order outer solution, or by analogy to fluid
mechanics, the "free stream". This reduced order
solution is unable to satisfy the initial (and/or
terminal) conditions imposed in the original prob-
lem on those variables for which the dynamics is
neglected in the "free stream" equations. Such a
discrepancy is corrected by initial (and/or terminal)
"boundary layers" or inner solutions allowing rapid
changes of these variables using a stretched time
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scale, The boundary layer solutions has to satis-
fy the violated end conditions and match the outer
solution. The uniformly valid additive composite
of the "free stream” and the matched "boundary
layers" presents the zero-order SPT approximation
(obtained by taking € = 0) of the original problem.
If all variables of the problem can be expanded in
a form of uniformly valid asymptotic power series
of ¢, the accuracy of the zero-order solution can
be improved by taking into account higher order
terms.

The dynamic behavior of a system in which
state variables can be separated, due to their
different time scales as "slow" and "fast" ones
is very similar to the response of a singularly
perturbed model. The "fast" variables reach their
equilibrium in a very short time, and hence can be
considered as controls of the "slow"” dynamics in a
reduced order system.

In atmospheric flight mechanics problems, the
existence of a small parameter of physical signi-
ficance is not always obvious. However, in many
problems a time scale separation of variables is
well known, either from analysis or experience.

The best known example is the emergy-state appro--
ximation of an airplane. It offers a reduced
order mathematical model based on the observation
that in many aircraft maneuvers the specific energy
variles slowly compared to the other state variables
as speed or altitude. Such a model was used first
for optimal climb analysis8 and applied later in
other performance optimization problems®-11.. This
reduced order approximation has provided an insight
leading to an improved understanding of high per-
formance alrcraft trajectory optimization. How-
ever, energy-state solutions have had only a
limited value for direct airborne applications.

As an inherent property of the reduced order model,
discontinuities of the "fast" statevariables may be
required. Since such a model cannot satisfy a
part of the initial and. terminal conditions of the
complete real problem, it seemed to be appealing

to modify the solution by including "boundary
layer" corrections. Therefore it was proposed12™1%
to insert artificially a "small" parameter e as a
multiplier of the differential equations of the
"fagt" variables, and to use the methodology of
singular perturbations. This artificial, or
"forced singular perturbation technique" (FSPT),
was applied in the past with some success in seve-
ral atmosgheric flight mechanics optimization
problems15722,

The successful results may almost have created
the impression that application of FSPT in nonlinear
optimal control problems involved in £light mecha-
nics is a straight forward engineering approach,
This impression islunfortunately, not true.
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First, it has to be acknowledged that a general
theory which is applicable for singularly perturbed
NTPBVP is by no means complete. A recent survey$
showed that the characteristics of singularly per-
turbed optimal control problems has been extensive-
ly investigated, but the efforts were mostly
oriented towards linear quadratic problems. Only
a few garticular non-linear cases were investi-
gated23=25 These works show that the existence
of uniformly valid SPT solutions is based on a set
of mathematical assumptions which can only be
partially verified a priori.

Applicability of these results to flight
mechanics problems has not yet been explored.

A second area of difficulties relates to the
appropriate transformation of an original atmos-—
pheric flight mechanics problem to a forced (arti-
ficial) singularly perturbed ome. Previous
studies have provided guidelines only for very few
cases (as for problems with singular arcsla),

The objective of this paper, summarizing the
main results of a recently completed research
effort2®, is to point out some inherent limita-
tions of the method of singular perturbations in
applications to constrained non-linear optimiza-
tion and to indicate those problems in atmospheric
flight mechanics which are well suited for the
FSPT analysis.

In the next section the SPT analysis of non-—
linear autonomous optimal control problems is
presented briefly. Special emphasis is given to
the "multiple time scale" version, which has the
potential to provide feedback solutions.

In section III the inherent limitations of the
SPT methodology are described and analysed. These
limitations include "1ll posed" mathematical models
for which SPT fails and cases where the technique
is unable to provide "true" feedback solutions.
Section IV addresses the proper formulation of air-
craft optimization problems by a "forced" singular-—
1y perturbed mathematical model. In sections V
and VI two examples of air combat performance op-
timization, solved by FSPTand yielding feedback
controls, are presented.

II. Optimal Control of Autonomous Singularly
Perturbed Nonlinear Dynamic Systems

Since ailrcraft performance optimization in-
volves a set of autonomous nonlinear differential
equations (see Appendix) we concentrate on this
class of problems. An "§" dimensional dynpamic
system with a small parameter >0, described by

zo = F(z,u,¢) z(tg) = zg w

(u being an "m" dimensional control vector), has
a singularly perturbed structure if the state
vector z can be decomposed to subvectors x and y
(of dimensions "%-k" and " k" respectively) such
that Eq. (1) can be separated into

x = £(x,y,u,¢€)

x(tg) = x 2
ey = g(x,y,u,€) y(eg) = 3, (3

Due to the smallness of e, the comparison of the
rate of change of the variables clearly indicates

759

that x is the "slow" subvector of the problem and
y 1s the "fast" one.

The optimization problem consists of finding
the control vector u*(t,e) which transfers the
dynamic system (1), subject to a set of nondifferen-
tial constraints defined by

C(x,y,u,e) = 0 4)

to a "q" dimensional (q g%) terminal manifold (at
some time tf>t0) specified by

IP[x,y,EJt =0 5)
while minimizing a scalar cost function
't
J = ffL(x,y,u,e)dt (6)
t

Assuming ghat the functions £, g, C,¥, L are con—-
tinuous and differentiable in all of their argu-
ments, solution of this optimal control problem
can be stated. The first step is to define a
scalar function (the variational Hamiltonian)

T T T ,
B,y hga Aoy, )TN £ gy C %))

where A_, A_ are the vectors of the costate (ad-
joint) Faridbles and v 1s a vector of multipliers.
According the the Maximum Principle?’ the optimal
control vector has to maximize H

u*(t,€) = arg max H(x,y,Xx,Xy'.u,e) (8)

while the costate subvectors ’ly has to satisfy
the adjoint differential equatlons

. T T T
A= 2 _3L 7 3f T og "G (9)
X Ix 3% X 3x y 8x X
T T T
X 8H _ 3L _," 3f " 3g - 3C
eky =%y "3y "’ 5y A v (10)

y 3y y

The end values of the costate components are
determined at t = t_ by the "transversality condi-
tions" 27, expressiig the orthogonality of the ad-
joint vector to the tangent plane of the terminal
manifold § = 0. Moreover, since the problem is
autonomous, the Hamiltonian computed along an opti-
mal trajectory remains unchanged.

LI & % % * %
H AHx , Y, 2y Ags U, g) = const. (11)
If the final time tf is not prescribed this comstant
is zero.

In order to simplify the solution of such "2g" di-
mensional nonlinear two point boundary value prob-—
lem (NTPBVP) which is an iterative process,obviously
uncompatible with the requirements of an airborn
application, let us assume that all variables can
be expressed by uniformly valid (for all tgct stf)
power series of €.

x(t,e) = xp(t) +ex) (£) + e?x,(t) + ... (12)

M(Es8 ) = A (e) Hed (0 4+ e (B 4+ ... A3

y(t,€) = yo(t) + ey (£) + €2y, (£) + ... (14)
= 2 LIRS

Ay(t,e) Ayo () +e;\yl (t) +¢ Ayz(t) + (15)

ult,e) = yy (£) +eup(t) + ezuz(t) + o (16)



Such expansions, if they exist, satisfy the condi-
tions of asymptotic behaviour for e+02”$, the series
need not be convergent in the regular sense.
Taking €=0 as a zero order approximation, the dyna-
?ic sgs;em (2) (3) becomes of reduced dimensions

2= k). <

x° = £(x°,y°,u°,0) x°(tg) = xg an
0=g (x°,y°,u®,0) (18)
The respective adjoint equations are
T dH°
x 9x 19)
_ 3w
0= 3y (20)

Solution of this reduced order problem, or as

it is named'by analogy to fluid mechanics, "the
free stream i§ called the zero order outer solu-
tion (its variables are annoted by the superscript®).
It is a constrained optimization problem (see Eq.
(18)), where the "fast" variable y° plays the role
of a pseudo-control, as indicated by Eq. (20).
FEquation (18) allows the elimination of y° from the
equations. Substituting

y° = ¢(x°,u") (21)
the optimal control function of outer solution is
determined by

e (t) = arg max (H°(x°,x°x,u°,0) (22)

The zero order outer solution can be a good

approximation of the original control problem if €
is very small. However, it cannot satisfy the
initial condition y(ty) = yg or any terminal con-
straint involving the fast variable. This dis-
crepancy is corrected by "boundary layers" or
inner solutions (variables annoted by superscript
1) using a stretched time scale
t -ty
re — (23)
in the initial boundary layer and a similar one of
reversed direction

tf—t

§ = (24)

€
in the terminal layer.
The method of solution for both boundary layers

is analogous. For the sake of brevity only the
initial boundary layer solution will be presented

here. Substituting Eq. (23) into Eqs. (2), (3),
(9) and (10) setting € = 0 yields
i
d i i i i
E§—=ef(x sy ,u) = 05 x(0) = xq (25)
dy* i1 4 1
o= e&Ly L) y(0) =y (26)
i
dx: i
X .
& " a1 0 7
X
i
dx i
Y- _ 2H
dt Byi (28)

Consequently we obtain from Eqs. (25) and (27)

xi(T) = const = x (29)

Ai(r) = const = Axo(xg) (30)
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The optimal control of this zero order boundary
layer is determined by

Al i i i

u (t) = arg max H (xg,A_ »¥ ,li,u 0)

Xg y
In order to have a uniformly valid solution

for tgstgt_, it is necessary that integration of
Eq. (26) wgth the control function obtained by Eq.
(31), satisfy

31

lim y () = lim y° (32)
T + » t >ty
i.e.,

yor tm ST g (xg,y 008 = ¢(xosu (xg)) (33)

T >

Such "matching” (required also for all other vari-
ables) 1s possible if the following two conditions
of Tihonov! are satisfied:

(1) The initial boundary layer solution is asymp-
totically stable,
(2) The initial condition yg is in the '"domain of

attraction" of the asymptotically stable equi-
Llibrium point y§ = ¢ (xg,u(xg)) of the solution.

It was shown !2 that asymptotic stability of
the equilibrium point, determined by the outer so-
lution, is guaranteed if

-]
By, < 0 (34)
° o2 _ o o _o o 02
H 8%y 2 H gy g, + Huu gy <0 (35)

Stability conditions for a terminal boundary
layer are similar but has to be defined in the
reversed time direction (see Eq. (24). Consequent-
1y inequality (35) is reversed for a terminal
boundary layer. For a linear dynamic system it
means that for stable terminal boundary layer solu-
tions positive eigenvalues are required.

If the conditions of boundary layer stability
and matching are satisfied it is possible to con~
struct an additive composite control of zero order

dge) = W) + T - @ (36)
where (CP) 1is the common part in both control
functions o be cancelled by the matching

©®) = d°(to) (37)

This zero order uniformly valid "open loop"
approximationh of the optimal control function en-
ables to obtain a continuous solution of the tra-
jectory satisfying all boundary conditions. If
the accuracy of such suboptimal solution is not
satisfactory, improvement can be expected by taking
into account first and higher order terms of the
power geries expansions (12)-(16). This technique,
called "matched asymptotical expansions",?2’16 calls
to expand also the functions f,g,C and L to power
series of ¢.

Substitution of the expansions into the origi-
nal set of equations (2)-(10) yields, as zero order
terms, the "free stream" and zero order "boundary
layer" equations already solved above. Equating
the terms which multiply equal higher order powers



of e provides a set of linear differential equations.
From these equations the first and higher order
terms can be obtained recursively. Formally there
are separate expansions for the outer and inner
solutions and their respective terms have to be
matched.

Solving several lower dimension optimization
problems (as the "free stream" and the "boundary
layers') is no doubt a much simpler computational
task than the solution of the original one. How-
ever, if there is more than one 'fast™ state vari-
able in a boundary layer (k32) which cannot be pro-
perly linearized, the basic difficulties involved
in the iterative solution of a NTPBVP cannot be
avoided. Closed form solutions can be obtained
either if the boundary layer problems are linear-
quadractic25 or in the case of a single "fast"
variable (k=1).

For a one dimensional boundary layer Ai can be
eliminated from the Hamiltonian 4

o Jiad
R TR R Ay f(xo,yi,ﬁi) +
0 (38)

i i
+ Ay g(xq,y ’&i) = const = I°

Combining Eqs. (31) and (38) the optimal control
law for the boundary layer is obtained in a feed-
back form

ad
u

Al 4 Aal, 1

u [y ,xo,xxo(xo)] = U (y ,xg) (39)
If there exists a closed form solution for the

reduced order (free stream) problem, that is both

the control vector u° and the adjoint variable A;

can be expressed in a feedback from

i = §°(x°) (40)

o - o o

A = A (x) (41)
the zero order composite control can be written as

&g = §°(x°) + gi(yi,xo) - (CP)u 42)

Such formulation invites to express a zero
order optimal contrel in a true feedback form!S

ac ni

Uy =u (y,%) (43)

by replacing in the boundary layer control the fro-
zen initial condition of the slow variable by its
current value. It is easy to see that if the
matching conditions are satisfied, the composite
control is equal to the free stream control e
everywhere, but near to the initifal condition. On
the other hand, this expression allows the varia-
tions of the slow variable in boundary layer, which
indeed occur, since €is not really zero. Integra-
tion of the equations of motion (2) and (3) using
this uniformly valid feed hack control law yields an
approximation of the optimal trajectory which is
comparable to the first order approximation obtain-
ed by the "open loop" method of matched asymptotic
expansions.

A special case occurs if the original dynamic
system (1) is decomposed, due to appropriate time
scale separation, to multiple boundary layers with
a single state variable in each. Such a multiple
boundary layer system 1s described by

x = £(X,¥1s¥y «o Yk,u:E) 3 x(tg) = xg (44)

h|

ely = gj(x,yl et Fyo Us €) 5 Yj(to) = yJo (45)

i= k

The zero order composite control for such a
case is given by the control function ¢f the last
boundary layer (j=k) expressed as feedback of all
the state variables

¥ -k (= )
0 0 ’yl ’y2 .o yk

1>2

(46)
Such a control law is easy to implement in airborme

applications since the state variables can be di-
rectly measured.

Inherent Limitatilons of SPT

ITI.

We start by summarizing the set of assumptions
made,either explicitly or implicitly, in the pre-
vious section describing the technique of singular
perturbation in autonomous nonlinear optimal con-
trol problems:

(i) Both the original optimal problem formulated
by Eqs. (2)-(10) and its reduced order ver-
sion determined by Eqs. (17)-(22) have uni-
que solutions in the interval tg<t < te.

The functions f,g, C and L are differenti-
able with respect to their arguments.

(11)

(iii) The Tihonov conditions! are satisfied.

These hypotheses are necessary for the exist-
ence of uniformly valid expansions (12)-(16), which
guarantee that the zero order composite SPT solu-
tion 1s indeed a reasonable approximation (of the
order of 0(g)) to the original problem. In other
words, the existence of uniformly valid asymptotic
expansions indicates that the singular perturba-
tion problem 1s "well posed™.

In addition to the above listed necessary con-
ditions, a set of further hypotheses are required
to formally demonstrate the existence of a uni-
formly valid asymptotic solution. Such formal

proofs were given for linear systems28, for non-

‘linear systems of special structure?® and for non-
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linear systems with unconstrained control solu-
tions?3, In many problems of interest related to
aircraft performance optimization the validity of
the hypotheses can hardly be verified in advance.
In some other cases one of the assumptions is ob-
viously violated, but an SPT solutioncan, however,
be obtained. It can be thus conclud-
ed that the results of mathematical investigations
have only a limited value to guide the aircraft
performance analyst in the use of SPT (or FSPT).
When formulating an FSPT problem (by artificial
insertion of ¢) special care has to be taken to
avoid "ill posed" mathematical models.

A. "I11 Posed" Singular Perturbation Problems

Such problems can be characterized by one of
two different phenomena (or both):

(1) No satisfactory zero-order composite solu-
tion can be found.



(11) Higher order terms of the asymptotic expan-
sion cannot be determined.

In a recent paper29 three types of autonomous
nonlinear singularly perturbed optimal control pro-—
blems of "ill posed'" structures,encountered in at-
mospheric £light mechanics,were reported. They
are presented here merely as examples of warning
in furture analysis.

1) If any of the partial derivatives of the varia-
tional Hamiltonian becomes unbounded (or undeter-—
mined) for the reduced order solution the respective
variable cannot be expressed by a uniformly valid
asymptotic expansion. If this variable is the
“"fast state” y or the control u the condition
for boundary layer stability stated in Eq. (36)
cannot be satisfied, If 3H/9x is unbounded in the
"free stream" the costate variable A,° canmot be
determined. As a consequence the SPT solution
fails.

Though similar observations are mentioned in
previous works2®?3, their implication to flight
mechanics problems has not been pointed out. This
can, however, be a frequent case in aircraft per-
formance optimization. In horizontal (or nearly
horizontal) turning maneuvers at the rate of
change of the azimuth angle is expressed by

x=£& /2 -1 (47)
and the aerodynamic load factor n is the commonly
used control variable. In cases where the "free
stream” solution is a straight line i.e.

=1 (48)
the partial derivative

X . &_n %9

vV T | g1 ‘
becomes infinite.

Such difficulty is generally avoided by re-
placing the aerodynamic load factor '"n" by the
bank angle "B" as a control variable. In nearly
horizontal flight (see Fig. 1)

rear view
Fig. 1: Force equilibrium in horizontal turn.
1
cos u == (50)

and consequently Eq. (47) can be written as
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y = &

X =5 tau (51)
for which the partial derivative

.8 1 (52)

dy v cosZy

has a finite value in the free stream (3° = 0).

In the other two cases state variables of
the same time scale (either the "slow" free stream
variables or variables in one of the boundary
layers) do not appear explicitly in the Hamilton-
ian. Such cases can be frequently encountered in
aircraft performance optimization where the hori-
zontal displacements (x,y) and sometimes also the
azimuth angle (x) do not influence the dynamics
(see Appendix). In Ref. 26 the set of such
possible problems is listed. The difficulties
created by passive behaviour are demonstrated here
(merely for the sake of simplicity) by a model of
one dimensional free stream and a single fast
variable (i.e.: 2=2, k=1).

2) Autonomous System with a Passive Fast
Variable.

Such a system is characterized by

x = £(x,u) ;s x(tg) = %9 , x(tf) = X (53)
ey = g(x,u); y(tg) =y , y(te) =y, # yo (54)
If the pay-off is also free from y
t
3= 1% Lxuwat (55)
to
then
My (56)

3y

In this case the zero order outer solution
is identical to the solution of the original un-
reduced problem with free end conditions on 7y ,
the "fast" variable., The zero order imner solu-
tions (boundary layers) are statlonary and conse-
quently no transition 1s possible between the dif-
ferent prescribed end conditions. Moreover,
higher order terms cannot be obtained due to con-
tradictory equations implying the non-existence of
a uniformly valid asymptotic expansion. This non-
existence is clearly indicated by the fact that
the reduced order solution cannot determine the
zero order term in the outer expansion of the fast
variable. (For more details see Ref. 26 and 29).
Due to these reasons the dynamic system (53),(54)
cannot be analysed by SPT. For any nonzero value
of ¢ the complete two-point boundary value problem
has to be solved.

Note that in this case the inequality (35)
cannot be satisfied. Comparison to a formal
mathematical analysis indicate that one of the
assumptions of the basic existence, theorem of the
SPT solution (condition (i) of Theorem 4.1 in Ref.
23), is violated.

3) Autonomous System with a Passive Slow
Variable_

These types of dynamic systems are described
by

x = £(y,u) ; x(tg) = xq ,x(tf) = % # xg (57)



= g(,u) 5 y(to) £ (58)
If the pay-off to be optimized is also independent
of x, i.e.,

b

7 L(y,u)dt
to

= y[) ’y(tf) = y

J (59)

the slow variable will not appear in the variation-
al Hamiltonian and consequently

=....__..0 A

= &
3% - onst

x (60)
In this case the zero order outer solution is sta-
tionary, or in other words the rate of change of
the slow variable is constant. The optimal values
of the original control G° and the pseudo control
y°® are determined Independently of the slow vari-
able x°. The zero order boundary layer solutions
are obtained in a feedback form using the constant
value of Ay ° derived from the free stream.

(61)

Matehing of the boundary layer solutions require
that

"
T i i, 1
v+ elyeT vy lar = y° (62)
and similarly for the terminal boundary layer
¥ 11,1
ve + S sly ,utyh1es = y° (63)

These equatigns can be used to determine the dura-
tions T and § of the respective boundary layers.
Variations of the slow variable during these
periods are computed by

T
@y = e J f[y,::i(y)]d, -
0 (64)
. f[z ,u(z )] dy
g[y ,u(y )1
Yo
5
N
2x(8) = € J £ly,u (y')1as =
0 yf
e _ e J [z 28 (z )] dy (65)
. glyl,utyh)]
y
The change %f x in the free stream is given by
t - —
fre
Ax° = J f(y° u°)dt = f(x ,u )[(t - tg) -
(66)

ta+-— T 4+ 6

€

]

Thus the total variation of the slow variable
is composed by 3 parts:, (1) variation in the ini-
tial boundary layer, Ax (t), (2) variation in the
- free stream 4x°, (3) variation in the terminal
boundary layer Ax (). Note that the variations
in the boundary layers do not depend on the end
conditions due to the passive role of x in the
equations. The duration of the free stream is
therefore determined from

Y] Y]
x %0 = AT # A0+ ML)
If the sum of the variations in the boundary layers
is larger than the value prescribed by the end con-
ditions, i,e.

(67)

763

sty + ax' @) >xpxmg (68)
this zero order SPT solution is not compatible.
Due to the statiomary free stream solution all
higher order terms of power series expansions are
indentically zero and therefore improvement cannot
be expected.

It can be concluded that an autonomous system
of a passive slow varlable can be solved using the
SPT approximation only for particular end condi-
tions. For other cases, the method of "constrain-
ed matching"30 was suggested. This method seems
to lead to a reasonable approximation, but it re-
quires an iterative procedure, which may not have
computational advantage compared to the exact
TPBVP solution.

Inherent Limitations of the SPT Feedback
Solution

B.

As it has been shown in the previous section,
the most appealing feature of an SPT solution lies
in its potential to provide feedback control laws.
Whenever such feedback solutions, requiring only
state variable measurements, cannot be obtained,
the SPT approximation loses substantially from its
attractiveness, It seems therefore important to
convey two observations, relating to the on-line
implementation of SPT solutions, which have not
yet been pointed out in previous works, Feedback
control implementation of SPT is inherently limited
to:

(1)

zero order approximation,
(11) problems without a terminal boundary layer.

These two limitations will be briefly discussed in
the sequel.

1. Computation of First and Higher Order Terms

For the sake of simplicity, one dimensional
free stream and a single boundary layer with scalar
control 1is assumed in this subsection, Since the
zero order SPT solution can be obtained in a feed-
back form (43) the state variables x,y are assumed
to be correct. They are indeed measured in a
real-time implementation or obtained by integration
of the state equations using (43)., Only the co-
state variables A_, Ay and the control u have to
be expanded in as?mptotic power series of € as in
(13), (15) and (16).

For the first order term of Eq. (3) in the
outer expaunsion yields
ey® = g(x°,y°(x),ud(x) + eu}) = g° + g (eui) (69)
Since y°(x) is known from Eqs. (22) and (40) the
corrective term for the control is directly ob—

tained

dy°®(x)
dx

£(x,y,ul(x))

gu(x’y,u?) (X)) (70)

ui (x,y) =

The first order term in the Hamiltonian of the
outer solution is

(L + l° (x)f + A“ (x)g ug + A 1f + lylg
(71)



where all functions and their partial derivatives
are computed for the aﬁgument (x,y,u’(x)). Opti-
mality requires that 3—3 = 0 and also HY = 0.
Consequently the relaggénship between the costate
correction terms is given by

N
.1 / X, g/t 72)
Substituting Eqs., (71) and (72) into the first
order term of Eq. (11)
dA? (x) an?
ja = —J1 - 1
Ay (x) s 3y 73)

gives a closed from feedback expregsion for the
costate coﬁfqgtions:
A )

o

oo 9% g L
e =g -8 dx Pu dx Luy = Axofuy™ *yoBuy
x) g fg_ - gf
a 8y = 8E,
= %Xl(x,y) (74)

while k;i (x,y) is obtained from Eq. (72).

In the inner expansion we have from Eq. (28)
the following first order term

dxil aaz . X
K T T 75

All terms of the right hand side are known from the
zero order solution thus Eq. (75) can be directly
integrated

i i T i i
A =t (0) + - -
xl(T) xl( ) of (Lx Axofx Ayogx)dT (76)
i
The unknown constant of integratiom A_ (0)
has to be determined by matching AL to A°*lof
the outer solution given by Eq. (7%}, i.e¥!
ZEo) =20 Gy - ST -l s ol gyar on
X3 X1 0 X XX yoUx
where ? is the duration of the initial zero order
boundary layer determined by
"~
yo + /7 gr,y)de = y° (o) (78)
i
Once Axso) is known, the initial boundary layer so-
lution”can be corrected to the first order by simp-
ly replacing AxO(xo) by
i i i i
Xx(x,y ) = AXO(O) + ekxl(x,y) (79)
in Eqs. (38) and (39). Consequently the unformly
valld composite control can be corrected to the
first order and expressed also in a feedback form.

However, it is obvious that the computational
process involving Eq. (76) can be carried out only
after the zero o{der trajectory is known. The
integration of A . (1) and the matching defined by
Eq. (77) are clegrly off-line computations. Con~—
sequently the first order SPT approximation cannot
be considered as a "true" (on-line) feedback solu-
tion. .

Computation of the second and higher order
terms follow a similar pattern requiring additional
iterations.

2. Terminal Boundary Layers

The existence of a uniformly valid SPT solu-
tion for fixed end points requires asymptotic sta-
bility of the terminal boundary layer solution in
the reversed stretched time scale of Eq. (22).
Such a solution is defined in a "open-loop" form

-t t

(e) = &1(—8 0) +0°() +

wi(cf B
u

€

Though formally the solution can be trans-

formed to a state feedback expression, its imple-
mentation as an on-Iine computational process pre-
sents serious difficulties. The source of these
difficulties, which were observed in some studies
10222 pyt have not been analysed, is the very fact

of asymptotic stability of the termimal boundary
layer in the reverse time scale.

) - (cp) (80)

The stability of the initial boundary layer
guarantees that a trajectory starting from any
initial condition in the domain of influence will
reach the reduced order solution. The feedback
solution in the form of Eq. (43) is uniformly valid
for the initial boundary layer and the "free stream".
Such a formulation is not sensitive to disturbances
in the state variables. Moreover, due to the
asymptotic stability the exact dgration of the
boundary layer characterized by T (see Eq. (78))
is not critical.

All these nice features do not exist in the
terminal boundary layer. For an on-line feedback
implementation, intended to reproduce the "open—
loop" solution, the uniformly valid initial boun-
dary layer and free stream control function has to
be "switched" to the form of the terminal boundary
layer control at a precise instant &, determined
by the matching of the fast variable (see Eq.(64)).
The exact timing is critical in order to satisfy
the prescribed end conditions. Being in the "free
stream" no state feedback information can be used
to determine the conditions for the boundary layer
initiation. This can be done only by an iterative
off-line integration of the equations of motion
until the prescribed end conditions are met. More-
over, even if it is correctly started, the terminal
bounday layer trajectory computed in the real (for-
ward) time direction is unstable with respect to
disturbances in the state variables. This inherent

" instability can be suppressed only by modifying the
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SPT control law. In summary, an implementable
feedback control near to the terminal manifold has
nothing in common with SPT.

Computation of a terminal boundary layer is
not required if the "fast" variables are free at
the terminal manifold. Thus feedback implementa-
tion of SPT analysis should be limited to such pro-
blems; moreover, one has to be satisfied with a
zero order approximation.

Formulation of Aircraft Performance
Optimization Problems by FSPT.

w.

In the equations of motion of atmospheric
flight mechanics (see Appendix) it is hard to find
genuine small parameters of physical significance
leading to formulate aircraft performance optimi-
zatlon problems with a singularly perturbed struc-
ture, Moreover, in many cases time scale separa-—
tion of the variables is well known either from



experience and/or analysis. For such cases the
following type of transormation can be suggested
Given the original dynamic system

He

= f(x,y,u) , x(ty) = xg )
81)

= g(x,y,u) ,

e

y(ty) = yg

where y is known to be the obvious "fast" variable
of the problem. The first step. is to rewrite the
equations (8l) in a non-dimensional form by setting

~

X = X/Xref
R (82)
y= y/yre.f

Thus the rate of change of normalized variables can
be compared. The reference values have to be
chosen in such a manner that the known time scale
separation is preserved and made evident, i.e.

dx | _ f/xref
day |

g/y’_,ef

3
$ep (83)

where eg<<0 is a genuine small parameter.

Now it is easy to define a normalized time
scale

t=t/t (84)

ref

such that the resulting set of differential equa-
tions

= £(x,y,u) 3 =x(tp) = xo/x_ ¢ _
A A~ oa n o~ (85)
d
& F sty 5 y(E) = voly,

has a mathematically true singularly perturbed
structure. It has to be remembered that such an
apparently arbitrary transformation has a practical
significance only if a genuine time scale separation
of variables exists.

The complication involved in such a transfor-
wmation (accompanied some times also by a loss of
physical insight) is, however, not necessary. In
previous works!2=17 it was suggested that a small
parameter ¢ should be artifically introduced to
multiply the time derivative of the "fast" variable

x = f(x,y,u) ; =x(tp) = xg
. (86)
ey = glx,y,u) ;3 y(ty) =yq

In this"forced" singularly perturbed formula-~
tion,s = 1. The approximation obtained by taking

= 0 can be regarded as a first phase of a "con-
tinuation" rocess?2’31,  Moreover, it can be de-
monstrated34 that the zero order SPT feedback con-
trols for the two dynamic systems (85) and (86)
are equivalent and consequently the respective
suboptimal trajectories are identical. Since we
have shown in the previous section that only the
zero order SPT approximation can be obtained in a
true feedback form, the use of "forced" singular
perturbation technique (FSPT) for on-line real
time applications is fully justified if the prob-
lem exhibits a genuine time scale separation.
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In order to avoid an unsuccessful analysis,
the following rules have to be observed,however,
at the formulation of a forced singularly pertur-
bed model for a non-linear optimization problem:

(i) "I11 posed" mathematical models have to be

avoided.
(11) The fast variable should be free on the
terminal manifold (to avoid terminal boun-
dary layer). .
(1ii) The reduced order problem has to exhibit

a reasonable similarity. to the original one.

Engineering judgement based on some knowledge
of the exact optimal solution is essential for
further guidance. It is particularly indispens-
able for the proper formulation of a multiple time
scale forced singular perturbation model.

Successful application of FSPT for aircraft
performance optimization is demonstrated in the
nextsections by two examples:

(a) An air to air interception in the horizon-
tal plane.

(b) A time optimal turning maneuver in the
vertical plane (half "loop").

V. Air to Air Interception in the Horizontal Plane

In this problem a fighter airplane equipped
with an air to air missile has to intercept in
minimum time an evading target flying at a.constant
speed V_ to a given direction. The relative
motion Eetween the two airplanes is described (see
Fig. 2) in polar coordinates by

comsmn
point

Fig. 2: Geometry of Pursuit.
= VE cosy - Vp cos(xp + ¥) , R(tg) = Rg (87)
b~ IV sin(x +9) - Vgstmp] (k) =g (89)

The dynamics of the pursuer airplane in a horizon-
tal plane at a given altitude (h) is determined by
(see Eqs. (A23) with Y = 0 and (51))



> -8
V= R (V) = DB,V ) ~ sec2ud, (V)] 3

H Vp(to) = VPO (89)

X =’% tgn 3 Xp(to) =X (90)

P P Po

where Dg(h,V ) and D,(h,V ) are zero lift drag and
the induced Hrag in straight and level flights
respectively.

The objective of the pursuer is to minimize
the time of capture te defined by
R(tf) Ad (91)

where "d" is the missile firing range using the set
of optimal controls n*,u* subject to the constraints

Ocnel 5 ='m o < Mooy (92)
The variational Hamiltonian of this problem is
therefore written as
H= -1+ %R[VEcosw - Vpcos(xp + )] -

1
- ing — =
xw[VEs ny Vpsin(xP + )] 2 + (93)

8 - - 2 : g
+ AVw[nTmax Dy - sec pDi] + Apr tgu

The necessary conditions of optimality include the
set of adjoint differential equations

A
. )i
AR T 73R E% [Vpsin(xp + ) - VEsinw] (94)
;oo _ 3B _ -
Aw ol v )\R[Vpsin(xp + ¢) VEsinw] +
1 (95)
+ ARV o8 (x, +9) - Vpeosy] 5 Ay (Eg) =0
A
T S v -
Ay avp ARcos(xP + ¥) R sin(xp + )
3T 3D, 3D
_ Bremax 7 2, 1
Ay gy v - sectigy ]+
P p P
. (96)
+AL ‘7;2; tgu ; Xv(tf_) =0
io=-238 _ 5 v sin( +¢)—1‘P—V<:os(+w)-
X X R'p Xp R pO%p ’
97

H Ax(tf) =0

The optimal control function n*, u* have to maxi-
mize the Hamiltonian

n#%*, 1% = arg max H

Osng1 (98)
H<Unax
yielding
1
3 =-E[1 + sign XV] 3 AV #0 99)
MNow
% = —r__
tgu Ay 2VD (100)
pi
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Moreover, since the problem is autonomous
and the final time is not prescribed
H* A H(n*,p* ...) = 0 (101)
An approximate feedback solution of this NTPBVP is
attempted by transforming the original set of dif-
ferential equations to a multiple boundary layer
forced singular perturbation system, Similar
problemsm"'21 were analysed by FSPT in the past
based on slightly different formulation. The
present analysis is a part of an ongoing effort33
concentrated to express the optimal control func-
tion in a direct state feedback form. Qur trans-
formation is based on the following observations
indicating time scale separation of the variables:

(i) If the initial distance of separation R, is
large compared to the radius of turn of the
pursuer, the rate of change of the line of
sight ¢ is much slower than the direction
change of the aircraft.

(ii) The longitudinal acceleration of an airplane
is much smaller than the lateral accelera-
tions experienced in turning maneuvers.

Consequently the differential equations
describing pursuer dynamics (89) and (90) are
replaced by

eV =5 (qT_ -~ Dy - sec?uD,) 3 V. (ty) =V_ (102
P W (n max 0 u i) H p( 0) Po (102)
29 = 8&_ . =

€ = t t = 103
X5 v gu 3 xp(t0) = %, (103)

while Eqs. (87) and (88) remain unchanged.

Similarly the costate equation (96) and (97)

become
) -

dv— 5 AV&H 0 (104)

P
e2% = -8 A (t) =0 (105)
X Xy x £

By setting € = 0 the reduced order problem is ob-

tained. Its solution is rather simple,
§e =0 (106)
neT D -D, =0 (107)
" max i

Moreover, Eqs. (104) and (105) indicate that in

this outer solution V_ and x_ play the roles of

control variables maxgmizingp the reduced Hamil-
tonian defined by

o A _ o po o fo
B & -1+ 0p R4 A0 9 (108)
subject to the constraints (106) and 107)
Consequently we obtain for (%‘ =1)
Vp = max arg {T__-Dy-D, =0} (109)
and
AO
tg(x° + ¥°) = - —b— (110
g(xp ) Y



The optimal direction X is the well known

"collision course" defined by

[ -] = o
Vp sinB VEsinw (111)
where, for the sake of simplification, we define
(see Fig, 2)

A,
B ='Xp +9 (112)
The costate variables A° and A° are expressed in
a feedback form L
=1
© =
AR VocosB® - V_cosy® (113)
p E
o
Ao = R tgﬁ (114)

) [ o
¥ VpcosB Vv cosy

Substituting (111) into (88) reconfirms that §°=0
as required bv the constant bearing collision
course.

The first zero order initial boundary layer
equations are obtained by using the stretched time
seale

At
TG (115)
and setting again e = 0 These equations yield
i i
alt ! Px Py it =0 (116)
dr; dr dr, dt i
1 i 1
avt
—RdTi =g ("Tpax ~Do~D) V(0 = v 117)
0
i
da i
ot w1 (118)
i v
P
where Hi is defined as

iA 1 1 i i 1
H=1+2° (V cosyg-V cas + A° - =
ECOSY¥g %0 87) wo(VPSinB VEsin¢q)R0+

is_
+ XV W[nTma

ximization of Hl with respect to the controls n,
Xp leads to

x Do - Di] (119)

i

i
n V]

= 211 + sign xi 40 (120)

R“)t° =) = ’gp (121)

where i can be eliminated from (119) (since opti-
mality and matching require that H™ = 0) yielding

i i
’g =‘Xp+l[}0“t

VASGIR 'S
e oy » PP (122)
cosBo(VpcosBO - VEcoswo) Toax ~ D0 ~ Dy
Due to (109) Ai >0 and consequently ﬁi =1, indica-

ting that full thrust is optimal. The matching

requirement
im Viev + 1 ABT - Dy - D.)dr, = v° (123)
e P Pg Tpeo' W max 0 Rt | p

is automatically satisfied.

The second initial boundary layer deals with
turning dynamics using another stretched time scale
defined by

A i t
‘['j c ==y (124)
and setting e= 0 we obtain
| k| h| j
) dwj dV g By g
e Tl ool el ol el (125)
i h| h| h| h| !
3
dx
S = 126
i 5,‘5 tgu X, (0 =%, (126)
P
dx 3
. __gﬂ (127)
"3 *p
where B} is defined by
14 _ o S S P
H 1+ XRO[VEcoswo VpocosB 1
1,1 i
+ A% = (V_ sinBY - V_sinyg) +
YoRo PO E 0
ig e Dr - sec?
+ AVQW(Tmax Dg sec uDi) +
+a) B gy (128)
X Vij
0
The necessary conditions of optimality
3 ] |
i g W
= oA g = (129)
- NUoavip
po 1
and Hj(uj) 0 enables us to express the optimal
bank angle u susing (122), in a feedback form
i
T __ —-Dp~D v
i E
g2 = = s RiLvi 1 -
i P Po

- cos(8d —8°)] (130)
The sign of tgu has to be such that the Eesulting
turn tends to decrease the difference (B~ -B°) =

h|

= (Xp - Xp); thus . ;
X

sign(tgad) = signgﬁrl) = gign (B° —Bj) (131)
b

The uniformly valid composite control function
is obtained by replacing the frozen initial values
of the state variables in (130) by their current
(measured) value

A Tmax-Do’—D
={32'( T _ v

i P P

egh° 5 [1-cos(s - Bg12¥s

osign(B; ~=B) (132)

where R° is the instantaneous collision direction
defined by

BD = gin (133)

_1
o (VEsind;/Vp)
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Results of a numerical example are shown in
Figs. 3 - 5. :

®
20 40 60 80
o e tised
-200 3
-400 I
Ro=9 Km o= 40°
-60° Voo =210 m/sec Xpo120°
-g0° F Ve=i50 m/sec npo=4.5
di{t}=05Km t;=83sec
Fig. 3: Optimal FSPT bank angle.
120° Ro=9 Km Vo= 40°
Vp, =210 m/sec  x,2120°
900 | Ve=150 m/sect  npg,=4.5
d{t)s0.5Km  1;=83 sec
S \xpth)
30° -
o 20 40 60 50 [eec]
e| B9
Fig. 4: Time history of pursuer direction.
V[m/sec] o
Ve
30— e
280
260 |
240 Ro=9 Km \Po=4°°
Ve, =210 m/sec  x,=120°
220 Vez150 m/sec  npe=4.5
200 | d{t)=05Km t;=283 sec
0 20 ‘ ‘40 ‘ 6‘0 ‘ éO tfsec]
Fig. 5: Time histroy of pursuer velocity.

The following remarks, relating to the feed-
back control law of (182), are of interest:

(1) Comparing Eqs. (129) to (100) it is clearly
seen that the FSPP and the original optimal
control expressions are formally identical.
The only difference is that the costate vari-
ables in Eq. (129) are approximated using
FSPT analysis.

(ii) When V_ tends towards V° the FSPT control re-
mains finite since at Vg = V° Eq. (109) holds.
At the limit P
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1im Tmax—DO _Di=
vV -»v° vp - Vp
PP (134)
9
=7 limo EY (Tmax - Do - Di)>0
Vp—rvp P

(iii) Near to the collision course Eq. (132) can
be expressed as

tgil® = - k(Y ) (8- £7) (135)

and consequently

- g _ e

X, == & kw6 - 8 (136)
P

IJ;\ such a condition the rate of turn of the line of
sight is given approximately

v
: 'p .  qe
b = o= cosBy (B Bv) (137)

Combining Egs. (136) and (137) we obtain

X = - N(V_,R)$
Xp ( P’ i
which is a proportional navigation control law with
variable gain N(VP,R).

(138)

VI. Minimm Time "Half-Loop".

In this vertical turning maneuver, which is
frequently used in air to air combat, the pilot
wants to change rapidly his heading by nearly 180°
while gaining altitude. It is a pull up maneuver
initiated from level flight. In order to preserve
agility the maneuver has to be performed without
excessive loss of specific energy. The optimal
control problem can be thus formulated for a mini-
mum time maneuver between prescribed specific ener-
gy levels,

The variables for a maneuver in the vertical
plane are defined in Fig. 6.

Fig. 6: Variables in Vertical Motion.

The. equation of motion for the half-loop ma-
neuver using the specific energy-

E &n +v2/2g (139)



as a state variable (rather than the velocity) can
be written as [see Eqs. (A-24)(A-25)(A-5) and (A-7)
with x = 0]

B= T - Do - 0%, E(tq)=Eg B(t)=E;  (140)
v = @ - cosy) 3 Y(tg)=0 y(£)=m  (141)
h = Vsiny ; h(tg)=hg (142)
X = Vcosy ; X(tg)=0 (143)

The variational Hamiltonian for this problem is
T -DO—Di

H=-1+ 2V n max

E(n-
W +ﬁY V(n cosY)+Athiny +

+ Ax Vcosy+ constraints (144)

The necessary conditions for optimality require
that the costate variables satisfy the adjoint set
of differentlal equations.

hg = - BH/BElh
A = - 3H/3
Y /a3y
. (145)
A, BH/Bh‘E
)‘x = - 3H/3X =0
with the boundary conditions
xh(tf) = Ax(tf) =0 (146)

The optimal control functions n*(t), n*(t)
have to maximize the Hamiltonian

n*, n* = arg max H (E,Y,h,AE,AY,Ah,n,n) (147)
n,n

yielding for the thrust control

n* = ¥[sign AE + 1] 3 AE #0 (148)

The optimal unconstrained load factor is obtained

n¥ é.i‘l_ £, v (149)
ZXE \4 Di
This problem was investigatedin previous works!!®26
by several methods including FSPT analysis. In
this example the recent results of the FSPT analy-
51528 are briefly presented.

The investigations of optimal turning maneuvers
have shown, that 1f a substantial energy loss is
permitted by the prescribed value of E_, the major
part (including the terminal phase) of the manuever
is performed at an almost constant specific energy
level. A rapid loss of specific energy occurs at
the initial phase of the pull-up. Based on this
observation it is proposed to select, for the time
optimal problem defined in this section the speci-
fic energy as the''fast" variable of the problem.

The mathematical formulation of the forced
singular perturbation problem leads for this case
to replace Eq. (140) by

b= — Dn= 02D Y
eE (nTmax Dg- n Di)W (150)

while the other state equations remain unchanged.
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If ¢ tends toward zero an equality constraint of
"thrust is equal to drag" has to be satisfied.

The variational Hamiltonian of the forced
singular perturbation problem and the original one
are identical, as well as the adjoint equations
for A_, Ah and A_. The only modified costate equa-

X
tion 1s

s ol
2 3E

E (151)

h

which requires, for € + 0, to maximize the Hamilton-
ian as a function of the specific energy. It can
be interpreted as to choose, for any given set of
"y" and "h", the value of specific energy (or speed
since the altitude is given) that maximizes the
vertical turning rate, subject to the constraint

T = D (an analoguée of the best sustained horizontal
turn). This approach is called FSPT 1.

Since such reduced solutions cannot satisfy
the prescribed end conditions,both initial and ter-
minal boundary layer solutions are required. In
order to avoid difficulties created in a terminal
boundary layer (as mentioned in section 3B) an al-
ternative formulation (FSPT2) was also suggested3”.
The terminal boundary layer is not required if the
reduced order solution is considered to be flown
at the prescribed final specific energy level Ef
In this "suboptimal" formulation Eq. (151) is 1ot
used and A2 is regarded as a simple constraint mul-
tiplier.

For both versions the FSPT solution is obtain-
ed in a feedback form and the respective results
can be compared as in Ref. 26.

"
In the reduced order solution the controls n°,
n° are obtained directly from the constraints:

a) structural limit load factor (thrust is
less than maximum:

Yo o g .
max
Dg +n% D (152)
Yo = 0 max i
Tmax

b) maximum available thrust equals drag:
T - Dok

Yo max

" =[ D J

. 1 (153)

n® =1

¢) aerodynamic 1ift limit (thrust is less
than maximum):

Vo _ . A
n= n(clmag) s A
., Do*nfD, (154)
n = —T—
max

In the first version (FSPT 1)the optimal specific
energy E° is determined by Eq. (151) with e = 0.

Since the controls are known,free stream tra-
jectories can be computed directly without requir-
ing the solution of a NTPBVP. For each version
the adjoint variables are integrated backwards
along these trajectoris and stored as a function



of vy (the genuine independent variable of the prob-

lem). The terminal value of A° is determined from

H® = 0 yielding v
VD

1
A° =B
Y(tf) 8

'v—nE T 1 (155)
The initial boundary layer problem obtained by the
stretching, transformation has,only a single state
variable E, Consequently A can be eliminated
from the Hamiltonian and the optimal unconstrained
1oad—factor can be determined in a feedback from
the following quadratic equation:

v
Ao
By

nT_ -]
@&t (1-2°Vsiny] + (—DaX 7.
h b,

)2- 20 [cosy+ %0 (156)

It can be shown that this quadratic has two
positive real roots. The larger root corresponds
to negative specific energy rate and it is the re-
levant one to problems with (Ey >E°). When this
sglution does not violate the control comstraints
A, will bg positive and as a consequence full

tErust & =1) hag to be used. For constrained
load-factor "nc" A can be found from the Hamil-
tonian

i,nd oW o g e _
AE(n Tmax Dy n )W 1 AY V(nc cosy) XnVsiny (157)

The term multiplying A; is the specific energy rate,
assumed to be negative even with full thru§t, to
satisfy Eg > E°. Therefore the sign of A; which
determines the value of n~ is opposite to Ehe sign
of the right g}de in (157). For Ey < E° always
full thrust (n~ = 1) is required.

The terminal boundary layer,which has to com-
plete the solution of the FSPT 1 version,is formally
similar. However, it cannot be implemented in feed-
back form for forward integration of the equations
of motion (see section 3B). For such a purpose an
iterative procedure was used requiring an increased
computational effort.

Solutions of both FSPT versions are compared
to the exact optimal results in Figs. 7 and 8.

8
3_—\%
—

’ 14
o° 30° 60° 90° 200 150° 180°

1 [sec]
exoct ——— 1980
FSPT, —o—o— 19.97

FSPT —x—%—. 20.10

o° 30° 60° 80° 120° 150° 180° 4

Fig. 7: Optimal Load Factor and Specific Energy

vs. Flight Path Angle.
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Fig. 8: Optimal "Half-Loop" Trajectories.

VII. Concluding Remarks

In this paper the challenges and the pitfalls
of FSPT application in aircraft performance opti-
mization are discussed. The attention is focused
on the multiple time scale version of the singular
perturbation methodology, the only one possessing
the potential to provide feedback control strate-
gles. The importance of such a solution cannot
be overemphasized for real-time on-line airborne
implementations, as well as for qualitative trade-
off analysis at the preliminary design phase of a
new airplane.

This appealing approach has, however, certain
limitations which have not been pointed out in pre-
vious works. The paper issues a warning on these
difficulties, in order to avoid frustrating dis-
appointments in future analysis. It is shown that
the attractive freature of true feedback control is
limited,as a zero order approximation only,to non-
linear optimization problems without terminal boun-
dary layers.

The paper also attempts to provide some gulde-
lines for the appropriate formulation of aircraft
performance optimization problems for FSPT analysis.
It indicates that the FSPT approach is justified if

(1) the time scale seﬁaration of the variables is
correctly assessed, and

(ii1) 1ill-posed mathematical models are avoided.

The examples given in this paper demonstrate
that the FSPT methodology (being, by the way,
equally applicable to solve non-linear zero-sum
differential games 35) is a useful and productive
tool of analysis. It is strongly believed that
properly applied FSPT may lead to an enhanced in-
sight in aircraft performance optimization and con-
sequently to improved designs and operatioms.

Append ix

Mathematical Model of Atmospheric Flight Mechanics

The motion of a point mass l1ifting vehicle
over a flat non-rotating earth, assuming symmetrical



flight, is governed by the following set of non-
linear ordinary differential equations:
nTmax(h,V)cos(a+ T) -D

V=g W ~ siny (A1)
. nT___(h,V) sin(ote.) + L
Y = %{ LS W T cosy - c08yJ (A2)
nT (h,V) sina+e,,) + L
¢ . g _max T
X =y W cosy siny (A3)
W = - (h,V,T) %)
X=V cosy cosy (A5)
Y=V cosy siny (A6)
h =V siny (A7).
where
1
L =35 p(h) V28 ¢y (a,M) (A8)
1
D =35 p(h) VZScD(M,cL) (49)

For a parabolic drag polar

= 2
Cp M1,C; ) CDO(M) + K(M) Cf(a,M) (A10)
The aerodynamic load factor is defined by
(h) V2 ¢ (a,M)
AL L'
n= i W (A1l)
S
and the drag force can be expressed as
D =Dy + 0?2 D, = D(h,V,n) (a12)

i

where Dy is the zero lift drag and D; the induced
drage in level flight

R W?

D, = 1
E‘O(h) vZ s

i (A13)

In many cases the specific‘energy of the aircraft,
defined by

v2
2

g
is used as a state variable and Eq.(Al) is replaced
by

edn+ S (A14)

nTmax cos (a+ sT) -D
W

E v (AL5)

The control variables for the point mass equa-

tions are the throttle parameter 'n, the angle of
attack o, the thrust deflection relative to the
body axis €,,, and the bank angle®u’
(A7) the aerodynamic load factor‘n*or the lift co-
efficient C. may be used as alternative control
variables instead of the angle of attack a.

As any airplane maneuver should take place in
the "dynamic flight emvelope" the following con-
straints have to be satisfied.

(1) State Constraints

Minimum altitude limit

h> 0 ' (A16)

In Eqs.{Al) -

Maximum dynamic pressure limit

q=%—o(h) VZ<aq o (a17)
Maximum Mach number limit
v < a(h) Mo (A18)
Loft ceiling"h; limit, expressed by
p(hL)v2>—Lw£—> (A19)
max

(2) Control Constraints

Assuming that'n"replaces o as control variable
the control constraints can be expressed as

0<n<l (A20)

|n| < nmax (A21)
Hi) vie, o)

In|< w/smax = o (h,M) (A22)

Note that the problem has no
on the time.

explicit dependence

In many performance optimization problems
small angles of attack, constant weight and fixed
thrust direction can be assumed,yielding a simpli-
fied set of equations replacing (Al)-(A3)

. T oo ~Do -n?D

V=g — - sinY] (A23)
or alternatively

R nTma -Dp -n Di

; = %-(n cosy = cosy) (A25)

c_g8gn sinu 26

X V cosy (a26)
which, however, remain non-linear.
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