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Abstract

A numerical evaluation of various methods for
predicting the buckling load of axially compressed
stringer stiffened shells in the presence of
initial imperfections was carried out. Both
simplified amalytical methods and refined computer
codes based on finite difference energy formulation
(STAGS) were used. The analytical predictions were
validated by comparison with the experimentally
determined buckling load. As a result of this
investigation a method is proposed which makes it
possible to take into account both the effect of
initial imperfections and the effect of the
appropriate boundary conditions.

.List of symbols

Ay —~ cross—sectional area of stringer
A, (x),A1(x) - axial dependence of the radial
imperfection, see Eq. (27)
AjosAkRsBke - coefficients of the half-wave
cosine Fourier representation,
see Eq. (1) ——
c - Poisson's effect, ¢ =\/3(1 --\))2
CresDkg - coefficients of the half-wave
sine Fourier representation,
see Eq. (2) '
d; - stringer spacing
Dyx s Dxy s Dyy - effective bending stiffnesses,

see Reference [6]

ej — distance between centroid of
stringer cross-section and
middle surface of skin

E - Young's modulus
£,F - Airy stress functionms
HXX’HXY’Hyy - effective stretching stiffnesses,
see Reference [6]
ik - number of half-waves in the
axial direction
I —- moment of inertia of stringer

cross—section about its

centroidal axis

torsional modulus of the stringer

cross—-section

2 - number of full waves in the
circumferential direction

L - shell length

My - moment resultant

NMgs-3 - perfect shell buckling load
using membrane prebuckling
analysis and $S-3 boundary
condition

Ng ~ collapse load of imperfect shell,
Ng = -Ag Et%/cR

Nx,ny,Ny - stress resultants

T8 - analytical imperfection model
parameters, see Eq. (22)

Qx> Qxy» Qpy - effective torsional stiffnesses,
see Reference [6]
R - shell radius
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t - shell thickness

U,V,w - axial, circumferential and radial
displacement components, respec-—
tively

wo(x) ,wy(x),W - radial displacement, positive

o outward, see Eq. (28)

W W - radial imperfection from perfect

- cylinder

WiosWicg»Witg - initial imperfection harmonics,

; see Eq. (20)

(XY - axial and circumferential coor-

dinates on the middle surface
of the shell, respectively

X,¥ - nondimensional coordinates,
% = mx/R, § = y/R

Xa,X — analytical imperfection model
parameters, see Eq. (22)

Z - Batdorf's shell parameter,
Z = (L2/Re) V1-v2

oy sBg - mode shape parameters, see

Reference [6]
“ nondimensional stiffener para-

?D k2"
> meters, see Reference [6]

] - circumferential coordinate, 0=y/R

A -~ nondimensional loading parameter,
A= cRNx/Et2

Aci ~- classical axisymmetric buckling
load

Aekyg, ~ classical asymmetric buckling
load, see Eq. (10)

Ag — collapse load of imperfect shell

v - Poisson's ratio

£1,82 ~ axisymmetric and asymmetric

_ response amplitudes, respectively

£1.82 - axisymmetric and asymmetric
imperfection amplitudes, respec-—

. tively

£ - equivalent initial imperfection
amplitude

P - nondimensional loading parameter,

P = Ng/NMgg-3
1. Introduction

The stability caleculations of axially compressed
cylindrical shells continue as one of the most
difficult and most challenging of all the structural
analysis problems. To illustrate this fact, in
figure 1 the available experimental results for
axially compressed stringer stiffened shells have
been plotted as a function of Batdorf's Z parameter.
The experimental buckling loads have beennormalized
by the theoretical buckling loads computed from a
linearized small deflection theory using SS5-3
(Nxy = v =w = Mg = 0) boundary conditions. The
effects of in-plane boundary conditions 1 and of
initial imperfectionsl3] have been accepted as the
main cause for the wide experimental scatter seen
in this figure. Despite this recognition the
incorporation of these factors into a rational



design procedure has not been accomplished as yet.
Actual shell structures are still being designed

in the old-fashioned way by using an empirical
knock-down factor such that, when it is multiplied
by the classical buckling load a lower bound to all
the available experimental data for the given con-
figuration is obtained. If, however, all the effort
and money spent in recent years on research in
shell stability and on developing sophisticated
computer codes is to become bemeficial to all the
practicing structural engineers, then it is
necessary to combine the latest scientific findings
into a shell design approach which accounts for the
effects of both the initial imperfections and the
correct experimental boundary conditions.

Since it is felt that the mathematical and ex-
perimental tools for handling axially compressed
stringer stiffened shells have been sufficiently
developed, therefore in this paper a concentrated
effort is made toward finding a method (or methods)
which will reliably and economically predict the
buckling loads of such shells. It is considered
especially desirable to ascertain whether or not
one can calculate the buckling load from measured
(or predicted) initial imperfections by using one
of the specialized or simplified analytical methods
[3,4,5,6?, or whether it is necessary to resort
to one of the large multipurpose computer codes
such as STAGS[7] for satisfactory solution. In all
the examples presented the 1abofaiory scale shell
AS-2, tested in 1970 at Caltechl8) ig used, since
for this shell complete surface scans made before
and during the buckling test are available.

Finally the buckling loads calculated by the dif-
ferent methods are compared with the experimental
buckling load.

2. Experimental program

For a detailed description of the test program
dealing with buckling tests of axially compressed
machined integrally stiffened cylindrical shells
the reader is referred to Reference [8]. Here only’
the principal results are summarized which are
needed for the analytical and numerical buckling
load calculations reported in this paper.

The geometry of the stringer stiffened shell
AS-2 is shown in Fig. 2. The geometric and material
properties are summarized in Table 1. The buckling
test was carried out in a controlled end displace-
ment type testing machine with an attached scanning
device built around a noncontacting capacitance
type pick-up. After the shell was installed in the
testing machine, the pick-up calibration was per-—
formed and an initial scan was taken. Then the
axial load was increased in small increments and
the scanning repeated until buckling occurred. Data
reduction was done using the procedure described
in detail in Reference [5]. The cards containing
the measured deviations from the perfect shell at
zero axial load were used to prepare the 3-dimen-
sional plot of the initial imperfections shown in
Fig. 3 by offsetting the origin of the successive
circumferential scans by the proper amount along
both the x—- and y-axes.

The coefficients of the following double
Fourier series

N
w(x,y) =tW(x,y) =t I Aio cos 1—;—% m
i=0
N
krx Ly . Ry
+ t k%gﬁo cos B (Akz cos ifUFBkR sin T
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and
= = N kmx
w(x,y) = tW(x,y) =t X I sin < -
k,2=0
Ly I 5'4
(Ckﬁ cos 3=+ Dk2 sin 7 (2)

which were computed numerically, are displayed in
Tables 2 and 3. For clearer representation any
amplitude smaller than 0.005 t (= 0.0001 cm) was
replaced by zero. It should be noticed that for

the stringer stiffened shell AS-2 the amplitudes of
the axisymmetric imperfections (£ = 0) are imsigni-
ficant.

The available experimental data will be used with
different analytical methods. Thereby initial im~
perfection representations of increasing complexity
will be used.

3. Analytical results

Since the pioneering works of Donnell ‘and Wan[gl
and Koiter[lgﬁ many different approximate methods
[4,11,12] have been proposed to take into account
the effect of different types of initial imper-
fections when calculating the buckling loads of
axially compressed cylindrical shells. Before
briefly summarizing the most important ones let us
first consider the mathematical formulation of

the stability problem.

Assuming that the stiffener properties are
"smeared out" and using the component of displace-
ment W normal to the shell midsurface (positive
outward) and an Airy stress function F (with
Ng = F,yy, Ny = F,yx and Nxy = —F,xy) as the .
dependent variablesé then the governing equations
can be written as

1 1 =
LH(F) - LQ(W) =§‘ W’XX —‘7 LNL (W,W+ ZW) (3)

1 -
LQ(F) +LD(W) =_‘§' F’XX+LNL(F’W+W) (4)

where the linear operators are

NG TS TG NNNES. SO NUL N G P

L€ = U v g C Vg # Qg € Do (9)

+D_ (),

+D
xy( )ox vy yyyy

Ly ()=D_ (), vy

and the nonlinear operator is

(6)

+S,

T
yy °

Ly (8D =8, Too =25, T, =

xy

Subscripts following a comma denote partial differ-
entiation. The parameters Dyxx, Hyxs Quxs Dxys oe+»s
etc., are defined in Reference [6].

These equations, together with the appropriate
boundary conditions, govern the behaviour of
circular cylindrical shells

1. Tn the prebuckling stress and deformation

state.



2. At the limit point or bifurcation point (if
there is one).

3. In the postbuckling stress and deformation
state.

When discussing the effects of the different
types of imperfectioms it is customary to compare
the buckling loads of the imperfect shells to the
buckling load of the perfect shell,.

3.1, Classical linearized small-deflection theory
for a perfect shelll6l

For a perfect shell, W = 0. If one assumes a
"membrane" prebuckling solution and lets W,F re-
present small perturbations at the bifurcation
point, then

H
v XX a
W E)‘tlﬂll €)]
2 2
= - EtZ Ay
F = — RZ + F (8)

Direct substitution into Eqs. (3) and (4) and
deletion of products of the perturbation quantities

Xielfs a set of linearized stability equations in
W, F el These -equations admit solutions of the
form

L . kix Ly-

W= A sin I s R

k % @
F = in ST 2y
F = B sin T cos

leading to a standard eigenvalue problem with eigen-
values

by 2,2
N L B Mok, ¥ %) (10)
kg 2 2 2 =
% YH,k,40
where
2
_ Et
Mg = Aeg T E an
and the parameters ?D k% ?Q,k,l, +oey ete., are

defined in Reference I61. The variation of the
nondimensional classical buckling load p as a
function of the axial half wave number k and the
circumferential wave number £ is shown in Fig, 4.
For the stringer stiffened shell AS-2 the lowest
eigenvalue (p = 1.0) is single valued and is
associated with an asymmetric mode that has one
half wave in" the axial direction and 10 waves in
the circumferential direction. Also, as can be
seen from Fig. 4 there are only three modes with
eigenvalues less than 1.10 (within 10% of the
lowest eigenvalue p = 1.0). As a matter of fact
there are only a few modes with eigenvalues less
than 1.50. Also it should be mentioned that the
eigenfunctions satisfy the classical simply
supported boundary conditions (Nx = v = w = My = 0).
The normalizing factor in this case is NMgg-3 =
-229.8 N/cm (= -131.2 LB/IN).

If one assumes that the imperfections of the
real shell can be represented by some "equivalent"
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axisymmetric imperfection then the governing
equations (3) and (4) can be solved quite readily.

3.2, Effect of axisymmetric imperfection[lll

Suppose at the bifurcation point

*

We=W + @ s F=F + F (12)

where Wx, F* represent the prebuckling solution and
#i, ¥ are small preturbations at buckling. Direct
substitution into Eqs. (3) and (4) and deletion of
squares and higher order- terms of the perturbation
quantities yields a set of nonlinear governing
equations for the prebuckling.quantities[6] and a
set of linearized stability equations governing the
perturbation quantitiesl®l,

For a given axisymmetric imperfection the pre-
buckling problem is also axisymmetric and a parti-
cular solution of the governing ordinary differen-
tial equations is obtained in a straight forward
manner. If as a first approximation the effect of
boundary conditions is neglected then one does not
have to include the complementary solutions.

Assuming separable solutions the linearized
stability equations can be solved as follows.

First a particular solution of the compatibility
equation is obtained for F. This guarantees that
a kinematically admissible displacement field is
associated with an approximate solution of the
equilibrium equation. Then a straight forward
application of Galerkin's procedure yields a
characteristic equation in the form of a _cubic
polynomial in the eigenvalue parameter aL4,6,11]1,

It is known that from an axisymmetric prebuckling
state bifurcation may occur into either a symmetric
or an antisymmetric mode. For shell AS-2 all the
cases investigated has a symmetric prebuckling
state., For the case shown in Fig. 5 the initial
imperfection consisted of a full wave cosine
mode pointing inward at the middle of the shell.
This resulted in a prebuckling state dominated by a
full wave cosine axisymmetric mode with the radial
deflection pointing inward at the midplane of the
shell. Bifurcation occurs into an, in the axial
direction symmetric mode consisting of a half wave
sine in the axial and 10 full waves in the
circumferential direction. For increasing initial
imperfection amplitudes &| bifurcation occurs at
ever smaller values of the axial load parameter p.
Thus, for instance, for &; = 1.0 pp1F = 0.53.

The use of the results of this analysis, as
represented by Fig. 5 with the experimentally
measured initial imperfection harmonics of Tables
2 and 3 yields "knock-down" factors of practically
1.0 for shell AS-2, This failure to predict any
noticeable decrease of the buckling load is due to
the fact that the amplitudes of the axisymmetric
harmonics of interest (k =2 for the half-wave
cosine) are very small (Az,o = 0.005). If one
computes the RMS (root mean square) value of the
measured axisymmetric distribution (see Reference
[14] for details) and uses it as the amplitude of
the required harmonic, even then no significant
"knock~down" factors can be found by this approach,

If one accepts the "WHITE NOISE" assumption
that all initial imperfection components have the
same amplitude, then it follows that the largest
knock-down factor will be caused by that component
which corresponds to the buckling mode of the
lowest (or classical) buckling load. For the



stringer stiffened shell AS-2 the lowest bucling shell AS-2 will carry as a function of the
load is associated with an asymmetric bucling mode. amplitude £y of an asymmetric imperfection consis-
ting of a half wave sine in the axial direction and

3.3. Effect of asymmetric imperfection (b-factor 10 full waves in the circumferential direction., For
method) [4] instance, for £y = 1.0, pg = 0.584. The line with
. the arrows indicates the effect.of the measured
Koiter has shown that the buckling load of an initial imperfections, thus for
imperfect shell Ag (defined as the maximum load
the structure can support prior to buckling) is o V/E______—E__ﬂ
related to the imperfection amplitude £y and the g = CI,IO + DI,IO = 0.054 , o = 0.93

postbuckling coefficient b by

Experimental evidence, like the initial imper-

A \3/2 A . . .
-5 -3 = 5 |7 fection plot for shell AS-2 shown in Fig. 3, seems
(1 lckg) S 2 3 Xckz ngI for b<0 (13) to indicate that in a given shell both axisymme-
tric and asymmetric imperfection components are
present
if the lowest buckling load is single valued .and
the associated buckling mode is asymmetric., Im- 3.4, Effect of axisymmetric and asymmetric imper-
perfection sensitive structures are characterized fections (2-mode solution) (16l
by negative values of b.
To calculate the postbuckling coefficient b for If one assumes that the initial radial imper-
the case where a unique buckling mode W(1), F(1) fection is given by '
corresponds to the classical buckling load Acky,
one begins by assuming a solution valid in the = _ . -
initial postbuckling regime in the form of an §;= El cos 1%5 + 52 sin 1—t%icos %} (16)
asymptotic expansion
(0) (1) . .2.(2) then any equilibrium state of the axially loaded
W= AW + EW +E°W +ene cylinder can be represented by
o p (O, (D 2.(2) v, ex inx . ke %y
F=XF" +8F "+ETF " +,,. (14) W=Et>\l—+ﬁ-+t€l cos -L—+t£2 sin —= cos 7
2 2 (17)
;‘ = 1+ag+bErs ... F=-E—E—%ﬁ)\+f
kL
A formal substitution of this expansion into the An approximate solution of the nonlinear Donnell-
nonlinear Donnell type equations (3) and (4) for a type equations is obtained as follows. First, the
perfect shell (W = 0) generates a sequence of compatibility equation (3) is solved exactly for
linear equations for the functions appearing in the the stress function f in terms of the assumed radial
expansion. General expressions for the post-buck- displacement W and the measured imperfection W. In
ling coefficients a and b have been derived by this solution only the effect of initial imperfec-
Budiansky and Butchinsonl15], tions on the buckling load is of interest. Hence,
As mentioned before the stringer stiffened shell only a particular solution of Eq. (3) needs to be
AS-2 has a single valued lowest buckling load with considered. Second, the equilibrium equation (4) is
an asymmetric buckling mode solved approximately by substituting therein F, W

and W, and then applying Galerkin's procedure. This
(1) A kTx Ly procedure yields the-following set of nonlinear )
W = Gy sin == cos 3 (15) algebraic equations in terms of the unknown ampli-
tudes £; and g9:

In this case the first post-buckling coefficient "a" 2 -~ -
is identically zero and the b-factor method is (es = A) E]-C](%E +E,E,)-C (E,+E) &, (18)
: . . i : 2 272 2V=2 0 =27 B2

applicable. If one neglects prebuckling deformations,
then the classical membrane solution satisfies the _ _ _ _
governing equations of the Oth order state. The +Cz[(€1~P€]) 52*'5152](52*'52)=’151
set of equations for W(l1), r(1) ig just the clas-
sical eigenvalue problem discussed earlier. Finally
for W(2), F(2) one must solve a set of linear, in- - - -
homogeneous partial differential equations whose (Ackﬁ‘x) 52"03[2(€]+51) €2+€152]‘C4(52+€2) 51
forcing functions involve the W(1), F(1) terms.
These equations admit separable solutions whose 2 < -
unknown coefficients are readily determined by + (Cg+clo)(%€2 +£2€2) (£2+£2)
Galerkin's procedurel6l, Finally the post-buckling
coefficient b is calc?lated by evaluating the
integrals indicatedl4].

It should be remarked here that the b—factor is
actually a property of the perfect shell. Once the

+C LEHED E,+E ETEHE) = AE,

b-factor is calculated for a given shell geometry The coefficients C; through Cj| are 1i§ted in .
then a plot like the one in Fig. 6 can be plotted. Reference [6]. The underscored quadratlc-c?uplfng
This figure shows the amount of axial load the terms vanish identically unless the condition i= 2k
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is satisfied. It has been shown in Reference [17]
that the cubic terms should not be neglected.
Solution of these nonlinear equations yields the
equilibrium configuration of the finite shell as
a function of A shown in Fig. 7. If )\ attains a
maximum as the compressive axial load is increased,
then by definition this value of A = Ag at the
limit point is associated with the buckling load.
Working with different combinations of harmonics
it is possible to locate the "pair of critical
modal components", defined as that combination of
one axisymmetric and one asymmetric component that
would yield the lowest value for Ag for identical
initial amplitudes. :

For shell AS-2 this critical pair consists
of the asymmetric classical buckling mode (1,10)
and the axisymmetric mode (2,0), which satisfies
the quadratic coupling condition i = 2k. Here the
notation (2,0) stands for an axisymmetric cosine
mode with two half waves in the axial direction,
whereas (1,10) denotes an asymmetric mode with a
half wave sine in the axial and 10 full waves in
the circumferential direction. For an initial
imperfection consisting of the pair of critical
modal components Fig. 8 shows the amount of axial
load shell AS-2 will carry as a function of the
indicated imperfection amplitudes. Curves for
constant values of the axisymmetric imperfection
El and for increasing values of the asymmetric
imperfection £9 are plotted. The line with the
arrows indicates the effect of the measured initial
imperfections when this model is used (pg = 0.91).

In order to incorporate any desired detail of
themeasured initial imperfections and to model
the nonlinear interaction between certain modal
components one must resort to doube Fourier re-
presentations,

3.5. Effect of general imperfections (multimode
solution)[3,12]

Initially, by Newton's method of quasilineari-
zation the nonlinear Donnell type imperfect shell
equations (3) and (4) are reduced to a set of
linear partial differential equations for deter-
mining the correction terms 6F, 6W. If one re—
presents the initial imperfections by

v Mo N2 _
% = Z wio cos 5%5 + I % Wkg sin E%E cos %%
i=1 k,2=1
(20)
N3
+ XX Wéz sin E%E sin %g
k,2=1

then these equations admit separable solutions[3],
The unknown coefficients are determined by
Galerkin's procedure yielding a set of linear alge~
braic equations in terms of the unknown correction
terms. In matrix notation

-V}
~£®)

[a] {sF} + [B] {ow}
[c] {6F} + [D] {&w}

@n

To obtain the buckling load for a given imper-
fect cylindrical shell one begins by making an
initial guess for {W} and {F} at a small initial

load level A. Iteratiom is then carried out until
the correction vectors are smaller than some
preselected value. The converged solutions then are
used as the initial guess at the next higher axial
load level X + A\, The entire process is repeated
for increasing values of the axial load parameter
A. Close to the limit point one then switches to
increments in the nonlinear part of the end-short-
ening ASyy,, which makes it possible to integrate
around the limit point..By definition, the value
of the loading parameter A corresponding to the
limit point will be the theoretical buckling load.
When applying the Multimode Analysis to the
shell AS-2 the amplitudes of the harmonic
components could be selected from the values given
in Tables 2 and 3. However, when obSﬁrving such
data displayed on a log-log basisl 18] it is evident
that the imperfection amplitude coefficients can be
approximated by straight lines as follows:

W, = s W, o= (22)
io k% KFe8
where

ﬁ.o = amplitude of the ith axisymmetric Fourier
*t cosine harmonic,

e = amplitude of the k,lth asymmetric Fourier
_  _ sine harmonic,
XA’ X, q, r, s = coefficients obtained by least

square fitting the measured
data

This imperfection model has several advantages.
In the first place, the correlation studies carried
out with shells other than AS-2 required in some
cases imperfection amplitudes at wave numbers that
were not measured. This was due to the fact that
the early experimental data spacing was not
sufficiently close to resolve all the harmonic
amplitudes of interest. Therefore, the imperfection
model was fitted over the wave numbers actually
measured and then the amplitudes of the harmonics of
interest could be obtained by extrapolation. The
accuracy of this procedure is as yet unknown.

Secondly, the imperfection model fitting is a
numerical smoothing operation of the experimental
data. It is felt that such an operation is desirable
due to. the experimental scatter experienced in
obtaining the imperfection measurements.

Thirdly, it is highly desirable to have an
imperfection model that represents a class of shells
manufactured by a given process. Utilizing this
characteristic imperfection model the multimode
analysis can be used to carry out imperfection
gensitivity calculations, enabling the designer to
choose a more realistic "knock-down factor" for
the shell well before the detailed shell imperfec-
tions are available. The parameters of the imper-—
fection model used for shell AS-2 are given in
Table 4.

Since the number of modes that can be included
in the analysis is limited by practical consider-
ations, the question arises: "How does one decide
which of the many harmonic components are important
and hence should be included in the analysis?"
Previous studies with axially compressed cylindrical
[3,6] have shown that imperfections dominate the
behaviour of the shell if at or close to the lowest
eigenvalue the corresponding modes have significant
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initial amplitudes. Conversaly, imperfections do
not play such a significant role if at or close

to the lowest eigenvalue the corresponding modes
have no significant initial amplitudes. Hence one
must always consider the distribution of the eigen-—
values for a given shell and the amplitudes of the
Fourier coefficients of the measured initial imper-
fections simultaneously.

The normalized buckling loads for shell AS-2
are shown in Fig. 4. As mentioned before these
eigenvalues were computed using a membrane pre-
buckling solution with the classical simply
supported boundary conditions (Ny=v=w=M,=0),
and they are normalized by the lowest buckling
load NMgg-3 = -229.8 N/em (= -131.2 LB/IN). The
lowest eigenvalue (p = 1.0) is single valued and
is associated with an asymmetric buckling mode
with one half-wave in the axial direction and 10
full waves in the circumferential direction. Com-
paring the distribution of eigenvalues with the
initial amplitudes of the corresponding eigen-—
functions (or Fourier coefficients) shown in
Table 3, one expects that, since there are
significant initial imperfections close to the
(1,10) mode, the buckling load of the real (im-
perfect) shell AS-2 will be noticeably lower than
the corresponding classical value obtained for the
perfect shell.

Results of buckling load calculations for shell
AS-2 using the multimode analysis are summarized
in Table 5. In this table the notation (2,0)
denotes a cosine axisymmetric mode with two half-
waves in the axial direction, whereas (1,10)
denotes an asymmetric mode with a single half-wave
sine in the axial direction and 10 full waves in
the circumferential direction. Comparing the
result of the 2~mode solution with that of the
4-mode solution it is evident that the additional
short wavelength modes have only an insignificant
effect. The reason for this becomes immediately
evident if one considers the distribution of
eigenvalues for the shell AS-2 shown in Fig. 4.
Only the eigenvalues of a few asymmetric modes
with long wavelength in the axial direction are
close to the lowest eigenvalue, which in this case
is asymmetric. Coupling of these modes results in
a significant decrease in the predicted buckling
load. The in this case insignificant effect of the
short wave-length axial modes is further illustra-
ted by the fact that after the elimination of
these modes from the l4-modes imperfection model
one obtains a buckling load of pg = 0.825 (7-modes
solution), only slightly higher than the value of

=.0.824 which the l4-modes solution itself
predicts.

In selecting additional modes, besides the
magnitude of the initial imperfection and the
relative size of the corresponding eigenvalue,
special attention must be given to the satisfaction
of the axial and circumffrential coupling condi-
tions. It has been shownl!9] that for the degene-
rate case of one axisymmetric (i,o0) and one
asymmetric mode (k,%2) there is a single coupling
relation i = 2k. Furthermore, it has been found
that coupling between three asymmetric modes with
wave-numbers (k,%), (m,n) and (p,q) will occur if
the relations k+m+p = odd integer and q = |2:n|
hold. This implies that if the coupling conditions
are satisfied, then the resulting buckling load of
the shell will be lower than the buckling load
which is predicted with each mode considered
separately.

The results of Table 5 indicate that the in-
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clusion of properly chosen additional modes leads
to decreasing buckling loads. That is, in going
from a 2-modes to a 7-modes solution, the addition
of 5 new modes results in a 87 decrease of the
predicted buckling load. For the l4-modes solution,
the inclusion of seven additional modes produces
only a further 0.1% decrease. This behaviour
suggests that there is a point beyond which the
addition of more modes will not necessarily result
in a further significant decrease of the predicted
buekling load. Hence the value of pg = 0.82 will
be used as the estimated lower limit.

To calculate the theoretical buckling load of
the real (imperfect) externally stringer stiffened
shell AS-2 one must also include the effects of
the in-plane boundary conditions. This can be done
by the formula proposed in Reference [20]. In the
experlmental set—up the ends of the shell wer
cast in Cerrolow, a low melting point alloy[S]
one assumes that this corresponds to a C-4 boundary
condition (u=v=w=w,,=0) then

NS, = Py Mg, = (0.82)(-320.8) =-263.1 N/cm

= (0.82)(~183.2) =-150.22 LB/IN
(23)

If, however, one claims that the experimental
boundary conditions are C-3 (Ny=v=w=w,,=0) then

N§o_y = P, My_5 = (0.82)(-256.9) ==210.7 N/cm

= (0.82)(-146.7) =-120.29 LB/IN
' (24)

In the actual test the shell AS-2 buckled at

Npxp = -226.4 N/cm (= -129.3 LB/IN) [8). Thus
NSg-4 = -263.1 N/cm and Ngg.3 = -210.7 N/cm repre—
sent an upper and a lower bound to the experimental
buckling load. Still the discrepancy between the
predicted and the experimental buckling loads
needs an explanation. To this effect especially
the question of the correct experimental boundary
conditions and the adequacy of the representation
of the measured initial imperfections by the pro-
posed imperfection models will be investigated.

4. Numerical results

Since the purpose of the work reported in this
paper was to investigate the capability of
different methods available for predicting the
buckling of stiffened circular cylinders in the
presence of meerfectlons, therefore it was de[21]
c1d d o use the ex isting computer codes BOSOR

and stags! for carrying out the 1nvest1—
gatlons reported in the following sections.

4.1. Study of the experimental boundary conditions

In calculating the buckling loads of cylindrical
shells, particularly axially stiffened shells, it
is important to carefully consider the actual
boundary conditions of the shell. The important
parameters appear to be the axial stiffness which
causes the difference between SS-3 and SS-4 (see
Table 6 for definition of boundary conditions) or
C-3 and C—4, and the end ring torsional stiffness
which causes the difference between S5-3 and C-3
or S8S-4 and C-4. It is usually assumed that the
end support structure is rigid enough to suppress



the radial displacement w and the circumferential
displacement v.

Singer and Rosen[23,24] pave studied the end
support fixity problem., This work has utilized
an experimental determination of the natural
frequencies of the test shell to predict the
appropriate stiffness parameters. The experiments
are conducted while the shell is under some axial
load to insure a good contact between shell and end
fixture. The published results[23,24) indicate that
the typical experimental "clamped" boundary con-—
dition is somewhat less than fully clamped (C-4).
However, it is not clear if this is an axial
restraint problem or one of torsional restraint,
although Singer and Rosen assume it to be the
torsional restraint for the experimental end
fixity in question. From their results on 4
"clamped" shells (RO-3!, RO-33, RO-45, RO-46) they
conclude that the theoretical buckling load using
the experimental boundary conditions would be
reduced 2-9% from the fully clamped (C-4) boundary
condition. This reduction correlates well with the
nondimensional stiffener moment of inertia
(I11/d;t3), with the lightly stiffened shells
having a smaller reduction from the C-4 boundary
condition. Compared to th? stiffened shells tested
by Singer and Rosenl23,24] ghe11 as-2[8] falls
near the lower end of the stiffener parameters.
Although the end fixture arrangement is quite
different, one would expect about .a 2-3Z reduction
from the buckling load with C-4 boundary condition.

In order to further confirm this conclusion, a
theoretical investigation was undertaken using the
SRA-codel22], The actual test setup consists of 3
cylindrical pieces in series which arf ?onded to
the end plates of the testing machinel8!. The first
is a heavy steel cylinder which is used as a
spacer. The test shell is attached to this spacer
and in turn is supported on the other end by an
end ring attached to another short cylinder serving
as a load cell. The load is determined by 24
strain gages spaced around the circumference of the
load cell cylinder. A drawing of the arrangement
and the computer model parameters used in SRA are
shown in Fig. 9. )

With this model the buckling load was computed
using the branch of SRA which includes nonlinear
prebuckling deformation. This program incorporates
an automatic choice of the integration steps which
guarantees that the convergence criterion set by
the user is satisfied. The results showed that the
buckling load of the complete model was -316.6
N/em (= -180.8 LB/IN) and that the shell buckled
into 14 full waves around the circumference and 2
half waves along the length. The prebuckling
displacement and the buckling mode are shown in
Fig. 10. As can be seen from this figure, the ends
of the shell do not undergo much displacement either
before buckling or during buckling.

In order to assess the influence of the experi-
mental end fixity on the buckling load, the buck-
ling load with idealized C-4 boundary condition must
be determined. Reference [3] reports this buckling
load as 316.8 N/em (= 180.9 LB/IN) using the same
SRA code. Comparing the two values the buckling
load using experimental boundary conditions is
0.067 lower. The conclusion, therefore, is reached
that the experimental setup as used in the buckling
test of shell as-2[8 very nearly approaches the
idealized fully clamped (C-4) boundary condition.
Thus in the remainder of this work this idealized
(C-4) boundary condition will be used for the
computer models.

Next the collapse analysis capabilities of the
STAGS-A codewere tested by comparison with
existing solutions obtained by a different analysis
technique. It should be mentioned here that all
the results discussed in the following sections
were obtained with a fully double precision version
of STAGS-A, which is operational on the IBM370-158
at the Delft University of Technology. Thus the
difference in single precision word length between
the CDC and the IBM computers no longer can cause
any problems.

4.2, Collapse analysis with idealized imperfections

Rather than writing a special subroutine WIMP
for each imperfection model to be tested, it was
decided to write a general subroutine WIMP which
allows the input of imperfection data on cards.
For this the initial imperfection is represented
by the following double Fourier series:

= Ny - Np o - -
W=+t I W, cos ix+t X Z W, sin kx cos Ly
. io k&
i=1 kod=1 (25)
N3 - -
+t XL Z Wig sin kx sin Ry
ky2=1

where X = 7x/L, ¥ = y/R. This is the same repre-
fe?tation that is used for the Multimode Analysis
3

To check out this subroutine and to test the
collapse analysis capabilities of the STAGS-A code
the following idealized imperfection model is used

=il

= 0.01 cos 2% + 0.50 sin x cos £§ (26)

where with the C-3 boundary conditions £ = 11,
whereas with C-4 £ = 13, In the STAGS-A code
positive radial displacement is outward. For the
test runs the stringer stiffened shell XS-1 is
employed. This shell has exactly the same dimensions
as the shell AS-2, except that its length is 10.16
cem (= 4.0 IN) instead of 13.97 (= 5.5 IN). For
comparison there are results available, which were
obtained by different analysis technique for C-3
and C-4 boundary conditions.

This so-called Extended Analysis[ZO] solves the
imperfect shell collapse problem by making an
assumption on the circumferential dependence of
the initial imperfection and the response variables.
The resulting nonlinear two—point boundary value
problem is solved using a multi segment.shooting
technique. This leaves complete freedom in the
axial dependence of the shell deflections and
stresses but restricts their circumferential
dependence. For example, for an initial imperfection
of the form

W(x,0) = tA (x) + tA (x) cos 28 @7

where 0 =
of x, the
follows:

y/R and Ao(x), A{(x) are known functions
radial displacement W is expressed as

W(x,0) = two(x) + twl(x) cos 28 (28)

694



where wgo(x), wi(x) are unknown functions of x.

The STAGS code, on the other hand, does not
restrict the variation in either the axial or
circumferential directions. It is obvious, however,
that if the initial imperfection is periodic with
period 2m/% radians then the STAGS analysis can be
accomplished using only a small segment of the
complete shell. For the present analysis the
initial imperfection is also symmetric in the axial
direction about the center of the shell. Thus a
further reduction in the segment used for the
analysis is possible with the recognition, that
the response will be symmetric also about the
center of the segment isolated by periodicity.
This allows the analysis to be completed in a
sector shown in Figure 11.

From the results of the study of the experi-—
mental boundary conditions it was concluded that
they could be adequately modeled by the
idealized C-4 boundary condition. This presents
one problem, however, since the C-4 boundary
condition on the buckling mode suppresses the
axial displacement u at both ends of the shell,
thereby preventing any load from being applied
to the shell. This can be circumvented by
applying an axial displacement to one end of
the shell while holding the other end fixed.
Unfortunately, in a nonlinear imperfect shell
analysis, the axial displacement is a difficult
quantity to estimate beforehand, while the axial
collapse load can be roughly guessed from prior
analytical results.

This problem was dealt with by initially running
the imperfect shell with the idealized C-3 boundary
condition at the loaded end. The average u values
at the loaded end then can be used to estimate
the axial displacements that should be applied
in the case with the C-4 boundary condition. The
results of the STAGS-S run with C-3 boundary
conditions at the loaded end were validated by
comparing them to siTilar results obtained by the
Extended Analysis[20 . Figure 12 shows the maximum
displacement as a function of axial load. This
maximum displacement is the radial displacement
Wat x = L/2 and 6 = 120/11 = 16.36°. Each point
indicated by a circle represents a nonlinear STAGS
run., Above the last point the solution would not
converge at even a very small load increment, It
was assumed that this represented the collapse load
which corresponds to pg = 0.607. The load parameter
p has been nondimensionalized by the perfect shell
buckling load, which for the shell XS-1 is
-283.0 N/cm_(= -161.6 LB/IN) for thT C~3 boundary
conditionl”l, The Extended Analysis 20] results
are given by the solid curve. Its limit point
occurs at pg = 0.635, which is very close to the
value obtained by STAGS.

It seems reasonable that STAGS produces a lower
result since it used a coarser mesh. In the
Extended Analysis the integration step sizes are
chosen automatically such that the specified local
truncation error tolerance is satisfied.

The shapes of the collapse modes obtained by the
two analyses are shown in Fig. 13. The points
indicated by circles represent the STAGS analysis
and the solid lines are from Reference [20]. A
comparison at equal loads becomes impossible near
the collapse point since the Extended Analysis
goes to higher loads than the STAGS results. It is
apparent from Fig. 13a, and it has been shown in
Reference [25] that if the comparison is made at
equal maximum amplitudes then for the axial
variation of the radial displacement at 6 = 16.36°
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the results are identical to within plotting accu-
racy. For the circumferential variation of the
radial displacement at x = L/2, Fig. 13b, minor
differences will remain also in that case. Consi-
dering the completely different analysis techniques
the agreement is quite good.

Next the modeling of the C-4 boundary condition,
by applying a given axial displacement at the
loaded end, was validate? bﬁ comparison with an
Extended Analysis result 201, The radial displace-
ment W at x = L/2 and 0 = 180/13 = 13.85° (the
maximum displacement W/t) as a function of the load
is shown in Fig. 14. The points indicated by the
circles represent the nonlinear STAGS runs. In
this case the use of increments in axial displace-
ment instead of increments in axial load makes it
possible to get converged solutions on the other
side of the limit point, that is on the decreasing
branch of the load—displacement curve. By defini-
tion the axial load at the limit point corresponds
to the collapse load pg = 0.597. The load parameter
p has been here nondimensionalized by the perfect
shell buckling load, which for the shell XS-1 is
-357.3 N/fm (= -204.0 LB/IN) for the C—4 boundary
condition 3]. The Extended Analysis[zol results
are given by the solid curve. Its limit point
occurs at pg = 0.616, which is once again very close
to the value obtained by STAGS. :

A comparison of the collapse modes obtained by
the two analyses is shown in Fig. 15. It is appa-
rent from Fig. 15a, showing the axial variation of
the radial displacement at § = 13.85°, that if the
comparison is made at equal maximum amplitudes then
the STAGS solution, indicated ?z Ehe circles, and
the Extended Analysis solution!20., indicated by
the solid line, are identical to within plotting
accuracy. However, for the circumferential variation
of the radial displacement at x = L/2, shown in
Fig. 15b, minor differences will remain also then.
Summarizing one ¢an state that also in this case
the agreement between the two solutions is
remarkably good.

With these results the correctness of the general
imperfection subroutine WIMP and the modeling of
the C—4 boundary conditions, by applying axial
displacements at one end while holding the other
end fixed, has been established.

5. Collapse analysis with
measured initial imperfections

Now that a method has been found to model the
experimental (C-4) boundary conditions and the
general imperfection subroutine WIMP is available,
the actual imperfections of the stringer stiffened
shell AS-2 can be modeled and a collapse analysis
carried out using STAGS. This is not as simple a
task as might be imagined. To begin with, it is
not practical to model the whole shell due to the
large number of mesh points required. This require-
ment arises from the fact that it appears reasonable
that the imperfect shell will collapse with a
predominant circumferential wave form near that
of the perfect shell (14 full waves). Using a
criterion of 9 mesh points per half wave, the
number of points in the circumferential direction
would be approximately 250, Also one needs at least
41 points in the axial directiop, according to the
convergence studies reported 14], Thus the number
of unknows will be exceedingly large (~ 34000) and
the band width of the stiffness matrix too high
(~ 340). Because of this nonlinear iterations cannot



be carried out in a reasonable amount of time. It
is, therefore, imperative that the shell be sub~
divided in some appropriate manner.

From a look at the measured initial imperfec-
tions (Fig. 3) it is not clear where the
appropriate subdivisions should be made. This
means that an indefinite number of STAGS runs
would be necessary in order to establish, by some
process of elimination, the degree of refinement
that is necessary to model adequately the effects
of the measured initial imperfections. Since the
computer funds available for this study were
limited, it was decided to use the initial STAGS
runs to validate the results obtained by the
Multimode Analysis[3] corrected for the effect
of the boundary conditions with the formula
proposed in Reference [20]. In case that positive
correlation between the approximate Multimode
Analysis results and the rigorous STAGS solutions
is possible, then obviously the above mentioned
process of elimination in search of an adequate
imperfection model can be rup with the much
cheaper Multimode Analysis 3], once the final
model has been established then it can be validated
by a single of the more expensive STAGS runms.

5.1. The 7-mode imperfection model

If one chooses the following 7-mode imperfection
model

=

= 0.0061 cos 2x~ (0.5072 cos 2y +0.0801 cos 9y
+0.0704 cos 10y + 0.0626 cos 11y + 0.0320 cos 19y

+0.0283 cos 21y) sin x (29)

which is symmetric in the axial direction about the
center of the shell, then only half of the shell
length needs to be modeled. However, the imper-—
fection model includes modes with both even and

odd numbered circumferential waves. This implies
that in order to be able to use symmetry conditions
at 8 = 0 and 6 = AQ, half the shell perimeter must
be modeled (AD = 18?°z Based on the results of
convergence studies 14] this leads to the use of

a discrete model consisting of 21 x 131 mesh
points. The amplitudes of the asymmetric modes are
taken as negative in oider to satisfy the favorable
coupling conditionsl 14 s, which require that at

x = L/2 and 6 (= y/R) = 0 both the axisymmetric

and the asymmetric modes must point inward.

In Figure 16 the maximum displacement is plotted
as a function of the axial load. Here the maximum
displacement is the radial displacement W at x=1L/2
and 6 = 0. The results of the nonlinear STAGS
runs are indicated by circles. Above the last
point the determinant of the stiffness matrix
changes sign indicating the occurrence of an insta-
bility. The axial load corresponding to the last
converged solution is the collapse load pg = 0.829.
The load parameter P has been nondimensionalized
by ~320.8 N/cm (= ~183.2 LB/IN), which is the
buckling load for the perfect shell AS~2 using

membrane prebuckling and C-4 boundary conditions[3l

The results of the corresponding Multimode Analysis
are given by the solid curve. Its limit point
occurs at pg = 0.825, which agrees just about
exactly with the value obtained by STAGS-A.
Further, as can be seen from Figures 17 and 18, the
shapes of the radial displacements at the center of
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the shell (at x = L/2) plotted as a function of

the circumferential angle § are very similar for
the two methods. Their amplitudes are, however,
different by about a factor of 2. This difference
is due to the fact that the STAGS-A runs use C~4
boundary conditions, whereas the Multimode Analysis
satisfies approximately SS-3 boundary conditioms.
As is known, under otherwise identical conditioms,
the maximum radial displacements are for SS-3
boundary conditions by about a factor of two bigger
than for C-4 boundary conditions.

Whereas by proper modeling it was possible to
achieve excellent agreement between the predictions
of the approximate Multimode Analysis and the .
rigorous STAGS-A solution, still the predicted
buckling load of Ng = (0.83)(-320.8) = -266.3 N/em
(= -152.1 LB/IN) is about 187 higher than the
experimental buckling load of Ngxp = —226.4 N/cm
(= -129.3 LB/IN)[S]. As discussed earlier part of
the disagreement might be caused by the difference
between the experimental and the idealized (C-4)
boundary conditions. On the other hand our
numerical study indicates that, if one assumes that
by casting the shell ends into Cerrolow a rather
stiff conmnection between the shell wall and the end
rings is produced, then the C-4 idealization of the
experimental boundary conditions is certainly
accurate.

Another explanation for the 187 difference be-
tween the predicted and the experimental buckling
load may lie in the fact that the imperfection
models used up to now do not include enough of the
significant imperfection components. Thus further
attempts should be made trying to model the
measured initial imperfections more accurately.

In Reference [14] it was shown that the inclusion
of 30 properly chosen initial imperfection harmonics
resulted in a buckling load of

Ngo_y = Pg N, = (0.760)(~320.8) =~243.8 N/em

= (0.760)(~183.2) =-139,2 LB/IN
(30)

which is only slightly higher than the experimental
buckling load of shell AS-2 of Ngxp = —-226.4 N/em
= =129,3 LB/IN). This result shows that it is
possible to find imperfection representations that
will predict the experimental buckling loads quite
accurately.

6. Conclusions

This investigation has shown that when for the
stringer stiffened shell AS-2 the experimentally
determined initial imperfection amplitudes are
used, the analysis based on simplified imperfection
models all predict "knock-down" factors only
slightly less than ome. Thus neither a single
axisymmetrix imperfection, not an asymmetric im-
perfection which is affine to the lowest classical
buckling mode, nor the so-called 2-Mode Solution
consisting of one axisymmetric and one asymmetric
mode will predict buckling loads anywhere close to
the experimental buckling load if the measured
initial amplitudes are used.

The excellent agreement between the properly
nondimensionalized Multimode result and the
rigorous STAGS solution with all the favorable
coupling conditions satisfied suggests the following
approach to calculate the appropriate "knock-down"
factors based on measured or predicted initial



imperfection distributions. Initially the relative-
ly inexpensive Multimode Analysis should be used
to establish by judicious choice of the imper-
fection and response modes the appropriate initial
imperfection model, that will adequately represent
the effect of the measured or predicted initial
imperfections. Next the effect of the appropriate
boundary conditions is included by the use of the
proper normalizing factor as described in Refer-
ence [20]. At the end the predictions are verified by
a single STAGS-run using the imperfection model
arrived at by the last Multimode Analysis run.

Finally it will also be necessary to carry out

similar correlation sfu?ies with the externally
fing stiffened shells!8l and the isotropic shells

5] tested at Caltech. For these shells the shapes
of the buckling modes are strongly influenced by
the type of prebuckling analyses employed, which
is not so for the stringer stiffened shell AS-2
used in this investigation. This may affect the
correlation between the results obtained by the
Multimode Analysis and by STAGS runms.
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Table 4. Summary of the imperfection model para-
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Table 6. Definition of the boundary conditions.
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Fig. 5. Imperfection sensitivity for axisymmetric
imperfection only (Shell AS-2).
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Fig. 6. Imperfection sensitivity for asymmetric
imperfection only (Shell AS-2,b=-0.0308).
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Fig. 9. Test set-up and corresponding computer
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Fig. 11. Shell segment used for collapse analysis
with idealized imperfections (Shell XS-1).
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Fig. 12. Comparison of Extended Analysis and
STAGS-A (Shell XS—~1; Boundary conditions:
Ny=ve=w=w,u=0; 2=11).
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a) Radiol displacement at ©:16.36° b) Radial displacement at xl./2

and STAGS-A (Shell XS-1; Boundary

conditions: Ny=v=w=My=0; L=11).
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Fig. 14. Comparison of Extended Analysis and
STAGS-A (Shell XS~1, Boundary conditions:

u=v=w=w,,=0; 2=13),
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and STAGS-A (Shell XS-1, Boundary condi-
tions: u=v=w=w,x=0; 2=13).
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Fig. 16. Comparison of Multi Mode Analysis and
STAGS-A (Shell AS-2, 7-Modes Imperfection
Model).
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Fig. 17. Radial displacement at the limit point by
STAGS-A (Shell AS~2, 7-Modes Imperfection
Model).
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Radial displacement at the limit point by
Multi Mode Analysis[31 (shell As-2,
7-Modes Imperfection Model).



