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Summary

T??)'Experimental Method Fokker', devised in
1956 is a computational procedure to estimate
critical loads of stringer-stiffened panels,
loaded in compression. Its main features are the
inclusion in the formulation of the buckling
condition the stiffness reduction effects due to
local buckling and plasticity. The.paper describes
the generalization of the original Euler-Column
mode formulations to account for a wide variety of
buckling mode configurations in the panel lateral-
direction. This generalization is accomplished by
adopting a finite element method to effect the
required integrations of the energy functional,
defined for uniform panel end-shortening.

The finite element procedure is also known as
finite strip method.

The experimental character of the method is ex-
pressed by deriving the appropriate stiffness-re-
duction factors from test data to define a modi-
fied Ramberg-Osgood stress—strain law representa-
tion for typical panel elements. The original
ideas of the E.M.F. are briefly outlined. The
modifications, to generalize the existing proce-
dures are summarized and computational results
are compared with analytical solutions and corre-
lated with test results.

I. Introduction

The determination of the critical load of
stringer-stiffened panels in compression is still
a complex computational problem, despite the
availability of sophisticated computer systems.
Since modern aerospace structural systems require
highly efficient designs with respect to load
carrying capacity against low specific weight,
the general instability problem must be formulated
to include such effects that arise from applying
small geometric dimensions. Notably, thin skin-
and stringer thicknesses may give rise to deforma-
tion patterns that are accompanied with local
stress concentrations at lower load levels.

The high stress/specific weight ratio required
implies the circumstance that material points will
be stressed into the plastic range of the mate-
rial's stress~strain relationship.

The requirement of minimum weight - hence small
thickness dimensions - may induce the possibility
of local buckling modes to develop at much lower
load levels than the actual collapse load.

Hence the problem of estimating the maximum load
carrying capacity of stiffened panels in compres-
sion should include both effects of geometric non-
linearity and stress disproportionality with strain
An analytical apnroach to solve the problem must,
unfortunately, be precluded, apvart from analyses
performed on the basis of very simplified models.
A complete numerical approach employing any
modern descriptive technique, such as finite
element or finite difference methods, to solve the
stability problem is —~ in principle - possible,

utilizing existing computer codes, e.g. as reported
in ref. 18, though considered non-practical from a
designers' point of view.

The inherently time-consuming computations offer no
efficient tool to consider and design ontimum
structural configurations, within the framework of
the many parameters involved.

In view of the above considerations a method, de-
vised to estimate critical panel-loads, accounting
for both non-linear characteristics and being
computationally efficient is offered by the E.M.F.
The original formulation, developed in the early
fifties, appeared in ref. 1. This historical
setting should be appreciated with respect to the
then available computational facilities.

Based upon the famous Euler column buckling formula,
the method estimates the critical load for general
instability, computed with appropriate stiffness
reduction factors, arising from local buckling
and/or plasticity effects.

The reduction factors are determined from a modi-
fied Ramberg-Osgood material-law representation.
The modification consists of appending the poly-
nomial expression with terms, the coefficients of
which should represent stiffness reduction due to
local buckling. This implies that the material-law
is assumed to be valid for the locally buckled
elements of the panel. This assumption removes the
requirement of having to compute local quantities
and the method may be looked at as an averaging
procedure.

The experimental character of the method consists
of the determination of the coefficients of the
additional terms in the modified material-law

from experiments.

Load-shortening curves, obtained from tests, for a
wide variety of column geometries, served to fit
the coefficients for a family. of parametrized non-
dimensional stress-strain-relationms.

Some details will be outlimed imn the next section.
The computational procedure, to determine . the
critical state of the panel; solves an eigenvalue pro-
blem, for which themodified material-law furnishes
the stiffness coefficients, as a function of the
panel end-shortening.

This eigenvalue problem, or buckling condition,
arises from the observation, that the limit-point
buckling form of the load-end-shortening curve as
obtained from test panels, is ‘indicative for bifur-
cation buckling for the model with a linear pre-
buckling state.Incorporation of local buckling
effects through modification of the material-law,
allows the computation to pass the local buckling
critical points of the load-deflection curve.

As indicated above the original formulation of
the E.M.F. employs Euler's column buckling formula.
Since that formulation assumes no panel section
deformation nor shear deformability, it was con-
sidered recommendable to remove these assumptions
from the earlier definitions so as to enlarge the
range of panel geometries to be analysed with the
E.M.F. For instance, compression panels stiffened
with relatively heavy Z-stringers do show



considerable section deformation in the test.
Hence, it may be assumed that the overall kuckling
mode exhibits such displacement components to ini-
tiate a torsional type of deformation of the panel
cross—section. This type of behavior is renresented
in the model description through employing a dis-
cretization procedure in panel lateral direction,
thereby maintaining the sinusoidal character of

the overall buckling mode in axial directicm.

This approach, in conjunction with the E.M.F. pro-
cedures for stiffness reduction, allows the energy
functional to be integrated in axial direction.

In panel lateral direction this is accomplished
approximately. The discretization method employed
is of finite element type. The sinusoidal character
of the longitudinal part of the displacement compo-
nents, adopted herein, puts the method among the
so~called finite strip(2) approaches in finite
element analysis.

In addition to the above generalization of the
E.M.F. computational procedure, the present formula-
tions include 'a typical bond-layer model and a
rivet-line model to increase the methods' modelling
capabilities. The next section summarizes the
pertinent procedures employed in the E.M.F. to
account for stiffness reduction due to local
buckling and/or plasticity effects. Then the finite
strip version is briefly discussed. For the deri-
vation the incremental virtual work expression is
utilized » in conjunction with a deformation
type theory of plasticity(9). As reported in a.o.
refs. 8, 9 and 23, deformation theory better pre-
dicts test values and thus would appear to be well-
suited for the formulation of the buckling condi-
tion in the E.M.F. In section III some recently
obtained results are reported.

Detailed information required for clarification of
the formulations in section II are given in the
appendix.

II. 1. Problem formulation

The typical features formulated in the E.M.F.
for the determination of the stiffmess reduction
factors are fully outlined in a.o.: refs. |, 3
and 12. A summary starts out by envisaging the
panel to consist of plate elements, bounded by
the panels' geometric layout, as indicated in fig.l.

2 (Ref. 19)

Figure 1. E.M.F. plate elements
1 = web plate element

2 = top flange element

3 = lip element

4 = stringer flange-skin element

It is noted that all elements are assumed pris—
matic in panel longitudinal direction. The elements
are considered separately and for each a modified
stress-strain relationship is determined to define
its shortening behavior under a compressive load.
Introducing the non-dimensional quantities for

stress and strain:

Y= — , e=¢€ . ¢D]

where: ¢ = uniaxial stress component, € = the

corresponding strain, E=Young's modulus and

09,0 ° .2% yield stress, the material-law can
b

be written as:(3)e =Y + Q.Y™. (2)

This expression is the non-dimensionalized form

of the stregs—strain relation given by Ramberg

and Osgood 7,

The constant Q is equal to .002 E/UO,Z (3)
The main assumption in the E.M.F. is depicted

in figure 2,

] ateri?a;
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correction for
~L local buckling

Figure 2. Matrerial-law and E.M.F.
stress—strain relation.

It shows the modification of (2) to include
the local buckling effect on the axial stiffness
of the panel element under consideration and is
expressed as follows:

e = Y+Q,Y" + Re®, (4)

Since the panel consists of an agregate of
elements it is of advantage to parametrize the
curve (4) to hold for various geometries repre-
sented by the constants R and m.

The parameter to introduce is afforded by the
so called effective width theory of von Karman
for flat plates. It expresses the effective width
of the plate as a function of the average-stress
The maximum edge stress of the plate element can

be given BY: o e (¢/by)? (5)

or by = f(cE)

where bg denotes the effective width of the panel,
and K is the local buckling stress coefficient,
and t the plate thickness.

By definition the local buckling stress expres-
sion is:

£ty 2
O'L = KE(B- (6)

Hence, combining (5) and (6) yields
oL
b = V———— @)
E/b oE

with bg.0 = b.0 , one finds:

o

—g_=

E = ,Jon_ .
e b \[5%" ®
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Introducing the material's yield stress O

it follows that: 0,2
o/ =Y =f(\[/OLy ) 9
%,2 %,2
or with: X = V 00,2/OL , (10)
(9) becomes Y = f(X) and hence:
Y = £(X), (1)

where the overbar denotes maximum panel element
stress. An extensive account of the above deri-
vations can be found in a.0. ref. 4 and 5. The
most important result is expression (11).
As mentioned in the introduction many tests were
carried out to establish the form of equation (11).
A summary of test data considered is given in
ref. 6. _
Next to Y, the corresponding value of the strain
follows from these test results. Hence the coeffi-
cients R and m in equation (4) can be considered
as

R=RX), m= m(x) (12)
A typical curve of the form of equatiom (11) ‘is
given in figure 3.

Y
.7 X .
Figure 3. Plate element maximum
stress vs parameter X.

A least square fit of the test results
furnishes the analytical expression for equation
(11), to be employed in the computationms.

The panel's critical load now follows from
Eulers formula:

s (13)

in the following fashion:

a. At preselected end-shortenings e, the overall
section properties are calculated, with E=E; =
tangent modulus from the set of appropriate
curves contained in equation 4, to give the
section centroid and moment of inertia.

b. From 4, there alsc follows the total load from
~ summing y(e) for all plate elements.

c. With a and b the length follows from (13):

Z(E(e) xI(e))
z P(e)

where the sum ¥ extends over all elements.
Varying e will give the length L corresponding
to the length of the panel under consideration.
Then the critical load is also known.

(14)

|

The generalization of the E.M.F. consists of
recasting the buckling problem within the context
of an energy formulation. To that effect the perti-
nent virtual work terms are constructed for a
single plate element, and expressed in terms of
displacement functions containing a set of free

amplitudes. Adding all terms relevant to the com-
plete structural configuration, yields the system
of equations for the amplitudes. ' Since
this study strictly deals with the buckling pro-
blem the above mentioned procedure leads to con-
sidering the vanishing of the virtual work expres—
sion for the buckling displacements. This then
yields a standard eigenvalue problem that computes
the critical value of the panel end-shortening

and determines the free amplitudes as the elements
of the buckling mode.

The formulation starts out by selecting the strain
displacement equations. In view of the general
plate-element assemblies to consider, the proper
choice for plate~element midplane-strains is:

2 2
gx = u,x+} (uz,k + VT, kW)

2 2
g, = oyt why v vh vt (15)
ny = u,y + Vey + u,xu,y + v,xv,y + w,xw,y

where y,v are the axial- and lateral displacement
functions of a plate element and W represents its
deflection function. (see fig. 4). Here and in

the following ,x and »y denotes partial differenta-
tion with respect to x and y respectively.

Ny
E.M.F. plate element coordinate

system and displacement -
functions.

Figure 4.

The curvature expressions, relating the plate
bending deformations to ‘the deflection function W,
may be taken as in standard plate theory, ref. 14,

and 22,
K. = ~Wygx
X
Ky S Wayy (16)
K ..
Xy = —W’xy

As indicated above the E.M.F. employs a modified
stress-strain law to represent local buckling
effects. A deformation type theory of plasticity
is adopted to formulate the stress-strain relations
for the individual plate elements. As outlined ear-
lier, these constitutive relations are parametrized
by the parameter X of equation (10).

In general, see for instance refs. 8, 9, the incre-
mental stress—strain relation for plate or shell
type structures, with a generalized plane stress
assumption, reads

c. = E(Ae_ + Ceg_)

X X y

o = E(Ce_ + De_) (17)
y X ¥y

Tay = EF¥yy
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From ref. 9, with gy assumed to be the single
non zero stress component in the pre-buckling
state, the coefficients in equations 17 are,

= (1+3 ET/ES)/N

(2-2(1-2v)ET/E) /N

= 4/N (18)
1/2(1+v+3(E/ES-1)/2)

2-4~ +3E/ES-(1~2v) 2Et/E

1]

Ze oo

where E = Young's modulus, Et and Eg the tangent
and secant modulus respectively and v = poisson's
ratio. The form of the virtual work expression,
adopted for the present analysis reads (22,23)

L/tlo 8e_+0 Se +1 & dxdy +
1 X X Yy Y xy ny} o

Lf{M 6k +M Sk +, Sk
A A Al L }axay +

0
LtSo Su +v § 4 $ -
§7%% (u x °u o x V,x w'x wlx)dxdy =0,

(19)

In equation 19, M, and Mgy are the plate
bending stress resultants defined by M =fozdz

etc., § denotes variational increment and the sum
over i extends over all panel elements. The inte-
grals in 19 are to be evaluated over the element's
area. The last term in equation 19 follows from
the main assumption of a linear pre-buckling state,
characterized by the single stress component ox°.
With utilization of equations 15, 16 and 17,
condition 19 may be transformed to

L{tEf(Au Su +Cv +
& ( ¥ xOY ,yﬁu’x Cu’xév’nyv ydv v +

4 s

F(u 8u +u &v +
s ’ u,}' V,x v,xﬁu’yﬂi’xﬁv’x) *
t
“=(Aw _ 8w __ +C
12 s XX XX w’yyéw’xx+Cw’xxéw’yy+Dw’yy5w’yy *
4Fw _ Sw
» Xy ,XY) +
% Su +v v w6
(8, Bu o v’x v’x L~ w,x) Ydxdy} = 0. (20)

In the derivation of equation 20, higher order
terms than quadratic in the incremental displace-
ment fields have been omitted, to arrive at the
bifurcation eigenvalue problem contained in ex-
pression 20 for the critical stress.

Then, for an assemblage of elements the appropri-
ate expression for the critical state is obtained
from the buckling condition, defined for uniform
panel end-shortening, to ensure satisfaction of
the plate elements' compatability conditioms.

The relevant stress terms follow from the elements
material law, as is the case for the moduli con-
tained in the coefficients A, C, D and F appearing
in equation 20.

T

II. 2, Finite element development

The expression of equation 20 is now particula-
rized for an application in finite element sense,
on the basis of assuming specific coordinate
functions for the buckling displacement fields u,
v and w. .

The typical character of the buckling problem
allows to assume a particular choice for u, v and
w in the form of product functions, such that

u = U(y) = Tu(x) .
v = V(y) % Tv(x) @n
w.= W(y) x Ty(x)

In (21) the factors T(x) are chosen as trigomo—
metric functions of the axial coordinate, antici-
pating the buckling wave form as observed in tests
For the present application the following table
lists the functions T(x) for both simply supported
and clamped loaded edges.

Si.Su. Clamped
21x
2mx _ Mm
Ty SINus 1-C0S 2%5 M = wave number
Table 1.

These functions assure interelement compatibi-
lity as required for the variatiomal condition
employed. It is noted that the functions T(x) for
the simple support boundary conditions along the
loaded edges presume a periodic buckling wave-
form. The clamped-edge T(x)-functions represent
periodicity with a double axial wave length -+ In
addition, the clamped edge functions should only
be appreciated as a first approximation for the
displacement field in view of the fact that these
functions do not satisfy the equilibrium differ-
ential equations.

Substitution of the functions T(x) into equation
(20)permits direct integration along x of all
separate terms.,

The factors Y(y), V(y) and W(y) in (21) are
chosen to be simple polynomial expressions in the
coordinate y of the particular element under
consideration with n = y/Bj, in which Bj = width

of ith element:
vl = Gp(-n) + vin
NN D i
¥i(n) = vi(l-n) + Vyn (22)
, : . )
W) = W 2n=3n’e1) + 836 (-n>+2n-n)

+

Wy (-2n>+3n7) + Byos(-n>+n’)

HerelI;, V%, w; and ¢; are nodal amplitudes

defined at the nodal points of the element edges
n=0then p=1and forn=1, p=2, at x =0
orlj,on account of the particular choice of the
functions T(x) for u, v and w. Substitution of
expressions (22) into equation (20) allows the
integrations over y (or n ) to be carried out.

The final result then reads: (omitting .subscripti)



§E%{§(A<l>32gt|u|sg +cs<;'>{¥t|n|6g % |p |8y}
+D'<;>Xt|1r|5¥ + F<}>}€t|F|6]€+

+BF<;igt|D|5¥ +y*[p* |8y} +BZF<i>xt|N|6¥) +
%;‘Bz (88" <K Tulag +8 0y Lo oy +
D<%>Ht|KIGH + 4F62<Z>Ht|G|5ﬂ)

0t, % 1t LI N 2 1t _
028 <> IN|8y +8 ¥ |N|GX+B <X |M|5g)—0.
(23)

Where: B = g%g,

length, <§> is introduced as a concise notation
for a =
sgmple support and b = clamped loaded edge boundary

conditions. In addition | - | denotes matrix and x
denotes vector, in particular

W=w,u) Y=, V) and

B = element width, L = element

ET = (Wl, by Wz, ¢2), where superscript T

indicates transpose. The explicit matrix expres-—
sions are given in appendix I.

Equation 23 provides the stiffnes matrices for
the plate element. Consistent transformation with
respect to the global coordinate system afford
these matrices to apply for typical panel compo-
nents such as webs and flanges.

Bondlayer and rivet—line models

In actual compression panel configurations the
stringers are usually bonded or riveted to the
skin. Since bondlayer behavior is of interest in
the present investigation a model is adopted to
simulate bond material mechanical behavior.

The bonded joint's load carrying capability is
described - in general - by a complex system of
differential equations. In view of practical
circumstances, that show much scatter to exist
in mechanical properties and geometric parameters,
it is deemed adequate for the analysis herein to
adopt a simplified model to incorporate the essenti
al features of bondlayer behavior in the buckling
problem. Thus the strain-displacement relations
proposed by Mayers and Durlofsky(lo) are employed.
The variation of the strains in thickness direction
is eliminated by -averaging and the relevant
relations are:

] - 1 1 .
sz"Eb(“z uprg et Juy  Hi (e v, ).
X ,
=== (v, - . @
Yo tb(v2 vl+é(t1+tb)wl’y+%(t2+tb)w2’y) (24)
€

1
2= E;(wz—wl).

Here the subscripts 1,2 denote lower and upper ad-
herent plates, see fig. 5.
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Bondlayer model

Figure 5.

1 Bottom adherent
2 Top adherent

The bondlayer functional terms then follow
by expanding:

2 2 2
ficbthxdedy+ I%thbez dXdy*f&Ebtbezdxdi;s)

which is simply the strain energy for the bond-
layer model in terms of the bondlayer strain in-
crement components. GB = bond shear modulus, Ep=
bondlayer young's modulus and t = bondlayer
thickness. Throughout this stud9 these properties
are assumed to be constant per bondlayer in x
and y direction. Substituting equations 22 and
carrying out the integrations, the result reads:

FBond=%{¢B.(R;INIR2—2E? |N|HZ+H§|N|H1+

1
1. 24f ¢ d1d2 .t a2«
< HEZH MR =570 MR, =5 R )+

1 t t t t
<2>u(dl¥2|I|)\{l+d2 H2|I|]d2—dl yl1ly,-a2 Bolrigo+

1 t t t T
<>y IN1Y5- 247 NNy, + Yy Inlyp+

1,.d1°t

2
d1d2
_£_...
Sak

2
] ‘ t a2? ¢
3> lelx,+==5 ¥y16IR,*5 Kylelny+

1.1 t t t t
<3>§£d1 ¥2|H|}€1+d2 ¥2|H|)§2—d1 \,Blg,~d2 X;IHWZ))

1 t t t
<3>€Bi(}€2IMIJQ2—2JQ2|M|5(J,1+J€1|M|)€1)}. (26)
with L B, LE Bi
B, 4Bt 8,74 B, 7t *
i * i
d]=t1+tb’ d2=t2ftb, u=Mm

It~is noted that this bondlayer finite element
formulation does not require additiomal degrees
of freedom to describe joint behavior, since only
nodal amplitudes of the adherent plate elements
occur in expression 26. '

For the rivet—line model the following proce-
dure is adopted. Each rivet is assumed to be a
beam with circular cross section. It's deformation
is expressed by three displacement modes , ome
stretching and two bending modes. Selecting it's
nodal points to coincide with the joining flange
and skin elements’midplanes, these modes. are ex-
pressed in terms of the plate element displacement
function amplitudes.



The rivet-line energy term is obtained by summing
all rivet contributions per stringer-skin joint.
Thus, with reference to fig. 6, the energy reads:

L L
Z{%ERIRtglzluR,zz)2dz + %ERIRé%VR,zz)ZdZ *
L 2
%A.REké%wR ) dz} (27)

where subscript R denotes rivet.

Rivet model

Figure 6.

1 , 2 Bottom and
top joining plates.

Selecting 3—rd—degree polynomlals Epr Ug» VR
and a linear expansion for Wg , as in

thenature of equations 22, the pertlnen Rmatrlx form
of equation 27 is found.

Then after expressing the UR, VR and WR nodal
amplitudes in the appropriate flanges or skin dis-—
placement-amplitudes, the total rivet line contri-
bution is found after carrying out a summation
over all rivets per line.

The result is:

=

c c
_1,.us .t vs_ ..t
FRlline_2(<C e IKulg *e X |Kv|¥ +
uc vc
c
< SHE|E|p (28)
ch i
T
where, JI” = (U W, U, W, )
T -
U= e, 0,60
T _
F= )

The detailed expressions are obtained in stan-—
dard fashion, reported in ref. 11, and summarized
in appendix I. Taking variations with respect to

V and H in equations (26) and (28 yields the
bonylayer- and rlvet-llne stiffness matrices.

Method of solution

The results of the foregoing derivations are
employed to generate the system of equations for
the solution of the buckling problem. This proce-—
dure is performed in well-known finite element
sense. As indicated above the system of equations
is equipped with terms arising from the inclusion
of the non-linear material law either unmodified
or modified for local-buckling effects. Hence the
determination of the critical load implies the
necessity to solve an eigenvalue problem with
highly non-linear coefficients matrices.
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An efficient method for the computation of the
critical load is a simple search for the sign
change of the total matrix determinant, corres-—
ponding to the smallest eigenvalue. The particular
small bandwidth structure of the system matrix, in
particular for stiffened panel finite element
models, allows the sequential decompositions. for
calculating the determinant as a function of the
panel end-shortening, to be carried out very
efficiently in view of required C.P.U. times.
Earlier employed power method iteration techniques
can not compete with the determinant search
method.

Results and discussion

The 'Experimental Method Fokker', outlined in
section II.1, as a computational tool for estima-
ting critical loads of stiffened compression
panels, has been employed for design and stressing
purposes for a number of years.

Correlation of the unmodified method's computati-
onal results with test data was extensively re-
ported hy Michon (12,13
Hence, this section summarizes some of the results
obtained with the modified version of the E.M.F.,
that allows for the buckling mode to differ from
the Euler wave form This, in the sense that any
deformation component in the panel's lateral di-
rection developes freely and is determined by
solving the buckling problem contained in equation
23. The main differences between the two formula-
tions are repeated here as: '
- panel section deformation
in-plane shear deformation
modified plasticity theory
flexible skin-stringer joint behavior
and are of importance, when comparing computational
results obtained herein, with the traditional
version of the E.M.F. and test data.
As for the latter, any comparison with test data
should be appreciated in a proper perspective. In
practice, the single test result is, usually, the
panel maximum load, sustained in a flat ended
compression test. This load, generally, represents
limit point buckling in a load end-shortening dia-
%ram. From the general theory of elastic stability
it is well known that the limit load is a
function of the panel's initial imperfection form,
as contrasted to the bifurcation load that results
for the perfect mathematical model adopted in the
computations. This aspect is exémplified in fig. 7.

/
v
load /
/ &
2 o
(d
B
D
- bifurcation load
A=elastic, B = EMF
* C= perfect panel
- limit point maximum
load
D = imperfect panel (test)
Figure 7. E.M.F. critical load vs test




In addition, the E.M.F. load is obtained on the
basis of the relations 2 and 11, the coefficients
of which were determined from tests. Hence, the
computational results feature a statistical
character, with respect to the scatter bands of
the short column load end-shortening curves
(ref. 6).

-

The first results to be presented are E.M.F.
critical stresses or loads correlated with analyti-
cally or numerically obtained values. Next a se-
lection of previously reported computational re-—
sults and test data will be listed and compared
with the results obtained with the modified for-
mulations as presented in this report.

An analytical approach to the plastic plate
buckling pr?blgm was recently reported by
ShrivastavalZ2! . The finite element solution,
obtained by the E.M.F. for square simply supported
plates is compared to the findings of ref. 21 in
the following table.

PAN.ID (—%) OeMF OREF. 21
22 . 60.48 60.5
24 57.78 57.5
26 54,18 54.-
28 49.27 49,2
0 in ksi
Table 2. Plastic buckling stress for simply

supported square plates.
b/t=plate width/thickness.

The same reference also gives values for the
plastic critical stress of the compressed cruci-
form column. For a flange length-width ratio of
10, the following comparison values are found:

b i
T 6 7 8 9
OEMF 63.92 61.38 | 57.70 | 50.62
O Ref. 21 63.68 | 61.05 57.39 | 49.81
oin ksi
Table 3. Plastic critical stress fdr cruci-

form column. (loaded edges simple
support).

The E.M.F. values for the critical stresses in
both cases were obtained with a 3 node-model or
2 elements per side. In the square simply supported
panel case symmetry conditions are enforced, while
in the cruciform example no other boundary condi-
tions are required than the support comdition,
W=0, along the three supported edges.

In order to set the E.M.F. computed critical
loads (stresses) in line with those obtained by
different numerical methods, table 4 lists critical
loads for a skin-stringer section.

]
* Loer (zm)
v vy
9 —_ skin
Elastic analysis
tsrr, . |suckLase(!®) 412.6 (N/mm?)
tskln (]6)
2/2,5  |STAGS 430.2
EMF 410.9
nastran 7 415.7 (N/ma®)
475 EMF 395.3
(18)
1.6/1.2 BOSOR 4 1059 (N)
EMF 1015
Plastic analysis
(16)
N
2/2,5 STAGS 124820 )
EMF- 118492
Table 4. Z-stringer-skin section

The elastic analysis performed with the E.M.F.
implies no modification for local buckling and/or
rlasticity effects. The models employed Were
adapted to the specific possibilities of the
comparison programs. It is noted that the higher
values listed for STAGS and NASTRAN are mainly
due to the coarse meshes adopted to avoid long
c.p.u. times. The BOSOR4 result is obtained by
utilizing the R= infinity option, offered in ref.
18, to analyze flat plates, within the context of
an axi-symmetrical shell analysis formulation.

A further computational comparison result is of-
fered thru application of the STAGS-code from
ref, 16 to a similar skin-stiffner section in a
complete non-linear analysis. An initial imper-—
fection, in the nature of the buckling mode is in-
corporated in the model, with a maximum amplitude
of one half the skin thickness. In addition, the
material-law for 7075-T6 al-alloy, is adopted to
represent material non-linear behavior.

The STAGS limit point load level is compared to
the E.M,F. bifurcation load in table 4.

Table 5 lists results of computations for hat-
stiffener panel sections. The model consists of
a single stringer and skin part as indicated

in figure 8.

% H=web
v o height v
¢ { p = stringer pitch J ¢
) Ll

Figure 8. Hat stringer-skin section

Xv, ¢ indicate boundary conditions enforced to be

zero along the longitudinal edges.
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The comparison values in the table were obtained
by adjusting the orthotropic material proper-
ties. of an equivalent Bucklasp model to
those prescribed by J2-flow theory of plasticity.
The panel identification in the table is defined
by the stringer pitch P and the web height H as
PPPHH in mm.

2

Pan.ID. Critical stress N/mm

EMF Bucklasp
15050 449.0 451.3
14045 431.6 415.8
16055 460.5 481.7
15060 471.9 481.7
15055 461.6 476.6
13050 455.9 461.4
15045 425.3 405.7
17050 443.9 441,1
All panels L = 600 mm

Table 5. Hat stringer skin section plastic

critical stress.

The differences between the E.M.F. and Bucklasp
results are mainly attributed to slight differences
in structural model and material-law representa-
tion. Since the Bucklasp model has no mechanism to
account for local buckling effects, the E.M.F.
calculations utilize equation?2 as material-law
for this case. (See note end of p. 10).

In any finite element analysis it is of interest
to have an indication of the model's convergence
characteristics with respect to the number of
degrees of freedom that define the numerical model.
The following table compares critical stresses of
a Z-stringer-skin model, which is representative
for a Z-stringer stiffened panel.

The longitudinal edge boundary conditions imply no
edge lateral displacement and no edge rotation.
These conditions are enforced for the buckling
displacement fields.

2
F.E. model Ocr N/mm
I 436.05
I II 435.81
I1I 434,99
v 434,99
V=0 V=0
$=0 $=0 L = 550 mm
Table 6. Z-stringer—skin model critical stress.

—e— nodal point (4-dofs).

It is seen from the table that the maximum
difference is .367% between models I and IV.
Hence, for practical computations model I would
suffice in view of accuracy. Model II is included
in the set for the determination of bondlayer

stresses from the buckling mode. Though the
e¢ritical stresses do not show much difference,
it is found that the buckling mode - normalized
for maximum displacement amplitude — for model
IT yields higher bondlayer stresses than the
modes obtained for the other models. This fact
will be exemplified below.

As a comparison with previously obtained re-
sults, table 7 summarizes a selection of computed
critical loads for redux bonded hat-stringered
panels, taken from ref. 13.

Panel with 4 Hat stringers. Mat. Al-7178.
Test-load )
PAN.ID Comp. crit. load.
Present Ref. 13
ss L ss sS
101 1.14 1.07 1.10 1.07
104 1.20 1.19 1.18 1.19
201 1.16 1.10 1.09 1.11
204 1.12 1.08 1.17 1.17
301 1.13 1.10 1.09 1.08
304 1.12 1.11 1.10 1.13
401 1.05 1.02 1.00 1.02
404 1.05 1.03 1.06 1.12
Extruded Rolled
Table 7. Redux bonded hat-stringered panels.
Ref. 13.

Bond properties: Gg/Ep/ty = 1000/2600/.2
Panels xx1 : L = 1100, xx4 : L = 700 mm

tstr/tskih s lzx , 3xx = 2/2,5

2%%, 4xx = 3,3/2,5. (G,E N/mm2; t =mm)
S8, CL = Simple Support, Clamped Loaded edge for
boundary conditions.

On account of the above noted differences be-
tween the E.M.F. procedures employed in ref. 13
and the present method, the ratios found with the
finite element method should be somewhat higher
than those listed in column 4 of table 7. Notably
the rolled section results represent higher criti-
cal loads then computed on the basis of Euler's
formula. This fact however is simply attributed
to the F.E.M. model of the stiffner section
corners., In general, the hat-stringered panel
configurations do not require an analysis via
the modified formulatioms.

Table 8 shows results for Z-type stiffened panels,
for which test r?su}ts and computations were re-
ported by Michon 12)

Computed critical loads are compared in the table
with test values and those calculated with the
Euler-type method.

Panel fl f! fl fl

1A — A

{

7A e r ek

11A — = e

15A e =
Euler —_——f—————
Figure 9. Buckling modes for panels
from table 8. (stringers mot drawn)
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t t
Pan.ID str.,El_gWTl_ rl_ rl_, Mat. 2024 al.
¢ ..
str/ Critical load (kg) v Test
%k Present Ref. 19 Local
(mm) ss cL (TH3) |buckling
1A
1749 3358 6387 800 5750
.6/.8
7A
3654 5354 7679 1100 6900
1/.8
11A
8451 10615 11213 4300 9400
1/1.4
15A
13833 (14086 15310 7700 13700
1.6/1.6
Table 8. Bonded Z-stringered panels, ref. 12

Fokker rep. S-118.

Bond prop. G /EB/tB = 50/130/.2
Loaded edge bound.cond:

S§S = Simple Support

CL = Clamped Edges

It is seen that the previously obtained results
overestimate the test load, reason for the recom—
mendation in ref. 12 to apply a knock~down factor
of .8 to the computed critical loads.

The first colummn lists the critical loads computed
with the F.E.M. formulation of the E.M.F. It is
observed that a considerable lower load is

found for the thin sheet panels, while the dif-
ference between the test value and the result in
colum 1 decreases with thicker sheet dimensions.
The smaller sheet’ thickness allows for more de-
formation of the panel section as represented

by the buckling modes.

These modes are schematically drawn in figure 9.

r—1 r—T r—1 r—T Mat. 707 1.
tQEin tstr a Q75 a
t er Ntest Ntest NteSt
PAN.ID N_ . (19
skin Npres. TH.3 (19) NEuler
Pi-l6 | 2.3 1.02 7
- v ) .79 .78
PL-
21 .92 .80 .72
EC
PL-25 3.4
1.01 .93 74
™ 4.1
PL-26
1.01 .80 .80
FM .
PL-31
.78 .62 .62
EC 4
- 5
PL~36 1.01 .82 .81
™

Table 9. Test load/computed load bonded
Z-stringered panels. Loaded edges simple
support. L = 1400 mm.
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Column 5 in table 8 shows the local buckling loads
as derived from strain gauge measurements per-—
formed during the tests (ref. 12). It thus follows
that the thinner panels exhibit a stringer-skin
buckling point in the load end-shortening curve which
does not precipitate immediate collapse. Perusing
the strain gauge measurements and load-shortening
curve for panel 7A for instance, one may conclude
that at a load level of 4000 kg stringer rota-
tion occurs which is indicative for the buckling
mode depicted in fig. 9. Hence the modified
formulation does identify such critical points.
However, failure takes place at a load of 6900 kg.
Since the failure mode apparently contains part
of the buckling mode shown, which is not repre-
sented in the Euler type approach, persistent
overestimation is found with the computational
method as utilized in ref. 12,

w1 w2

L4
o 3,

&3

L \or o ™
@’\7 (Buckling mode

Test panel
maximumn

cdge appli-
~ 3-bxt
ax

Peel stress

Yim

skin

Shear stress

Flange width

-y

Figure 10. Joint bond layer peel and shear
stress distribution. x=L/2.

The results given for panel 15A in table 8 and
the buckling mode, depicted in fig. 9, show better
correspondence with the failure load and collapse
mode, which furnishes better agreement between
theory and test.

The latter notion 1is corroborated by results
of a series of recently obtained test values for
Z~stiffened panels. Table 9 shows the ratio of
test load and computed critical load for long,
bonded panels. The buckling mode found for all
geometries corresponds to the failure mode. It
is shown in figure 10.

The notation FM and EC in the table indicates
bond material properties as:
FM = FM-123/5: Gg/Ep = 50/130 , EC = EC-2216!
Gg/Eg = 5/13. ’
These values apply for the results of table 9.

The last column in the table indicates the
circumstance that for these panels the deformation
of the cross—section is the main reason for the
Euler type approach to overestimate the test-—
value. The lower values of ‘the Ntegt—Ncomp ratio



tstr :Itsk'l'L '_I‘ l Mat. al 7075
Pan.ID Test load N
(tstr/ Comp.crit. load rivet
tek Rivet Bond Npond
1
(2/2.5) 1.23 1.05/1.13 .86
9
(3.2/4) 1.08 .91/.98 .93
3
(4/5) 1.05 .93/1.0 .92
4
(4/3) .11 .89/.95 .95

Table 10. Test load vs calculated critical load
for nominally equal bonded and riveted
Z-stringered panels.

All panels: L = 1100 mm, reduc 775,
bonded panels: GB’EB = 50—130/10_26

for panels, bonded with EC 2216,

is attributed to the selected values of G, and
E., which are too high. The choice of specific
values for the bond-material properties is still
somewhat arbitrary. It is known that the shear
modulus for many bond-materials does not attain
it's torsion-pendulum value, in actual structural
applications. For instance, the shear modulus
found in thick adherent lapjoint tests is on
average 75% the T.P. value. See ref. 20. Young's
moduli are generally unknown.

The above noted deformation of the panel cross-
section - a significant departure from the simple
Euler buckling mode - has additional comsequences
for the maximum load of bonded Z-stringered panels
The unsymmetry of the stiffner - the main reason
for reducing the Euler load - induces a complex
stress distribution in the bondlayer. Fig. 10
shows the peel- and shear stress distribution in
the bondlayer, derived from the panel's buckling
mode.

In addition, the test panel configurationm,
with free unloaded longitudinal edges and having
small width, shows considerable rotation at
lower load levels. Load-edge-displacement curves
indicate a beam~column type behavior, which is
non-uniform in panel lateral direction. This
phenomenon is depicted in fig. 10,

Hence, high bond stress levels may be expected
in the test, before the maximum load is reached.
Correlating panel edge deflections with the
buckling mode provides an estimate for the maxi-
mum bondlayer stresses. This then indicates the
bondlayer material to enter the plastic part of
the material's stress-strain curve. Hence, since
these curves show almost perfectly plastic be-
havior, local debonding is likely to occur at
pre-collapse load levels.

Table 10 summarizes test results as correlated
with computed critical load values for, nominally
identical bonded and riveted compression panels.
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The last column in table 11 shows the better per-
formance of the bonded panels.

Conclusion

A formulation is presented for the computation
of critical loads of stringer stiffened panels in
axial compression. The specific features of the
E.M.F., to account for stiffness reduction as
arise from local buckling and plasticity effects,
has been outlined. Results of the finite strip
formulation, proposed herein, are compared with
analytically and numerically obtained solutions
and correlated with test data. It has been shown
that the E.M.F., computes reasonable esti-
mates for failure loads of stringer stiffened
panels in compression, in cases where no critical
points occur between the local buckling load and
the collapse load. The traditional E.M.F. (ref. 19),
assuming no panel section deformation, can
still be employed for computation in cases where
the failure mode does not significantly depart
from from the Euler mode, e.g. hat-stringered
panels. The modified E.M.F. may underestimate the
failure load considerably if the panel exhibits
pre-failure buckling modes. It would appear recom-
mendable to extend the capabilities of the E.M.F.
with procedures to determine the stability
characteristics of the panel at such critical
points.
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APPENDIX I  Matrices, occuring in equations
23, 26
v = o 21
6 12
[¢] = 1 -1
-1 1
[p] = §{-1 -1
1 1
13 -11/6 9/2 13/12
i
] = 35 1/3 -13/12 -1/4
sym. 13 11/6
1/3
-6/5 11/10 6/5 1/10
L] = 1/10 -2/15 -1/10 1/30
6/5 -1/10 -6/5 -11/10
1/10 1/30 ~-1/10 -2/15
12 -6 -12 -6
|| = 4 6 2
sym. . 12
36 -3 -36 -3
= L
[e] = 35 4 3 -1
sym 36
' ' 7/20 -1/20 3/10 1/30
I =
3/10 -1/30 7/20 1/20
-1/2 -=1/12 1/2 1/2
H =
8] ~1/2 1/12 /2 ~1/12
Rivet line model
The coefficients in equation 28 are:
EIg EL
fol = = =
Us =5 Co Cue L3 Se1;
L R
R
EI
Cvg = _R.s, ¢y = Elp s
— i c — cl
L3 L3 2
R R
Co. = g s cw=EARs
s I 1 P i c12
R R
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Where, with NR = number of rivets/line and PR =

rivet pitch, U = Mm/L and M = wavenumber:

¢, = Ny/2 + § SN®Ret-Fp) o (i
SIN (u.PR)

5, = /2 - SNORRED o
STN (u.Pp)

5| SIN(N..21P_/L)
= 2-1

Sep,” N/ 2 ) R 2™g
SIN(27P, /L)

o o n 4 o SINOGTR/L)

c1,” MR — R R
SIN(TP, /L)

In addition:

oo ] =[] [€] fose
|%v | = mRe | |® | Jm2v
where
ITRul -|! u.LR(:) and ITRVl = 1~LR (:)
1

1
C:) uLR (:) Ly

(ref. fig. 6).
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