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ABSTRACT

A new singularity method is applied to
multi-element airfoils in the physical
plane for calculating both, the incom-
pressible velocities and the incompress-
ible potential- and streamfunction along
the contur of each element. The values

of the preceding computation are used to
‘build an orthogonal grid in which the air-
foil is mapped to a line in the stream-
line plane. The computational domain is
this streamline plane wherein the full
transonic potential equation is solved
using a finite difference method. The
geat influence of viscous effects has
been incorporated using the so-called
surface transpiration concept. The repre-
sentation of the displacement effect of
the boundary layer and wakes is based on
the well-known integral method and a
trailing edge flow concept, which includes
normal pressure gradients and wake cur-
vature effects. Comparisons of the theory
with high Reynolds number experiments
show the good agreement for pressure dis-
tribution and 1lift.

NOMENCLATURE

Local Speed of Sound

Square of the compressible velocities
Chord length

Pressure coefficient

Mach number at infinity

g T

Normal direction
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Square of the incompressible
velocities

Flow speed

[/, e}

Arc length along airfoil and wake
streamline

t Tangential direction

u,vV Velocity components

X,y Cartesian coordinates
x,y "disturbance" coordinates
o Angle of attack

Prandtl -factor V1-Mi
Specific heats
Displacement thickness
Momentum thickness

Curvature (& %%)
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Density
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Bremen, FRG

Compressible potentialfunction

Incompressible potentialfunction

€ € ©

Incompressible streamfunction
AY Potential jump at the trailing edge

Subscripts

A Airfoil

n Direction normal to airfoil and wake
SEP Separation point

Trailing edge

Direction tangent to wake
Wake

Derivative in x-direction
Derivative in y-direction
Denotes boundary layer edge
Derivative in g -direction
Derivative iny -direction
Iteration count

o< X R
g ¢ €€ £ H

Free Stream

I. Introduction

Several published methods are known for
the solution of two-dimensional viscous,
steady transonic flow problems. These
methods can generally be divided into two
types. The first uses the small distur-
bance transonic potential equation [1,2]
and added a boundary layer code to in-
clude viscous effects.

The second method, and the one on which
the work presented here is based, uses
the full transonic potential equation in
connection with various boundary layer
codes [3,4,5,6,7] . They all solve the
equation in a curvilinear coordinate sys-
tem provided by conformal mapping based
on an early work by Sells [8] .

The present work solves the transonic
potential equation by a finite difference
method using an orthogonal bodyfitted
streamline coordinate system. This pro-
vides a transonic computational plane
where one set of mesh lines is approxi-
mately aligned with the flow and the
other is normal to the boundaries of the
flow. The transformed coordinates used
are the incompressible stream function
and potential function, which are obtained



from an incompressible solution of the
flow field in question.

An early paper of Colehour [9] uses a
similar approach but unlike the present
paper he solves the incompressible stream
function equation V4y=0 using a finite
difference method to get the desired
stream function and potential function.
The present method uses a new singularity
distribution which is applied to bodies
or even multi-element airfoils in the
physical plane calculating both the incom-
pressible velocities and the stream func-
tion and potential function along the
surface of each element.

In calculating the boundary layer devel-
opment, a laminar boundary layer is
assumed to commence from the stagnation
point and to continue to some specified
transition position is reached where a
turbulent boundary layer is initiated.
The representation of the displacement
effect of boundary layers and wakes is
developed by Thiede et al [10] and is
based on the well-know integral method,
see for details [11] , expanded to handle
the wake displacement effects too.

An iterative procedure is employéd to ob-
tain consistent solutions for the invis-
cid flow and the boundary layer. In the
interaction procedure. the concept of the
surface transpiration model of Lock [12]
is used to represent the effect of the
various viscous layers on the outer
potential flow. In this manner the repe-
tition of the airfoil transformation
after every boundary layer calculations
is avoided. An allowance for curvature
effects of the boundary layer and the
wake is included in these boundary condi-
tions.

The subsequent paper is devided into four
parts. The first describes the formula-
tion of the compressible flow equations
with viscous effects, the second the
representation of the boundary layer and
wake the third the inviscid-viscous
interaction scheme while in the fourth
part some of the results are presented.

ITI. The basic inviscid method

The governing equation chosen for this
analysis is the full inviscid equation
for compressible flow. The usual form of
this equation for two-dimensional flow is:

2_2 _ 2_,2 -
(a®-02) @, 24;(¢y¢>xy+(a ¢y)¢w-0 (n
The local speed of sound can be determind
from the energy equation

02* ;1 q2=(

7 (2)

1_, 72142
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and on the profile the solution should
satisfy the Neumann boundary condition
20, 3
2 -0 (3)
Before the transonic solution is started,

these equations are transformed to the
incompressible ¢ - y-plane.

Consider for example an two-element air-
foil given in cartesian coordinates,
Fig. 1.

¥y
AN — :
Fig.1 Airfoil with slat in cartesian coordinates

For the determination of the incompressib-
le flow around this especially airfoil a
Dirichlet-problem has to be solved:

vy =0 (4)
with
W = const (5)
at the boundaries of the airfoil and
(6)

Y = VYo

at infinity. Differing from the well-
known panel methods, see for example
[13,14]) and only for numerical reasons a
doublet distribution with tangential
doublet axes along the contour is used.
With this distribution arbitrary thick
and infinite thin elements can be used
without any difficulty.

The singularity model leads to a well
behaved system of linear equations and is
very appropriate for calculating the
incompressible flow around multi-element
airfoils. For further details one is
referred to Klevenhusen [15]



The streamline coordinate system necessi-
tates the velocity potential distribution
along the contours which is obtained by
taking the same doublet strength as for
the streamfunction but positioning the
doublet axes normal to the contour. The
behavior of the velocity potential of
doublets is in such a way that the una-
voidable numerical errors decreases with
increasing distance from the locus of the
doublet. Therefor a doublet model is more
sultable than a source or vortex model
for determining the potential and stream-
function. Only open contours and non-con-
stant streamfunction on the boundary
require additional singularity distribu-
tions.

The transformed transonic potential equa-
tion requires the knowledge of the squares
of the incompressible velocities at every
node point (¢, ) in the streamline
plane. The velocities are considered as
functions of ¢ and ¥ . Furthermore we can
define disturbance velocities

2

u'=u-Ugcosa (7)

0

v

v - Uy sine (8)

The velocities u' and v' are potential
functions in the ¢ -y -plane and bounded
at infinity. To get the required veloci-
ties at the node points a Laplace equa-
tion in the flow field

Uw+ Uy,v, =0 (9)

is to be solved. The necessary boundary
conditions are known from the calculation
in the physical plane. A similar Laplace
equation can be formulated for v' in the
same way.

These two boundary value problems can be
solved by doublet distributions along the
slit with oblique doublet axes in the
streamline plane using the above mentioned
panel method. After solving the boundary
value problems the doublet distributions
are known and the velocities u and v can
be calculated at every given point in the
streamline plane.

Finially the physical coordinates are also
conjugate harmonic functions in the
streamline plane. Defining "disturbance
coordinates"

X'z x-pcosa + ysna {10)

y=y-¥sina + yeosa (1)
the x' and y' are bounded at infinity so
we can handle x' and y' in the same way as

u' and v'. An example of this procedure
is given in Fig. 2.
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Fig.2 Airfoil with Slat with Stream- and Potential Lines

Iy

The computational domain is the stream-
line plane, Fig. 3 wherein the full tran~-.
sonic potential equation is solved using
a finite difference method. The transonic
potential

Fig.3 Airfoil with Slat in Streamline Coordinates

A

equation (1) in the incompressible stream-
line coordinate system is given by

20 (gp* ww) " (P Bp* By By)=0 (12)
with
B= (05 + #)Q (13)
which denotes the square of the local
compressible velocity and
Q= <p)2( + (pyz (14)



which denotes the square of the local
incompressible velocity. The equation of
the speed of sound (2) is transformed to
-1
2202 - L1 (8-02) (15)

a -Clw
A good approximation for the compressible
streamlines is achieved using the same
angle of attack for the determination of
the grid and for calculating the transo-
nic flow. Since themesh lines are approx-
imately aligned with the flow the use of a
rotated difference scheme is eliminated
and the transonic potential equation (12)
can be simplified considerably, as all
first derivatives normal to the stream-~
line are incremental and terms of second
order can be neglected:

20 gy Oy ) 2065009 " T4y pe ) (1)

All transonic ealculations using the pres-
ent method are based upon this equation.
The boundary condition is given by

=0 (17)

Py

at the contour of each element.

III. Representation of the boundary layer

In the interaction procedure the concept
of displacement thickness is used to
represent the effect of the various vis-
cous layers on the outer potential flow.
Instead of adding the displacement thick-
ness to the airfoil geometry, a distribu-
‘tion of sources along the airfoil surfaces
and along the wake center lines is utili-
zed for the simulation of the viscous
flow displacement effects. In this case
we may rewrite the boundary condition,

eq (17), for the inviscid flow as follows:

d’w = Vn/v-d—‘

where v, is the normal outflow from the
airfoil due to the boundary layer.

The viscous boundary conditions are. as
follows:

{18)

- on the airfoil

v =1 d *
"% s (%98 (1)
- in the wake
=1 d *
Avnw % ds (95 q66 ) (20)
Bw,=-xq; (6%0) (21

For details about the boundary layer
codes one is referred to [10,11] .
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A further change to the inviscid scheme is
introduced in order to allow for the
effect of the curvature of the airfoil and
wake on the pressure change across the
viscous layer and .is given by

(22)

*
Ap -xgaqg (6 +0)

AW
which must be added to the inviscid pres-
sure distribution. The required curvature
used in equations (21) and (22) is given
by

eq

an ()

‘et

which is positive in the wake. It is shown

in Ref. 7 that equation (22) is approx-

imately equivalent to adjust the alculated
velocity g to gq', where

s *
q=q[l+x(5+0)] (24)
with asimilar correction for the velocity
in the wake. The velocity g' is used to
calculate the boundary layer.

IV. The numerical procedure

The mathematical formulations of the in-
viscid and viscous flow problems are coup-
led through their respective boundary
conditions. The objective of the solution
procedure is to find those particular
distributions of surface velocity and
boundary layer displacement thickness
which simultaneously satisfy both the
potential flow problem and the boundary
layer problems.

A basic feature of the numerical scheme
is that the repetition of the airfoil
transformation after every boundary layer
calculation is avoided. The numerical
solution of the transonic boundary value
problem proceeds in a manner similar to
that of Murman and Cole [16] . A succes-
sive line overrelaxation method is used
where the flow field is swept in the
downstream direction only, and difference
formulas are switched depending on wheth-
er the flow is subsonic or supersonic.

A solution is sought for the same angle
of attack in both calculations, i.e. cal-
culations to get the desired streamline
plane and to get the desired transonic
results. This assures the proper align-
ment of the incompressible streamlines
with the compressible ones in the conver-
ged transonic solution.



During the iterative procedure, Fig. 4,
a prescribed Number, NS1,

Calculate Calculate J Modify
inviscid || viscous boundary
velocity layers conditions
distribution

Caiculate

potential

distribution

Calculate

potential

jump at

infinity

Output
Cp,CL, Cm

onvergence
?

RETURN

Fig.4 Flow Chart for Iterative Methods

of the inviscid iterations is performed
with the current boundary conditions. The
velocity is then calculated on the airfoil
surface and along the wake, and is used

to calculate the current boundary layer.
The boundary layer on each surface is
calculated seperately and is extended
beyond the trailing edge to obtain the
part of the wake on either side of the
trailing edge streamline. The pressure
distribution is specified at node points
along the dividing streamline in the
streamline plane, but is sSpecified for the
boundary layer analysis as values at the
corresponding x and y coordinate points,
starting at the stagnation point rather
than the leading edge and proceding down-
stream towards infinity an each surface.

As results the boundary layer calculations
produces the displacement thickness, 8°,
and the momentum thickness, © , at the
various meshpoints. Underrelaxation is
employed in order to determine the actual
values of the displacement thickness

* * *
5, =6,.4 +RDEL (5,-5, )

v {25)

and the momentum thickness
0, =0,.1 + RDEL (0,- 6, _1) (26)

where RDEL is an underrelaxation parameter.
With these relaxed values equations (19),
(20), (21) and (24) are used to calculate
the new boundary conditions and further
flow field calculations are performed
with the new boundary conditions.

After every NS1 inviscid iterations have
been performed the whole cyle is repeated.
This process continues until either a
certain convergence criteria is satisfied
or until a specified number of iterations
have been completed. After the completa-
tion of the iterative procedure the 1lift
coefficients on the airfoil are calculated.

V. Result

Several test cases have been selected to
demonstrate the flexibility of the method.
The first example shows pressure distrib-
utions about a two-dimensional airfoil
section, the same as in Fig. 2. The cal-
culations, Fig. 5, have been done for

Present Theory { Inviscid |

) R —— Inviscid Calculation made by

Arlinger (Saab)

Cp -crit

63 04 05 06

-0l

Fig.5: Two- Element Airfoil, Me=.6, x=6°



the inviscid case. The agreement between
the present result and the result obtai-
ned by Arlinger [17] are good, however
Arlinger used a conformal mapping [18] to
get the desired computational mesh.

The next two figures demonstrate the
effect of the pressure variation across
the viscous layer. Fig. 6 shows for an
NACA 654-213 airfoil

~— Present Theory
+  Experiment
by Burdges et al {Lockheed i)

~1.6

~}.4
CP i
~1.0~
~0.8
~0.6
~0.4+
~0.24

~0.0+

— THEORY M = 0.7680 ALP = 0.500 £A = 0.306 N6 = 200
+ EXP M= 0.79680 ALP =1.000 CA - 0.277 U = 0.0260

Fig.6: NACA 65.1-213,« = 0.5 Airfoil
Calculation without Curvature Effects

a calculation with a correction
for viscous effects only on the profile
and without the described normal pressure
correction. Comparison is made with meas-
urements obtained by Burdges et al [19].
The next figure, Fig 7, shows the inclu-
ding of the normal pressure correction.
It clearly demonstrates the influence of
the pressure correction on the last 10% of
the airfoil chord. With this correction
the agreement between theory and measure-
ment for this simple airfoil shape is
excellent.

Some typical results of a comparison of
the pressure distributions for the super-
critical airfoil VFW-VA2 are presented
in the next two figures. Fig. 8 shows a
calculation
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CP iz

—— Present Theory
+  Experiment by

Burdges et al (Lockheed Georgial
~1.4-

~1.01 A
~0.8
~0.6 —_ —— — Y — — =T
-0.4- *

~8.2+

a.45 —

0.6 ~

a.8 -

1.0 -

1.2 -

— THEORY M = 0.780 ALP = 0.500 CA = 0.312 N8 = 200
+ EXP M= 07760 AP = 1.000 CR = 0.277 CU = 0.,02680

Fig. 7: NACA 65 -213 «=.5 Airfoil
Calculation with Curvature Effects

—&— Upper Surface
Present Theory
—x»— Lower Surface

+ Experiment , DFVLR [20]

-1 .4+ CcP

y—) T

Tz
T i

i
[ [ x«

RE = 2.40 MILLION

~THEORY M = 0.730 AP =0.600 €A = 0.489
+ EXP Mo 0,730 ALP =~ 0,600 CA = 0.233 CH -0.0066

Fig.8: VEW VA-2 Airfoil
Calculation without Wake Effects



with the pressure correction but without —&—  Upper Surface
the wake displacement effects. The experi- % lower Sutace | |resemt Theory
ment is taken from Ref. [20] . In the next

-1 + Experiment token from AGARD AR-138
calculation the effects of the wake are

included and Fig. 9 1.4
' —& % Present Theory ,,.4
with Wake Calculation
3.6 -1 .0+
Upper / Lower Surface resp.

~1.4-] .} g.‘

cP 4+ Experiment DFVLR {201
~3.2 -0.6-
o o
3.8 -0, 2~
B8 ~8.0
8.4 a.2 {
—0.2 0.4 -
~0.0- a.6 J
0.2 a.a 4
C.4 — 3.0 -
a.s 1.2 -
a.s -
1.0 -
1.2 - 2

=
RE o 2.01 MILLION
RE = 2.40 MILLION

~THEDRY M = 0.730 ALP =0.500 €A = 0.330 - THEDRY M = 0.600 ALP =2.000 CA = i. o =0.0198

+EXP M = 0.730 ALP = 0.600 CA — 0.393 CH -0.0086 +BF M- 0.600 AP -3.000 CA =~ 1. -

Fig.9: VEW VA-2 Airfoil Fig.10: SKF 1.1 Airfoil with Flap

Calculation with Curvature Effects
Calculation with Curvature Effects

Present

shows the good agreement between thé' Theory

—a— Upper Surface }
present method and the measurements.

—x— Lower Surface

+  Experiment taken
The next few figures will show some from AGARD AR -138
results from calculations of the flow
field around multielement airfoils. Since
the effective angle of attack of the 1.4
model in the tests was uncertain, a sug-
gested increment in Ref. [21] of Ax =-1.0°
due to the wind tunnel wall correction is .
chosen. The effective angle of attack
quoted in the figures includes this
increment. 0.6+

-1.2~

The first results are for the SKF 1.1 air-
foil with extended flap. The solution 0.2
shown includes the effect of the wake.
Fig. 10 shows the pressure distribution
at a free stream Mach number 6.2 -
of .6 together with the airfoil a.s -
in the streamline plane. The agreement
between the present method and the meas-
urement ([21] is good. However, the air- a.a -
foil contour is not smoothed at the
cutout on the main airfoil at the trai-

ling edge. 1.2

The same calculation is done but with a RE = 2.22 MILLIN
free stream Mach number of .7 which ~JHEDRY M = D.700 ALP =2.000 CA = 1.28)
produce a greater supersonic region on the +EXP M= 0.701 ALP = 9.000 CA = 1.181
airfoil. Fig. 11 shows the result of the .

present Fig. 11 : SKF 11 Airfoil with Flap
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theory together with measurements of

Ref. [21] . The overall agreement is good
but the local discrepancis in the shock
strength and at the leading edge are pro-
bably due to the fact that the pressure
distribution in the cut out region of the
main airfoil is not well predicted.

A last example is depicted in Fig. 12.
It shows the

4 Present Theory, inviscid
A Upper Surface }

X Lower Surface

+ Experiment made by ONERA

Present
Theory, viscous

-~ THEDRY M = D.600 ALP = 1.000 CA = 1,658

+ EXP N = 0.6800 ALP » 2.000 CA = 1.258
Fig.12: SKF-Conf. C Airfoil with Stat and Flap
Comparison with laviscid Calculation and Measurement

three-element airfoil with slat and flap.
Comparison are made with unpublished
material of VFW [22] . The agreement
between the present theory and the meas-
urement is satisfactory. Note that this
prediction is made without wake effects.

The main reason is as follows:

In the interaction region of the gap bet-
ween main airfoil and flap the boundary
layer flow will seperate at the beginning
of the cut out. The boundary layer theory
are only valid just prior to the sepera-
tion point. This leads to a somewhat
heuristic seperation streamline based on
emperisn and experience. This might be
an acceptable way to calculate the boun-
dary layer if only a small seperation
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region exists. But if massive seperation
will appear which is assumed due to the
strong adverse pressure gradient like the
one shown in the foregoing figures one

of the followings have to be done:

To . avoid these pressure gradients the
airfoil has to be smoothed like a
seperation streamline or

the full Navier-Stokes-Equations have to
be solved or

to take the results as they are.

If the results are taken as they are no
one expects that by using the Kutta-con-
dition, i.e. same velocities on the upper
and lower surface at the trailing edge,
will give the right circulation. These
conditions will lead to the pressure
distributuins shown here.

However, the oberall agreement between

the present theory and the experiments

for single airfoils or even multi-element
airfoils are quite satisfactory. For the
three-element airfoil the agreement is not
as good due to the reason stated above.
But for engineering application the
results are gquite encouraging, since there
is little known about the interaction of
inviscid/viscous flow around multi-element
airfoils in the transonic speed regime.

VI. Conclusions

The method presented here represents a
great improvement on those that have been
available previously for single or two-
element airfoils and has the extension to
handle more than two-element airfoil sec-
tions. Thus it is of considerable prac-
tical value in airfoil design. However,
there are deficiencies in the method
notable in the region where the boundary
layer assumptions are strictly invalid,
i.e. when the flow is approaching, or
beyond, seperation.

The use of a streamline coordinate trans-
formation procedure in transonic flow
analysis allows a general method to be
developed that is not confined to a
special class of geometry. The method
gives results which are in reasonable
agreement with experiments. The resulting
computer program which has been developed
enables a converged solution to be obtai-
ned in about 2-3 minutes on an IBM 3033
computer.
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