ICAS Paper 80 = 17.4




1B 152-80/12
Initital Postbuckling Behaviour

of Orthotropic Shells
B. Geier
Paper presented at the

12th ICAS Congress
Munich October 12-17, 1980

DFVLR, Institut fiir Strukturmechanik, D-3000 Braunschweig



1. Introduction

The research work reported in this paper was started following
é series of buckling tests performed with curved orthotropic
éandwich panels. Comparison of the test results with computed
bifurcation buckling loads was very satisfactory. However, the
ftests also showed that the computed buckling loads normally are
fnot sufficient for estimating the load carrying capacity of the
Epanels. Some knowledge about the postbuckling behaviour of the

panels was supported to be needed, too [1].

|

iThe calculation of the postbuckling behaviour requires the solu-
Ztion of non-linear boundary value problems and is laborious even
with to-day's computers. However, if we are contented with an
:information on the behaviour in the very initial postbuckling
:range, the expenditure may be reduced considerably. A theory of
%the initial postbuckling behaviour of elastic structures was
‘developed by W.T. KOITER [2] in 1945. An English translation was
published in 1967. Alternative formulations of KOITER's theory
were presented by P. SEIDE [3] and by B. BUDIANSKY [4].

The theory was applied to the buckling of compressed curved
‘panels’by W.T. KOITER [5] and to curved sandwich panels by

G.G. POPE [6]. Their solutions were confined to panels long
enough for buckling modes with several longitudinal waves.“More—
over, they were generated for idealized boundary conditions
which are not so representative of realistic structures. The
treatment of more realistic boundary conditions has become fea-

isible only with the mdderthigh—speed computers.

|
|
i

iThe approach described in this paper is based on‘the computer
jprogram BEOS (Buckling of Eccentrically Orthotropic Sandwich
iShells) [7] that was used to compute the buckling loads of the
tested panels. As this program was designed to compute also
',vibratidn modes and frequencies [8] it admits the computation
fof several eigenmodes and eigenvalues. Hence, highgr buckling
jmodes together with the corresponding bifurcation loads can be

computed. It was deéided, therefore, to base the analysis of the

initial postbuckling behaviour on expansions of the required



functions into series' of buckling modes. For calculating cérta%n
energy integrals the method used in the program BEOS was properly
extended. Thus the calculation of the initial postbuckling be-
haviour of shallow panels could be programmed as an appendix to
that computer code. All the shell configurations to which BEOS
may be applied, can now be analysed whith respect to their
initial postbuckling behaviour. The most general configuration
is a skew sandwich shell with orthotropic core and dissimilar

- orthotropic faces the thicknesses of which may be of the order
of the core height. A variety of boundary conditions may be
treated, and there is practically no restriction concerning the

in-plane loads.

iThis paper summarizes, in its first part, the analytical founda-
ftions of the solution method. Essentially it is based on the
presentation of B. BUDIANSKY [4]. In order to achieve a certain

~degree of self-consistancy some of his arguments and results

jhad to be reproduced. Having established general formulae for

~

jthe quantities characterizing the initial postbuckling behavioug
it is outlined in the report how these relations can be evaluatéd
numerically following a buckling analysis. A presentation of |
iresults follows, with special emphasis on the tested panels re-
glating the results of the computation to their measured behav-

iour.

2.1 Potential Energy of the Shell

In order to desrcibe dompletely the deformation of a shallow

~sandwich shell the theoretical model of ref. [1] uses five
%quahtities, all of them functions of the coordinétes x,y which
%span the reference surface of the shell: The two "in-plane"
3deflections u and v, the normal deflection w, and the transverse
- shear strains B ,y of the sandwich coré, see. Fig. 1. For
Ebrevity of notation these quantities are assembled in a "dis-

placement" vector U:

(2.1) drzlw,u,v,ﬁ,y] = [u',u,u’,u",u




__A deformation of the shell, as opposed to a rigid body displace-
fment, is characterised by any non-vanishing components of the
?vector of generalised strains g€ (4). The components of this
1vector are the "in-plane" normal and shear strains of the refer-
fence surface, the changes of curvature of the reference surface,
%the4shear strain of the core, and three more quantitites the -
:physical meaning of which is not so obvious. They are needed to
{account for the fact that the faces of the sandwich are allowed
ito be of different thickness which is not negligably small com-
ipared to the height of the core.

(The strain components are linear functions of the displacements
fexcept the "in-plane" strains, which have non-linear parts. The
‘special form of these non-linear components suggests to split

the strain vector into a linear and a nonlinear part in the
:following way:

(2.2) Elu) = e (ul+ > e¥(u, ul. |
The nonlinear part eN(u,u) may be cdnsidered as the special case

iof a symmetric bilinear operator EN(u,v) with the properties

§(2 3) - e (u.v) = eMv,u), s
) sN(u,V+w)=eN(u,_v)+eN(u,w).

bnly the first three components of this vector are non-zero.

The relations appearing somewhat abstract in. the paragraphs
above, will become more familiar if written down in their full

lengths:

L9l
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FOI SN(u1.u2) we get the usual relation of the nonlinear plate

and shallow shell theory, if we substitute w,= U, =u.

The total potential energy of the shell can now be written as

250 =L few celurda- [pluda-[fGuads,
(A) TS (Sx)

where C is the symmetric matrix of the constitutive law of the
sandw1ch shell, the components of p are external surface forces

and NO comprises external in-plane forces acting upon the part S
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__of the edges.
%
in addition to the simplifying assumptions that have led to the
ébove formulae we assume that in the basic prebuckling equili-=
brium state with displacements u =G the nonlinear part of the

strain vector vanishes:

(2.6) eNla.v) =0 \
i

In the following part of this paper we shall consider equilibrium
states deviating only slightly from a fundamental prebuckling
state. We disregard the influence of external surface forces, and
We assume the components of the vector of external edge loads

to increase or decrease proportionally. Thus we write

(2.7) u=10+u ;

Z: T

o

1t

>

=z

& ,

Utilizing equs. (2.2) and (2.6) we get
elu) = e({G+u*) + —12—

e (h) « e u*) « —;— e(u* u

and from equ. (2.5) the potential energy follows to be

1 L maT Lya LeaaT Ly %
—Z——fe(u) ca(u)dA+/e(u) Ce(u*) dA

(A) (A) P
+ 1 [€ut)T c ettu*) da +-Jz_/eL(ﬁ)Tc eV(u*,u*) dA
i (A) , (A)
(2.8) . ‘
| + 12- /EL(U*)T'C eV u*, u*) dA + —%—- [eN(u*,u*)Tc eNu*, u*) dA
{A) (A)
A [NJrasut) ds .
{Sy)
NOW
(2.9) ~;_—fe u)Ce(u)dA-fooads

(A} {(sn)

[N
-
j S—



—1is the potential energy of the fundamental state. The expression§

(20100 T* = eraTc etu*) aa - A [N ds =0
(A} (sy)

is proportional to its first variation, and vanishes because the

fundamental state is in equilibrium.

The internal forces in the fundamental state are

N=cCce(d) . |

Since the relation is linear, we may as well write

cod
fy J

§(2J1) o -AN = CeM @) t

where N is a basic membrane force distribution. The negative
'sign has been chosen to get positive values for A at compressive

loads.

iWith equs. (2.9) through (2.11) equ. (2.8) simplifies to

:(2.12) T Tr% [[eL(u*)TCeL(u*) -ANeN(uF u*)1] dA

[A) |

+

]c-:L(u*‘*)T c eV u* u*) dA + —;- f eNu* u*)T ceMu* u*t) da.

1
2 (A) , A (A}

2.2 Equilibrium States Bifurcating from the Fundamental Path

2.2.1 Equilibrium Condition

With equ. (2.10) we have already formulated the equilibrium
condition for the fundamental state, and we assume'that we have

fa method to evaluate it. We now want to look for bifurcating

iequilibrium paths.




__To find the equilibrium condition for bifurcating states we
;have to form the variation of the potential energy (2.12). The

7quantities to be varied are the displacements u*. We get

T '
5T =f[e'~(u*) Ce'(6u) - AN"eu* 6u)l da
{A)

(2.13) . feL(u*)Tc eV u*, Su) dA -32- f eVu* u*)cet(bul da
[(A) : {A)

. —12— fe“(u*,u*)TCeN(u*, 5u) dA .

(A)

2.2.2 Bifurcation Points

A

The integrands in equ. (2.13) are linear, quadratic, or of third
‘order in u*. | Near the bifurcation point the displacements
u* are very small. Therefore, the dominating part in the equi-
flibrium condition is the linear one. Thus the solution propertiés
éat the bifurcation point, and in its close vicinity, may be ’
evaluated from the variational equation.

(2.14) /[eL(u*)TCEL(Gu) - AN'g"(u*, Bu)l da =0

It censtitutes an eigenvalue problem for determining the eigen-
; 1 , ,

values A\ = kifnd the eigenmodes u* =lh?

The eigenmodes u; are undetermined in their magnitude. They will

;be normalised to yield

‘i(2.15) 'feL“‘s)TCSL(Ua) dA = F

‘where F is a quantity of the correct dimension "work". It follow

‘then from equ. (2.14) that

TN . . - F
NTe ;) da - =

(2.1 -
i( ' 6) (A)

L3



_ Moreover, it can be shown that between different eigenmodes'the

Lorthogonality relatiohs

i(2 17) jeL(‘ui)TCEL(uk)dA::O
o : [A) '

/NTeN(u;,uk) dA =0
{A)

are valid.

2.3.3 Initial Postbucklina Behaviour

The first eigenvalue K1 corresponds to the buckling load of the
shell. We shall assume that the corresponding eigenmode.u1 is
unique. Clearly the eigenmode U, indicates the deformation
pattern of the shell immediately after buckling. To trace the
isolution further into the postbuckling rancge a perturbation

Lmethod is applied. We assume

|
: LA T XV VA |
(2.18) Cuy« Lovy+ Uy i

[ =
t

>
1

7\1+C(1§+C(2§2*;.. .

In this formulae the:quantity € is a small parameter indicating
Ethe "content" of buckling mode in the deformation pattern. The
coefficients 0y , @, show whether the shell continues to carry
additional loads along the postbuckling path or not. This is

‘illustrated in the following figures:

LY ' Al
m"o
e | >
| C | C |
ay 0 Cooaz=0

~
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“wThémdisplaceméntsvvz, v, in the expansion for u* are supposed to

be orthogonal to u, in the sense that

feL(u,)Tc g-lv;) dA=0

(2.19) (A)

| fNTeN(u1,v;)dA=0 .

l (A) §

| ,

We proceed now by substituting the pertubation equations (2.18)

iinto the equilibrium condition (2.13) and assemble equal powers

?of the pertubation factor [ :

! , ,

6= g{f[s (u) CE(5u) - AN €(u,6u)] dA
(A)

+ Ol 1€t e et ow - AN 1y, Bu) - o N'€'(u, Bu)] dA
(A) »

‘ T
+ f[eL(u1)TCeN(u1,6u) + Jz—-eN(u,,uﬂ Ge(ou)] dA }
(A)

(2.20) oL U[ Teet (m) NNTEN(%.&U) —C(,NTgN("z'ﬁ“) - GZNTEN(U1,5U)] dA
5 (A )

o [1e' ) ceMu, bul+ e'uc ey, 6ul + e, u)ce (Bull da
a

.
5 [ u) e, ou) aa
(A)

L

:The factor of ( vanlshes due to the buckling condition (2.14).
Next the factor of § will be equated to zero. The sne01al
variation

‘ ‘ ’ Su = uy ![

;yields an equation for determining the load coeffitient a,




a1/ NTeMu, uy) dA = -—g— faL(un CeMuyuy) dA

(2.21)

a = _7;__1_ % fgL(u1) C eMuyuy) dA

}With the variation

’

Su = BV [

where 8V is orthogonal to U, we get a variational equation for

determining v2

[1e v, cet(ov) - M NTEM v, Bv) ] dA
[A}

(2.22) :
o et ey bv) + LeMtupugT c etovl da = 0

(A}

the
u

;This will lead to a linear differential equation for‘vz,
finhomogeneous part of which depends on the known eigenmode 7°
- The factor of §3 evaluated for the special variation

|

ov = u,

1will vield, with known u1 and v2, an equation for the load

coefficient m2:

Ly, T N 1 N T N
o, [N ey aa = [Tet e etu ) «2eu) ety v+ 5 e'lu v ee v u)] dA
(A (A}.

(2.23)

Ta N

o, = 7.;_1 et tv) e uyu) + 260 ce U, ) « ety ) celuu)] dA
(A)

'By evaluating factors of powers higher than ,§3'the solution can
- theoretically be traced further into the advanced postbuckling
region. This approach will not be followed here. At the present

time we confine our interest to the initial postbuckling behaviot
|

1r .

L16!



. 2.2.4 Load-"shortening" relation
The potential enerqgy of thin shells, equ. (2.12), can be written

as

(2.24) T=w-2v

fwhere W is the potential energy'of the internal forces or elastic
fenergy, while AV is the potential energy of external loads. The

Equantity V may be considered as a generalized shortening.

|
!
i

@he prebuckling displacements depend linearly on the load factor A,

(2.25) d = Au, . ]

Instead of (2.9) we may"write, therefore,
; ; , |
~o_ 2] LoaTe eb -f” s) |

=2 (%[ ety) celu)da Ny, ds) |
(A) (S |
i

We substitute this in the potential energy (2.12) and get, in

view of equ. (2.29),

w= L [ et cetun + glw’ceM it ) - Felutu o celur ut] da
(A}
(2.26)
‘ - TN
ven[-L [ etupTcetiu) oa + [ R'eu) as] - 1 IN"E ) aa

| (A) (5\) (A)
in_the prebuckling range the displacement u* is zero. The general-
ized shortening is |
| V=V AT

0

i
0o "

the prebuckling compliance being

1 dVy 1
T(} TodN T L ,
fbr
1 Ki L L o T . '
= = “Tf €'ty ) Cetluy) da + [ R Tlu) ds .
0 A) (5




~In a linear system the value of the second integral is twice that
of the first one, since it is twice the work performed by the
:edge loads ﬁo when increasing from zero to the given magnitude.i

This, in turn, is the work stored in the shell as elastic energyé
Thus we get

‘ T L T L
(2.27) K C —2—({)3 (u) C g-fuy) dA .

For computation the alternative form

1 1 T Al
;(2'28) -R-O- = —é——([)NO C N0 dA

may sometimes be useful.

The generalized displacement along the bifurcating path is

V-V s %fNTeN(u*,u*) dA .
{A)

E
|

Substituting the expansion (2.18) yields

ot 2y e
vovy = b [ NTEN(Cu e Cvy e, Tuy ¢ LBy, 2 ) dA
(a)

' T N
= lz—gz[f NTEN(u,.u,) + ngN € (vv,] + }

“{A) (A)
:32.§2F[%:+%+...},
.V”Vo'z:‘Z—gz‘{"1

géolving for [? yields

(2.29) % =y“'vv—3‘;§i(v—v0> , |

hence




>
1

. , -
ANy v+ o, 0 +a, 07+ e

H

This formula

9 3 L
dh= 5y ¢V r gy, Yo T BV
. _ O N 1
(2.31) R (1‘5‘—0‘"0)
K. ?_E/(K _9r)
Ky 9V I

In the vicinity of the
‘be considered as small
iand (2.31)

for a

1) 1 Z 0

K 1im 2

2 2\
oo/ o) v, BV

shows A as a function of V and Vo' and we conclude

. RN dV0
dVv SVE

dA

M
F

dA

as desired. Thus we get from equs.

bifurcation point the difference V—Volmay

(2.30)%

T V-V 0 Ty

X
1] . y M
2% a, - 2 =
- 2]/ SV -V) (K . F
- E 0 0
21/2M (v-v,)

|

meaning. that the:bifurcating path in the load-shortening

. diagram initially goes back along the fundamental path,

and,

| 2)
v(2.32)

for a, =0
A\
K .4 °F - 1;
-K_-Z 2)\.1 K
0 Ko+, &+ 1+ Kg 2a, N\,

3. Numerical Evaluation of Analytical Relations

Modal Analysis

3.1

‘The numerical procedure to be applied for the evaluation of the
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_formulae derived in the preceding chapter is based on the com-
iputer program BEOS (Buckling of Eccentrically Orthotropic Sand-
1wich Shells) which is capable of computing a prescribed number

of eigenmodes u; and eigenvalues A;-
Knowing several eigenmodes it is reasonable to expand the dis-

placements V, into a series of these modes. However, due to (2.19)

01 must not be contained in this expansion. Thus

h
(3.1) v2 = Ej H U,
k=2

:Substituting this series into the variational equation (2.22)

from which V2 is to be determined we get

- h '
| > {o‘; [[EL(_uk)TCEL(GV) - MNTEY U, BV dA }
T k=2 (A)

= - f[eL(u1)TCeN(u1,6v) . _‘z;eN(u1,u1)Tc;;L(6v)l dA

(A}

With bv = U,, U,, ... making use of the orthonormalization

(2.17) and (2.13) we get equations for the coefficients azk:

(3.2)) of = ——5&——; [{aL(u,)TceN(u1.uk)’+ —lz—eL(uk)TCaN(u1,u1)]dA.

Flde M) g

From (2.23) and”}2.24) we ggt
1 h N
% = ]%L {2202/ [EL““)TCEN(LH,UR) + —%EL(uk)TCE(ULU”] dA

+ —;— /e”(u1,u,) CceMuy,uy) dA} .
(A)

-

Regarding (3.2) this may be transformed to




determined by evaluating the integrals

131 = _[aL(uk)Tc eMu,.uy) dA

(A)
i(3,4) 133 = Jf et(u, )" c e¥(u,.u,) dA
' Y :
14 =_/6WumudTCeW0mw)dA

(A)

The integrands are sums of expressions like

co. . Jux Ow; Owy e duZ  du) 8u] z
12 0 x Oy Oy 273x dy dy

{for definition of uy" see equ. (2.1)), or

\ 1 1 1 1
2013 Owy 8wy, 8wy Bwy, du;  duy  Quy  Ou

h
(3.3) | ap = 2N\ [_l_ je”(u,,u1)TceN(u1,u1)dA-Z Mo Mok )2]
. LF o Ak :
{A) -
E’3.2 Evaluation of Intedgrals

The load coefficients d1, d2 and the expansion coefficients, as

presented in equs. (2.21), (3.3) and (3.2) are numerically

2C
dx  0x  Ox dy "3x  ax oax  dy

1Generally speaking, the terms of the integrands have the

s giethe id ]

i Um‘x' ;
(3.5) T = ¢ | ==
1 =1 va“ Gyp“r' i

|

form




_with B =3 or B= 4, resp.; Vo , Ha= 0/1/2; iu = 1/2/3/4/5 and|
Mg = 1,2 ... n . -

Each term is identified by the 48 numbers Vv, fa, le Ng=1,2...8,

énd by the numerical factor c. A list of terms can be established
according to the definition of the strain vectors el{u) and
fENHM.Uk)equ. (2.4). We shall now outline the method used to
éompute the contribution of one typical term to the integrals,

équ. (3.4).
In the computer program BEOS the shell is divided, by straight

iines running parallel to the edges, into rectangular subregions.
hithin'éach subregion the displacement compénents u1,u2... = w,u{.“
are approximated by interpolation based on certain values known
at the corners of the subregion, see ref. [7]. These basic data,

e.g. for the displacement w, are

dw 3w 0%w
dx ' 9y ' 9xdy

!

meaning that for each component of the displacement vector 16
?alues have to be known for a subregion to perform the inter-
polation. As the displacement vector has 5 components for a sand-
Wich shell (cf. equ. (2.1)), a total of 80 values have to be
known to completely describe the deformation within each sub- R
region. Thinking in terms of the finite element method this would
mean that we work with a conforming element having 80 elemental
degrees of freedom.

%

Let the subregion (or finite element) under consideration be the
j—th one in the x-direction and the k-th one in the y—direction.

The side lengths are aj and b, respectively. We define a local

] . k
coordinate system (§,1 ) with 0=§,m = 1, from which the local

coordinates X,y are obtained due to

i

(3.6) Y = Yo+ b .

122



_From the values and derivatives of the i-th displacement function

fin the n-th eigenmode we form a matrix

pq 1 2 3 4
11 ui (0.0) Oun (0,00 | ul (0,1) 9un (0,1
(3.7) 9 o
3yl | azuL 3! azu;
2. (0,0) (0,0) 2 (0,1) (0,1}
v . 2 0 9 3 GJ2 3gam
n'pq - .
3 un (1,0) @u“ (1,0) up (1.1) 5 (1,1)
GUL GZUL dukb BZUQ
1 1,0 1.1) (1.1)
4 3t (1.0) 3E3T (1.0) | 3¢ ( 3E0T

f C C ;
Within the subregion the values of the function u}{§.7M) are,

:by interpolation

c
-
uxs
=3

"
M=
M=

C: -
=)
O
a

©
o
=3

©
0
uxs

—

jIn this formula the functions ®pln), ¢q1l€) are the four cubic

Hermite polynomials

The derivatives of ug(g,n) ~are

(3.8) AT (E1) = — i iﬁnpqw;m PILE)
A _ ax’ oy 7 0? b p=1 q=1 1
with s

| g - d® o,

(3.9) YD s G




Substituing (3.8),7(379) into (3.5) yields, for thée integrands,

]
T = T[ Vocbum Z Z Umng PocCIocq) (T])w (g)

®=1 Pe=1 qu=1

which is the same as

EoEe (BT 2 o]}
i

ThlS sum of functions has to be 1ntegrated over the area A ij of

the subregion. The integrals to be computed are

Iz} 1 A 1 A 7 F
/ TUwEs () YY(g) da = g bkawﬁi(n)dn -/’]Twﬁi;(g)dg )
[}

(Ai,j) oL=1 Lzt o =1

The functions under the integrals are known. They can be computed

and stored once and forever. We write
o po |
(3.10) @B_QC:f'ﬂ"wr;(g)dg |
: 0 «£=1 |

and get, for the contribution of a subregion to the integral over

one typical term,

B3 et (S  [5(3 T ol 6] 1))
] b & .o =1 gp=

pa=1 qp=1 *=1 ‘

TTo determine the. integrals (3.4) these contributions have to be
computed and summed up for all terms of the integrands and for

all subregions.

One item remains to be mentioned: Most of the components in the

|
b
|

‘equ. (3.6)

i
i i

matrlx

Ci-
=)
©
D
-
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bare derivatives of the displacement u (x,v). They are taken
w1th respect to the local coordinates (E‘n) However, the deri-
Vatlves computed and stored by the program BEOS are taken with

respect to a global normalized coordinate system

where lx and ly are the panel dimensions in the x- and y-direct-

ion:

Iy = Z aj ; ly = by B }

{j) ‘ (k} |

For_the transformation of this system to the local system (§,7m)

we find from equ. (3.6)

end it follows that

(3-12) = j . = a

This_ transformation has to be taken into account in establishing

the matrices defined in equ. (3.7)
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3.3 Choice of Normalizing Factor F

The parameters d1, d,, as they follows from equs. (2.21) and

(3.3), depend on the normalizing factor F. By different choices

of F they may be made big or small. Some guide is needed for
chosing F properly.

It seems to be reasonable to link [, or [?, more directly to

(V-Vo) . We normalize (V-Vo) in equ. (2.30), dividing it by

(3.13). Vi = Ay /Ko
and get

_2\__ S 2 V-V, , 2Ny "V -Vq

7\1 FKQ V] FKO V'l
If we take
‘ S/ V- Vg = 2 = 2N
,(3.14) C = Vi Oy o= Qg Fky Az = C(z———-FKO
Wwe can write
1 A - -~ .2
(3.15) 3 T+ o+ L .
This choice corresponds to taking

F = 2/Ko .

v 23.4 Influence of Symmetry or Anti-Symmetry of Buckling Modes

on the Integrals over Triple on Quadruple Products

Very frequently the buckling modes are symmetric or anti-symmetri
with respect to the center lines of the pahels. We may consider
fhe center lines as coordinate axes (x,y). Then a mode is called
symmetric in the x-direction (i.e. with respect to the y-axis)

if its normal displacement is

cwo(-x,y) = w (x,y) ,

1 26



_and anti-symmetric in the x-direction if -
|

i ~
| [

i

w( -x,y) = w(x,y)

A corresponding definition holds for symmetry or antieSYmmetry

in the y-direction (i.e. with respect to the x-axis).

i

i

We consider four cases of symmetry properties as presented in the
following table: ‘

case no. R 1 2 3 A

x - direction, y-direction s,s|a,s |s,a ta,aq

S

s: symmetric a: anti-symmetric

.

The symmetry properties of the three non-vanishing components of
the vector

i

€N(u1,u2) = eMu,,u,)

-

for all possible combinations, are compiled in the next table,

property of u,/u, Is,sls,s|s,sla,s|s,s/s,als,s/a,alasla,s |a,s/s,alasioalsals,als,.alaalaalaa

oo gl s s la,s |s.a |a,a|s,s |a.a|s.a|s.s |a.s]|s.s

N
" " Ez(uruz) s,s {a,s |s,a |a,a|s.s |a.a}s,a |s,s]a,s]|s.s

. :
" " 83(W,ug a,a|s,ala,s|{s,sla,als,sla,.s|a,ajs,ala,a

: L, ) t
and the symmetry properties of € & (u;] = N; are as follows:
property of u;| s.s a,s | s.a a.a |
" W Ni;l1 .8, S a.,s s,a a,a :
n nNi2 S,S a., s s.,a a,a :
7
W w N, a.a| s.al a,s | s,s
“3 .




__The integrands of the integrals over triple products are inner
products of N; and EMluj,u;),

Lk = 'NiT eMlujuy) = e(u) ceNu,u,)

iny doubly symmetric parts will contribute to the integrals.

The symmetry properties of the three modes involved may be
characterized by the triplets

|
i
i
i
|
i

[ property of uj / property of uj / property of ukl

We find that only the following combinations give rise to doubly
symmetric integrands: )

[s.s/s,s/s,s], [s.sla,sla,s ), [s.sls,als,a]  [sis/a.alaa],

[a.s/s,s/a,s] [a,s/s,ala,a],

1

[s.als,sis,a], [s.ala,sla.a]

la,a/s,s/a,a],[a.ala.s/s.a],

It is obvious that these triplets must be symmetric with respect
to the second and third entry, i.e. if [ py / p, /p3 | leads to a
doubly symmetric integrand then does aléo ( P1 I p3 !pa2 ] . More-
over the list above shows that a corresponding symmetry property

holds for the first and second entry. Therefore the list may be
reduced to

[s.sls.s/s,s],[s.sla,s/a,s] ,[gééls,a/s,c],[s,s/c,a/a,c],[a,s/s,a/a,u] g

With the additional statement that a doubly symmetric integrand
@ill result for any order of the three entries.

Analysis of the initial postbuckling behaviour féquires evaluatio
éf only such integrals over triple products where two of the'mode
involved are equal to the buckling mode. Of all triplets only
£hose having at least two equal entries need be retained, viz.

[s.s/s.sls,s], [s.sla.sla.s] [s.s/s.als.a] [s.sla.ala,a]




_In each of these triplets there is at least one entry s,s. Thus
any buckling mode will combine to non-zero integrals over triple

products, with doubly symmetric higher modes only.

Similar considerations for the gquadruple product integrands
I = &%u,u)"CEe . u) |
ijkl = ir¥j k'L |

’lead to the combinations

[s.s/s.sis.sls;s ] [ssls.slaslas], [s.s/s.sis.als,a],

[s.sls,sla,ala.a),[ssla.slsalaa],|asla.slaslas],
[O,S/G,S/S,G/S,O],[CLS/G,S/G.G/G,O] ,[s,a/s,a/s.a/s,c ],

[s.als.afa,ala,a],[a.alaala.alaa].

i

Again a doubly symmetric integrand will result for any permuta-

tion of the four entries.

4. Examples

4.1 Influence of In-Plane Boundary Conditions on the Initial"

Postbuckling Behaviour of Isotropic Curved Panels

As a first example the buckling behaviour of two isotropic curved
panels with hinged edges will be considered.

1

This problem was already studied by W.T. KOITER [ 5]. However,
for the preéent examples the in-plane boundary canditions were
chosen different from those considered in KOITER's study. The
panels were supposed to be loaded by controlled éhortening lead~
ing to boundary conditions u* = 0. The deflections v* were like-—
wise assumed to be zero all along the edges. Both panels were
inén equal width and length, but the radii of cur&ature were

different.




A complete information on the'geometry of the panels is presented

in Fig. 2, whereas the buckling loads and the initial postbuckl-
ing paths are shown on Fig. 3. It should be mentioned that the

buckling modes of the two panels exhibit two half waves in the
direction of the load, and one half wave in the transverse

direction. Thus they are anti-symmetrical/symmetrical (a,s).

Panel No. 1 has a positive, although very low, postbuckling
stiffness. Panel No. 2, i.e. the more curved one, has a highef
buckling load but a negative postbuckling stiffness. The shell
with zero slope of the load-shortening curve in the postbuckling

range would be somewhere between te two. Its curvature parameter

4 24"
1201 -v?2) b |
(4.1) @:1/2(2 —r

would be in the range

1.195 < B <  1.311 .

KOITER found for the weaker "classical"™ boundary conditions
treated by him, the postbuckling curve with zero slope at panels
with ' ‘

® = 0.64.

He supposed that the boundary conditions would influence this

value strongly. The present result confirms his supposition.

It might be interesting to know that, for the second panel, out
of the higher buckling modes the 2nd (3.1)*) and the 9th (1.1)
one are doubly symmetric. They influence the computational value
for the postbuckling stiffness. The deformationhpattern in the
initial postbuckling range is

= Cug+ 21005014 up + 00225 ug) |

* .
)Occasionally buckling modes will be roughly characterized by
pairs of integer numbers (m,n), giving the numbers of half

waves in the x- and y-direction, respectively.
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EOunterpart buckling outward. It is obvious that in this case

4.2 Initial Postbuckling Behaviour of Short Isotropic Panels

Ehe panels considered in the preceding paragraph were modified
in two respects: The radius was reduced to r = 554 mm, and the
pnloaded edges were clamped. Shells of different lengths were
analysed for their buckling loads and modes. Two of them were
Ehen selected for being analysed with respect to their initial

postbuckling behaviour.

ihe first panel is 69.36 mm long. It buckles in the symmetrical
|

(1.1)-mode. The second panel is 76.65 mm long. It buckles in the
enti~symmetrical (2.1)-mode. The buckling loads of the two panels.

are nearly equal.

For the first panel the result is quite unusual, though not un-
expected' It cannot be compared to any of the published solution%
on the postbuckling behaviour of curved panels, since it predicts

non symmetrical bifurcation with d £ 0.

All the published investigations on the initial postbuckling
behaviour of panels, as far as the author is aware, found symme-
trical bifurcation with‘ d1 =0 meaning that the postbuckling
behaviour is independent of the sign of the postbuckling deflect-
ion. In other words: No matter whether the shell buckles inward
or outward, the initial postbuckling behaviour is the same. It
is surprising that this statement should hold not only for plane
banels for which an inward or outward direction cannot be defined,
but also for curved panels. If the buckling mode is'anti—symme—

trical, however, than for each part buckling inward there is a

ﬁhe bifurcation is symmetrical. It is this case which was treated

throughout in past studies.

figs. 4 and 5 show the initial postbuckling behaviour of the two
ﬁanels. The curves for the longer panel deserve no discussion as
they depict the familiar symmetrical blfurcatlon with a slightly
negative postbuckllng stiffness. The shorter panel ‘exhibits an

unsymmetrlcal,blfurcatlon behaviour. If we would regard strictly

the asymptotic nature of the theory we should stop the computa-



.tion as soon as a non-zero value for o« ., is found. This would

vield a straight line in Fig. 4, and we1would conclude that the
panel is not capable of carryinqadditionalloads after buckling.
We would arrive at such a conclusion for any short curved panel
whatever small its curvature might be. On the other hand for a

élightly longer shallow panel thé buckling mode of which is anti-
1= 0 and d2
panel would well be able to carry loads higher than the buckllng_
load.

symmetrlcal we might get > 0 meaning that this

{
A result of this kind is quite unreasonable. It was hoped that

by taking the coefficient o in addition to into conside-

27 17
ration more consistancy would be achieved. But now the two

values of d are very dissimilar indicating totally different
|
postbuckllng behav1our for two oanels of only slightly different'

dlmen51ons.

Probably the contradiction can be resolved by improved techniques
for taking into account the coupling of neighbouring modes, i.e.
of modes connected with nearly equal buckling loads. This must be
left to a later study.

4.3 Test Panels under Idealized Loads

4.3.1 Dlmen81ons and Elastic Properties of the Panels

A series of tests was performed on orthotropic sandWich panels.
A first report was presented earlier [1]. The test specimens had
é quadratic plan view with dimensions 800 x 800 mm?. They were
cylindrically curved with the straight generators in the direct-
ion of the main compressive load. Three-layer sandwich construct-
ion was chosen (see Fig 6). The core consisted of PVC foam with
a density ranging from 30 kg/m® to 50 kg/m®. The face layers
were built-up of three thin plies of glass fabric reinforced
epoxy. For the inner and outer ply of each face layer a nearly
unidirectional fabric was used, with 93% of the fibres oriented
parallel to the generators, whereas for the intermediate plies

bidirectional twill fabric was oriented at 45 degrees.
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Most of the elastic properties of the panels were determined in

an extensive test program. The extensional stiffnesses Bij were
found to be

The

B1q

By

panels No.

i

il

1 and No.

39 700 N/mm ,

20 500 N/mm ,

B2
Bss3

8 580 N/mm ,

I

8 350 N/mm .

2 had core heights of h = 8 mm. The

tests with these panels will not be evaluated in this report.

The nominal core heights of panels No. 3, 4 and 5 were only 6 mm.

Their bending stiffnesses were

K11

Ka2

it

]

The extensional

458 000 N/mm,

‘236 000 N/mm,

and bending stiffnesses

i

Ki2

K33

98 900 N/mm ,

96 200 N/mm .

have to be supplemented

by more stiffness properties in order to describe the properties

of the panels completely [7]. However, for the purpose of this

report the given properties should suffice.

The
No.

4.3.

For

test panels No. 4 and 5 were nominally equal, whereas panel

3 had a different radius of

Panel No. 3:

‘Panels No. 4, 5: r

2 Results of Computations

curvature. The radii were

3213 mm (shell rise h

:1625 mm (shell rise h

1t

i

25 mm)
50 mm)

each of the two configurations buckling modes and the corre-

sponding bifurcation loads were computed, followed by a calcula-

tion of the parameters «

postbuckling behaviour. Two load systems were assumed:

1

1) Constant axial compression,

- 2) Simultaneous

N

. X0

= 10 N/mm .

32

and&2 characterizing the initial

axial compression and shear with
1QQ7N/mm, nyo



Wfthe blfurcatlon loads were computed as factors by which these

loads have to be multiplied.

EIn Table 1 the results of the computationé are compiled. The
three lowest eigenvalues A are presented in order to judge
whether mode coupling renders the analysis unvalid. The symmetry
properties of tHe buckling modes can be definéd for the case of
Tpure compression only. The modes under simultaneous compression
?and shear are similar, but somewhat distorted, Fig. 7. Therefore
characterization of their properties is put into parantheses.

ﬁext the parameters o, and 32 are presented. They define a

1
parabola in the diagram?\ﬂ\1 vs. [ . In the case of symmetrical
bifurcation the apex of the parabola is at the point [ = 0,

;K/k1 = 1. With unsymmetric bifurcation the parabola if offset.

As an example the buckling modes of panels No. 4 and 5 are shown

on Fig. 7 for the two load cases. The values of and

| g min
1- (Kﬁq)min specifying the amount of this offset are presented,
too.

EMm

Finally the value K/KO is given. For symmetrical bifurcation it
represents the stiffness just after buckling. With non-symmetrical

bifurcation the posfbuckling line in the load-shortening diagram

goes back _along the fundamental line in_the first instance, but
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after some small amount of deflection it might also tend to
assume the slope K/KO. Due to the asymptotic nature of the theory,
characterizing the initial postbuckling behaviour by the offset
of the parabola X/X1 vs. [ and by the postbuckling stiffness,

is justified only in cases of very small offset.

5. Comparison with Panel Tests

5.1 Description of Tests

The panels described in the preceding chapter were subjected to
compression and shear in the test facility, Fig. 8. The test
specimen forms part of the compression flange of a cantilever
box beam. As such it is loaded in a similar manner a a panel in
an airplane wing. The box beam is loaded at its tip. Bending by
transverse tip displacement causes compression of the test k

specimen, twisting of the beam tip causes shear.

The stress distribution in the panel and the surrounding frame
is statically indeterminate. It was necessary, therefore, to
measure the load transferred by the panel. To either side 50
rosette strain gauges 0°/45°/90° were applied. Their readings
taken at different load levels provided a gbod picture of the
distribution of membrane forces in the panel. Moreover, by plot-
ting corresponding stresses measured at opposite faces, see

Fig. 8, the onset of buckling could be identified by a distinct

deviation of these stresses.

5.2 Evaluation of Test Results

The membrane forces in the panel at the onset of buckling were
determined from. the measured strains by extrapoiation. Defining
this "onset of buckling" was somewhat arbitrary since the
strains at opposite faces did not start to deviate suddenly. The
membrane forces were used as input to the program BEOS which was
run to compute eigenvalues and eigenmodes. The lowest eigenvalue
KT is the factor by which the distribution of membrane forces
has to be applied in order to arrive at a theoretical buckling

load. This factor should be slightly above unity for perfect
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agreement between theory and test. An eigenvalue K1 > 1.0 means
that the onset of buckling occurred below the theoretical buckl-
ing load. The program BOES also computed the characteristics of

the initial postbuckling behaviour.

The axial membrane forces Nx_in the center section of the panel
were integrated along the panel width to yield the total axial
force transferred through this section. It was plotted against
the vertical beam tip displacement. This quantity is proporti-
onal to the shortening of the panel. Hence the plot may be
considered as a load-"shortening" curve. The theoretical buckl-
ing load was indicated in the diagrams together with the theo-

retical siope in the initial postbuckling range.

Two tests with panel No. 3 and one test with each of the panels
No. 4 and 5 were evaluated in this way, see Figs. 9 to 12. In
the two tests with panel Nr. 3 different relations between
compressive membrane forces NX and shear flow ny were inten-
tionally produced. In the second test the amount of shear was
higher than in the first one. At the central point of the panel

the relation between axial force and shear flow was

Nx / ny ~ 4 (panel No. 3, test No. 2)

whereas

Nx / ny = 12

at test No. 1. At the tests performed with panels No. 4 and 5
this ratio was about

‘NX / ny = 10.

Panel No. 3 couid be tested several times although some small
degradation of stiffnesses may have resulted from each test.
For this reason the results of a third test were not included

in this evaluation.

The panels No. 4 and 5 could be tested only once. Panel No. 4

attained a high load before buckles became visible. Shortly
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later it buckled once more accompanied by a very loud report,

and followed by partial debonding of face layers and core. The
buckling behaviour of panel No. 5 was milder, but this panel

was also destroyed after buckling.

In the diagrams, Figs. 9 to 12, the maximum loads can be seen
clearly. They were divided by the theoretical buckling load. The
rario N/NX is given as written information in the diagrams. The
onset of buckling is manifested by changes of slope on the load-
shortening curves for panels No. 3 and 4, but not for Panel No. 5.
All panels were able to carry additional loads. The tests were
stopped with panel No. 3 in order to avoid destruction. The load
carried by panel No. 4 decreased a small amount in the first
instance, but increased again before the panel was destroyed.

On panel No. 5 slight buckles grew visible but the load could be
increased at the same rate as before until suddenly sharp buckles

appeared, which caused delaminations.

Summarizing these results it may be stated that the initial post-
buckling behaviour can be classified as "mild" for all panels.
The panels with the greater curvature attained remarkably higher
loads than the flatter one, but were destroyed, obviously in a

secondary buckling process.

The theoretical results also predict "mild" initial postbuckling
behaviour with stiffness degradation by 35% to 52%. The maximum -
loads attained were not lower than 77% of the theoretical
buckling load. One test specimen,panel No. 4, could even be
loaded to a value slightly above the theoretical buckling load.
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POSTBUCKLING BEHAVIOUR

UNDER IDEALIZED LOADS

BIFURCATION
= - A
‘Nx/ny Panel No. loads mode type a, a, C min 1-<X9mﬂ K/Kg
3 0.8253 a,s 0 0.814 0 0 0.449
0.9094 ,
100/0 1.2022 a,a
4 and 5 1.1825 , 0.101 1.943 0.026 0.001 0.660
1.3083 a,s
1.373° s,a
3 0.8153 (a,s, modified) 0 0.833 0 0 0.455
100/10 0.1913 (s,s, modified)
1.1913 (a,a, modified)
4 and 5 1.1572 (s,s, modified) | 0.064 1.992 0.016 | 0.0005 0.666
1.2184 (a,s, modified)
1.3911 (a,a, modified)
TABLE 1 RESULTS OF COMPUTATION FOR TEST PANELS
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MATERIAL PROPERTIES :
E=71GPa ; v =0.3
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