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Abstract

For the design of wing structures with
optimal weight the gradient method is app-
lied due to the different constraints
(stresses, flutter speed). The theory and
the computer program are described. As an
example, an idealized wing consisting of
bending/torsion bar elements is presented
for which the stresses as well as the flut-
ter speed are active restrictions.

1. Introduction

The rapid development of large digital
computers in the past 20 years has comple-
tely changed the structure calculation me-
thods in aircraft construction. While the
simple beam theory is applied only for
wings without sweep and with high aspect
ratios, modern aircraft are largely de-
signed using the finite element method
(FEM). As long as the static stresses are
to a high degree decisive for dimensioning
it is often tried to modify the cross sec-
tion dimensions by a few FEM calculations
carried out subsequently in such a way that
the maximum permissible stress is achieved
in each element in one of the load cases.
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The design variables in this case are
the stringer cross-sectional areas F and
the membrane thicknesses t (in longerons,
ribs and the skin). This method is called
"fully stressed design" (FSD) and belongs
to the class of the optimality criteria.
Its advantages are economic calculations
and uncomplicated handling. The main dis-
advantage is based on the fact that for
statically undetermined systems an exact
weight minimum cannot be forced in spite
of numerous iterations. The reason for this
is that the request for weight minimum does
not directly enter the calculation and the
cross section values are only modified by
the ratio of actual to admissible stresses.

Due to internal force rearrangements it
is very well possible that the statically
undetermined structure with the optimum
weight is built up in such a way that

stresses below o _ . . occur in some
admissible

elements. A second considerably more impor-
tant disadvantage of the FSD is the un-

sufficient suitability for additional
constraints of a different character,
such as maximum deformation and flutter
speed.

2. Formulation of the Optimﬁzation Task

Let us suppose that the structure of a
wing is given by the number and position
of the stringers, longerons, ribs as well
as the skin. The optimization of the con-
figuration involved in this determination
is not discussed here. For the optimiza-
tion of the structure the cross sections
or the thicknesses of the elements of the
idealized calculation model are required
while certain constraints have to be ful-
filled and the weight minimum of the struc-
ture has to be found.

For dimensioning the wing we start out

from the two most important constraints
- static stresses o = 0 am (3)
- flutter speed %?é v, (4)
The index 11 means "lower limit". These
constraints and the structural weicht W
are functions of the design variables.
o =0 (XI’ Kot «eey xm) (5)
Ve = vF(xl, Xor eoes xm) (6)
W =W (xl, Koy eees xm) (7)
The modification of the limited values

with partial linearization is expressed as
follows:

3o, aoi 3oi
do; = 7= dx it — dx,+...+ dx_ (8)
i X, sz 2 me m
Fig. 1 shows the approximated lineari-

zation for the individual stress o depen-
ding on the design variable x.
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Fig. 1: Linearization qf the stress

In the same way the modification of the
flutter speed can be expressed

BVF BVF BVF
dVF = del‘l"g‘x—zdx2+. . .+ﬁdxm (9)

The gradients are combined in a matrix.
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Bxl 8x2 me
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_ F F F
{VVF} = {§§* I%. *°* 9% (11)
1 2 m
With the modifications of the design
variables
{Ax} = {Ax1 Ax, ... Axm} (12)

the restriction system is represented by

{6V apve VD 1{ax V) = {oa (13)

m!

v ( v+1)}t{Ax(v+1)} N

F (14)

v

v) (
{ F F1ll

with (v) respectively (v+1) characterizing
the iteration step.

)
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The following formﬁlas are valid for
the weight function:

_ (W OW oW
{vw} = {gx—a—x— cee B3y (15)
1 2 m
wF o O ag D g O omy Sax VY 16

The objective function can be restric-
ted to the following form:

1o~

VY = v S ax ) L Min (17)

The structural weight
the positive or negative direction depen-
ding on the constraints. The demand for a
minimum total weight leads to the highest
possible, negative weight modification AW

of equation (17).

can be changed in

3. The Formation of Gradients

The stress gradient

The relation between the stresses in the
elements and the deformations of the total
system is given by:
{o} = [DI[T]{q} (18)
where [T] is the transformation matrix by
means of which the deformations in the ba-
sic coordinate system are transferred to
the element coordinate system. The elements
of matrix [D] are corresponding to the
strains in the elements.

As the matrices [D] and [T] are inde-
pendent of the design variables, the stress
gradient can be written

8{o} _ 8{q}
o = [DIlTl A (19)
J J
With (vql = (3lad dal | 2laly (5
1 2 m

and the deviation of the basic equations
for statically loaded structures with re-
spect to the design variables

3{a} _
{a} + IK] 5;?— =0

g} _ -1 3[K]

5% . = [K] T {q} (22)
J J

the restriction system reads:

[Vol = [DI[TI[Vq] (23)

[K] is the stiffness matrix of the struc-
ture.

o is generally used for the normal and
shear stresses. If the reference stresses
in the membranes, e.g. according to an
energy hypothesis
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are limited the following extension is ne-
cessary:

a acv BOV acv
0 =x—do_ + 5 d +
v aox X ch oy BTXY dey (25)
aov 1
30~ 2o (29, ~ 9) (26)
p.4 v
ch 1
3o - 29 (20y - 0.) (27)
y v
Bov 3Txy
9T I (28)
Xy v
s{cv} a{ov} a{cv}
[VUV] = [—B)T —ag PR T] (29)
m
' a{cv} 30, a{cx}
with  —3— = I35 =%,
J X J
%0 o{o }
vy ¥
* I ! =%,
Y 3
Sov B{Txy} ]
M T Ty (30)
Xy J

For the calculation of the shear stres-
ses resulting from shearing forces and
torsion the matrix [D] includes static
moments and stiffness values which are
dependent of the design variables x.

[Vo]l =

[DIlT]I[Vg]l + [VD)[T]I[q] (31)

The Flutter Gradient

The characteristic equation of the flut-
ter problem assuming steady-state oscilla-
tions and a state of neutral stability may
be expressed in the form

[[K] - AM] - 7@V2[L1{q} = {0}  (32)
where [K] = stiffness matrix, [M] = inertia
matrix, [L] = air-force matrix. V is the

speed and @ the air density.

The flutter speed is calculated on the
basis of this eigenvalue problem by running
through the speed range step by step. The
speed at which the real portion of the
eigenvalue becomes zero  (or positive), for
the first time, i.e. the damping disappears
or an excitation starts, is the required
flutter speed.

The flutter equation can be deviated
with respect to the design variables, con-
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verted and simplified by the introduction
of the left eigenvectors {pl} and the re-

duced frequencies k = e, According to Rudi-

sill and Bhatia (H the division into a
real and an imaginary part (A and k are
real in the steady state oscillation in
the flutter point) permits the following
solution:

3\ 3
3 (R =Ry gx ) RyF (I =T, 537015
v o_ 3 3
Erlie . ” (33)
3j R3 + I3
R, I, = R.I
3A 173 371
with 94— =12 3 _° (34)
8x, ~ R,I; - R,I,
.t LKl _ ,3IM]
R, + iI, = {p} (axj Ag;;—){q} (35)
r oot & 3lL]
R, + il .= {p}([M] + 1% ok Mgl (36)
cro o t e - © 3[Ll,, - :
R, + 11, = w(p}®@ (1] - § HpHiq (37
4. Solution Method

The special minimum task to be solved
consists of the minimization of the weight
function (see equation (17))

{ vw} ®{ Ax}
(1xm) (mx1)

Min (38)

observing the constraints (see equations
(13) and (14))
[(GI{ ax} 5 {r} (39)
(nxm) (mx1) (nx1)

The gradient matrix [G] is a measure for
the size and direction of the design wvaria-
ble modifications. The vector {r} includes
the differences between actual and limit
values for the limited stresses and flutter
speed.

The simplex algorithm for the solution
of this minimum task within one iteration
step presupposes that

1) the solutions are greater than or equal
to zero

ij > 0, (40)

2) more unknown variables than constraints
are availlable.

Re 1:

This requirement can be fulfilled by a
coordinate transformation in the Ax values:

= AX £ Ax ., —-Ax

ul 1 (41)

0= (Ax—AxL)



Hence follows for the restriction system

[GI{ Ax} £ {T} (42)

with {r} = {r} - [G]{Axu} (43)

For the objective function the trans-
formation may remain unconsidered since
it results only in a deviation by the con-

stant value {Vw}t{Axll}. The meaning of

the indices 11 und ul is "lower limit" and

"upper limit".
Re 2:

This requirement is always fulfilled
simultaneously with the conversion of the
inequations of the restriction system in-
to a system of equations. For this pur-
pose an additional variable (slag variable)
X, (i.e. n as a total) is added or subtrac-

ted (depending on the direction of the in-
equality sign in equation (42)) so that
the following equality is valid:

{Ax}

[[G][IJ] §{xz} ={r} (44)

(nxm) (nxm) (m+n)xl1 (nx1)

The objective function is also concerned
by this extension.

{{ v} | {wz}}t 3LAKL$ Min (45)

{x }
Z

(1xm) (1xn)} (m+n) x1
For convergence reasons it is recommended

to select great values for {WZ}.

For the iterative solution of the sy-
stem of equation (44)

[Al{x} = {r} (46)
nx (m+n) (nx1)
and the minimum condition (45)

t S
{C}"{x} & Min (47)
1% (m+n)

we select n basic variables {xB} and m
slip variables {XN} and build matrix [A]

accordingly

: {xy}
[ia 1 :a 1l Afigf = {r}

(nx1)

(48)
(nxn) (nxm)

The elements of vector {xB} can be ex-
pressed by the slip variables {xN}.

(A Hx,} + 1A T{x ) = {r} (49)

xy} = 117 r) - (A 17 1A MK ) (50)
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In this step the basic variables are
verified (1st requirement). If X, < O re-

petition of the process with new selection
of the basic and slip variables is neces-

sary. If xBié O calculation of the objec-

tive function C

: {x }2
t t Kunuﬁ.. =
‘[{CB} {CN} }E{XN}‘ =C (51)

and replacement of {XB} by {XN} is done.
This results in the following form

-e.tC, % (52)

1
C = co+c N Nm—Mln

Ni¥n1 N2 XNt
If all Cyni 2 O the minimum of the spe-

cial minimum task is achieved. In the case

that one or several Cy; < O the value of C

decreases if X increases; and the mini-

Ni
mum is thus not achieved. The repetition
of the systematically modified basic and
slip variables takes place in a so-called
inner loop of the program.

The simplex algorithm can be represen-
ted geometrically according to fig. 2.

AX4q

Inadmissible Area Objective Function

~ Ay

/

Fig. 2: Geometric description of the

simplex algorithm

In the diagram a multidimensional pro-
blem is represented in the plane by two of
the basic variables. Restrictions form the
boundaries of an area of permissible solu-
tions. The objective function is a surface
which is displaced towards the area of the
permissible solution until it touches it in
one corner while its normal and tangent
vectors are maintained. The direction from
which the objective function is moved to-
wards the solution area depends on whether
a minimum or a maximum is required.



Due to the linearization of the problem
and the step width limitation (0,1 = Ax/x
= 0,4) the solution of the simplex algo-
rithm represents only one step on the way
to a structure with the optimal weight.
The block diagram (see fig. 3) shows how
the final result is calculated by multiple
repetition of the external loops.

REQUEST FOR
STORAGE
1
ORGANIZATION AND
DATA PROCESSING

[
| WEIGHT GRADIENT |
|

I

STIFFNESS - AND
MASSMATRIX
[
|STRESS CALCULATION]

| STRESS GRADIENT |
|
[FLUTTER CALCULATION |
|

FLUTTER SPEED
GRADIENT
|
SOLUTION OF THE LINEAR
PROGRAMMING PROBLEM
1
IMPROVED
DESIGN VARIABLES

<R

YES

PRINT PLOT DIAGRAM
OF THE RESULTS

Fig. 3: Flow chart of the DYNOPT
calculation

5. Example: Beam model wing

Within the task to modify an aircraft
the wing is investigated with respect to
a possible weight reduction. The constraints
for the weight minimization are maximum
stresses and a lower limit for the flutter
speed. The buckling is considered by appro-
ximation using lower permissible stresses
which decrease from the wing root to the
wing tip. Due to the changed rib and strin-
ger distances these stresses are higher
than in .the original design.
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As a static load case the positive
symmetrical pull-out manoeuvre was selec-
ted which due to the wing load belongs to
the dimensioning load cases.

The following limits for the stresses
and the flutter speed were fixed:

Element O ax [lZ] T ];uax [Lz]

cm cm
101 35-103 18-10°%
102 32.10° 15103
103 29-10°% 15-10°
104 26-10° 12-10°%
105 23-10° 12-103%
106 20-10°% 10-10°

The minimum flutter speed is 308 m/sec.
For the modulus of elasticity the values
for aluminium are used.

The calculation model is a swept-back
system consisting of bending/torsion bars
fixed at the wing root (see fig. 4).

Fig. 4: Idealization of a wing structure
with 12 beam elements

The position of the elastic axis of the
wing is the 37% line behind the leading
edge of the wing.

The bending/torsion bars 101 to 106 are
situated on this line. In the course of
the weight minimization they are varied
with respect to the wall thickness t and
the additional stringer wall thickness tg
(see fig. 5 and 6).
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Fig. 5: Cross-section of the beam element
Element h b t tg

101 18,3 920 0,52 0,28

102 19,7 82 0,37 0,1

103 15,0 74 0,4 0,12

104 11,0 66 0,45 0,02

105 8,5 58 0,41 0,05

106 10,5 50 0,22 0,13
Fig. 6: 1Initial values for the thickness

of the profiles (in cm)

The beam elements 107 to 112 are used
only for the connection of eccentric masses
to the system. Their rigidity values re-
main unchanged during the iteration pro-
cess. The total system thus has 12 design
variables.

The static model for the stress calcu-
lations has 36 degrees of freedom. A z-dis-
placement per node as well as torsions
around the x- and the y-axis are permitted.
The dynamic model for the flutter calcula-
tion includes the z-displacements in the
nodes on the elastic axis as well as the
torsions around the y-axis.

The results of the optimization are the
bending and torsion stiffnesses plotted
against the wing span (see fig. 7 and 8).
They were obtained after eleven iterations
which had started from an initial design
with rather stiff elements. The weight
saving as compared to the initial wing is
about 14% with all constraints considered.
With the exception of element 106 all the
normal stresses achieve their permissible
limits. The shear stresses remain below
their permissible limits. A further reduc-
tion of the flange and web thickness t
would increase the shear stresses, but re-
garding the flutter speed limit the system
would become too soft with respect to tor-
sion.
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Fig. 8:  Bending moment, torsion and
shearing force over the wing span
Fig. 9 shows a monotonously decreasing

structural weight curve against the itera-
tions. The convergence is good. As desired
the weight curve approaches a horizontal
line. From the fifth to the sixth iteration
step the weight reduction is only 0,3%. The
optimization calculation could have been
interrupted at this point since, in the
‘following, only the rigidity values t and
tg of each element are rearranged. By in-
dicating a minimum wall thickness t or the
ratio t/ts this rearrangement could be

stopped earlier.
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Fig. 9: Structural weight against
iterations

The figures 10 to 14 show that, as a
consequence of the decreasing wall thick-
ness t or the reduction of the torsional

rigidity, also the flutter speed approaches

the lowest permissible value.

During the entire optimization process
the structure is in the permissible range
with respect to all constraints.

7. Final consideration

The particular features of the struc-
ture optimization according to the gra-
dient method are as follows:

- all constraints are considered simul-
taneously and with the same priority,
whereby a real weight minimum can be
achieved;

- a great number of calculation steps and
a detailed knowledge of the procedures
are required.

With the increasing extension of the
computers and reduction of the calcula-
tion costs this procedure becomes more
and more important.

Further development in view of element
types, constraints, and linked variables
as well as efforts to increase the pro-
fitability are necessary. In spite of the
optimization calculation it will not be
possible, even in the far future, to do
without the experienced engineer!
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