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Abstract

A brief review is made of the
on transonic wings being conducted
in Japan with the aim of improving transonic per-
formance of aircraft. It consists of two parts.
One is the research on transonic aerodynamics and
the other is the research on the optimization of
transonic wings using such aerodynamics as a tool.

Firstly, research on aerodynamics is des-
cribed, which includes design of shock free
airfoils using the hodograph method; numerical
design of shock free airfoils using the method of
artificial gas; numerical design of airfoills with
a shock wave by use of the relaxation method;
two kinds of numerical analyses of unsteady flow
around airfoils, one using Euler equations and the
other using full potential equations; and analysis
of flow around three dimensional wings by use of
integral equations. Some remarks are also made
about the viscous effect evaluation.

Secondly, research on optimization of tran-
sonic airfoils is described. The evaluation of
the airfoil analysis code is also described.

Finally, a brief review is made of two kinds
of facilities; one is the two-dimensional high
Reynolds number wind tunnel, and the other is our
numerical simulation project.

recent research
at the NAL

I. Introduction

Significant improvements in fuel efficiency
has been established through the application of
supercritical aerodynamics to wing design. How-
ever, most of the advanced technology wings
currently in use have been designed not by the
transonic flow theory but by use of empirical
knowledge about the relationships between the pre-
ssure distributions in transonic flow and those in
fully subsonic flow, or the curvature distribution
of wing surfaces, due to the lack in adequate
theory for tramnsonic flow.

NAL has developed a series of airfoils(l, 2),
also by use of the theory for fully subsonic flow.
A significant progress in computational aero—
dynamics during the 1970's, however, has made it
possible to design wings using transonic flow
theory. It has become necessary to establish a
methodology for designing optimum wings using
transonic flow theory.

Another defect, concerning the advanced tech-
nology wings in current use, is that the values
of the Reynolds number, tested in wind tunnels,
have been too low compared with those experienced
in prectical flight. It has been recognized
that the aerodynamic characteristics of wings at
transonic speeds are sometimes significantly
different, depending on the values of the Reynolds
number tested, due to the difference in the be-
havior of the shock boundary layer interaction.

In order to overcome this deficiency, several wind
tunnels, for high Reynolds number tests, have been
constructed (4, and one is now being construct-
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ed (6), a two dimensional pressure wind tunnel
has been constructed at NAL (5) and the intial
calibration of it has just begun.

NAL has a plan to establish a design method-
ology of advanced technology wings by use of two
kinds of tools mentioned above, computational
aerodynamics and a high Reynolds number wind tun-
nel. In the present paper what has been con-
ducted so far at NAL, concerning this plan, is
described.

IT. Hodograph Method

-Shigemi(7) developed a method of designing
shock free airfoils based on the analytical
hodograph method. The solutions of hodograph
equations for the transonic flow around airfoils
have been obtained (8,.9) by a transformation of
the known solution of incompressible flow to that
of the transonic flow. Shigemi called the in-
compressible flow, which marks the starting point
of this transformation, as a "model" flow.

What he was mostly concerned with was the
"nodel"™ problem. From the viewpoint of the
practical design problem of lifting transonic air-
foil sections, two kinds of models have been used;
one is the 1lifting elliptic cylinder model (
and the other is the combined model of a lifting
circular cg%inder and a non-lifting elliptic
cylinder (M), as to the former, one is inclined
to consider its use rather prohibitive, due
primarily to the complexities involved in theory
and in numerical computation, and also due to
difficulties experienced in producing cambered
sections. As to the latter, however, it is dif-
ficult to produce sections having a large angle
of attack with the free stream.

But there is still another possibility:
Shigemi introduced a new model, tentatively named
"yc-profile', as an improvement on existing
models. It is originated from the attempt to
compose a hodograph of a lifting wing-like body
with mathematical expression as simple as possible.

Fig. 1 (a) shows the streamlines of an in-
compressible flow around a lifting circular
cylinder in the physical plane. Fig. 1 (b) shows
those in the hodograph Z-plane where § = qeie, q
and 0 are the magnitude and the angular direction,
respectively, of the local velocity. It can be
seen that flow is defined on the two sheeted
Rieman surface in {-plane where {p denotes the
branch point. If { is transformed to & by

£ 2,

then £ = ¢g 1s mapped onto the origin of E-plane
as shown in Fig. 1 (c), whereas the point

Zy(=1), corresponding to the uniform flow, is
mapped on to the point £j = (1—1/§U)1/2.

In this case the effective flow occupying the out-
side of the circle |z| = 1 in z-plane is now
mapped_inside of a circle defined by |E-£y] =
1//1-k* in &~plane.

(1—c/cB)1 ¢y
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Fig. 1. Comparison of incompressible flows
in physical(z), hodograph(Z), and
regularized hodograph({) planes.

The center of this circle is located at & = &,
where the complex velocity potential w exhibits
its singularity comprising a dipole and a vortex.

Consider a more general case where the
dipole~and-vortex singularity (the location of
which is denoted throughout by £ ) lies apart from
the center of a circle; the circge is now arbitra-
ry, but assumed to constitute ultimately the
streamline ¥ = 0 of the hypothetical flow. In this
respect, the genesis of YC-profiles is somewhat
like that of Joukowski profiles; and in fact they
are expected to play a role similar to that which
Joukowski profiles once played in classical wing
theory.

If we introduce another transformation

&-Ec l—g% 1
n=nRE‘E—U(=nR_ik_5U€_‘£F)’ 2)
where
ik (1-£3)
"R TE EcEy S

denotes the value of N corresponding to £ = @, the
geometry of the streamlines in n-plane shown in
Fig. 1 (g) is exactly the same as that in z-plane
shown in Fig. 1 (a).

The image in z-plane of the unit circle
In] = 1 in n-plane, which will tentatively be call-
ed YC-profile, takes a shape with a round nose
and a cusped tail, and is somewhat like a Joukowski
profile (see Fig. 1,d). 1In Fig. 2 are shown a
series of YC-profiles with fixed Y and varied
parameters |nR| and arg.ng.

The complex velocity potential of .the YC-
profile, in terms of the hodograph variables, is
substantially similar to that for a circular
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Fig. 2. YC-profiles
Parameters: Y = 12° (fixed),
[|n}sarg.n].

cylinder and quite easy to handle in the hodograph
theory. Nevertheless, the shape of a YC-profile

in the physical plane, which happens to be somw-
what like a Joukowski profile, satisfies the
minimum requirements -- including varied thickness,
camber and angle of attack —-- for practical wing
sections.

One drawback in the analytical hodograph
method is that, even if the model be glven as a
normal flow around a closed body, the transformed
contour for the compressible flow might not close
at the trailing edge. It is possible to close
the trailing edge by superposing an adequate
solution of the fundamental hodograph equation.

In Fig. 3 a typical supercritical airfoil section
based on a YC profile is shown.

Superposition of a few more arbitrary solu-
tions to the basic function of a YC-profile is
useful in order to design wing sections of a wider
scope. Fig. 4 shows the example of airfoils
transformed from YC~profiles modified in such a
way.
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Fig. 3. A transonic Fig. 4. A modified
transconic.YC-profile

YC-profile (YC-0054)
(YM~0002) .



ITI. Computational Aerodynamics

l. Transonic Airfoill Design

(1) Method of Artificial Gas

Nakamura'(lo’ 11, 12) developed a new method
of designing shock free airfoils based, not on the
hodograph method, but on analysis in the physical
plane, which is similar to the method of Ref. (13)
He adopted the following equation as a fundamental
equation of two dimensional isentropic flow

v Fe awt/ex | oy
ax? 3y2 2+(Y-1)M*  3x

M /3y oY

=0 %)
2+(Y-1)M%  dy

where ¥ is stream function, Y is the ratio of the
specific heat and M is a local Mach number which
is related with ¥ by the following equation.

G

where ag and pg are speed of sound and density at
o

+ (a"’) }/ (agPg)® = £) )
3y

stagnation point respectively and £(M) is defined
by
il
£on = w2 + 712y V1 (6

2

Eq. (4) is of the elliptic type in the sub-
sonic region where > 0 and of the hyperbolic
type in the superson?c region where 4
Nakamura temporary replaced f (M) of.gﬁi (5) by
g(¥), giving,

{("l‘"-)z + (3—")2}/ (agog)? = g(W) 5
9x 3y,

where g(M) is a smooth function of M which satis~
fies

g(M) = £QM) at M1
()
dg@n) at M > 1
dM
If M is related with ¥ by Eq. (5'), then
Eq. (4) turns out to be of the elliptic type
everywhere exept on the sonic line. Eq. (4) sup-

plemented by Eq. (5') is a differential equation
of the flow of an artificial gas, which is
different from the real gas only in the supersonic
region and exactly the same as the real gas in

the subsonic region. This gas is hereby reffered
to as Nakamura's gas. In the case of the accel=-
erating flow of Nakamura's gas in ducts, the cross
sectional area decreases monotonically both in

the subsonic and supersonic region in contrast to
the case of the real gas where the cross sectional
area decreases in the subsonic region and in-
creases in the supersonic region.

High subsonic flows of Nakamura's gas around
an arbitrary airfoil can easily be solved by the
relaxation method, yielding a local supersonic
region (region P in Fig. 5). The supersonic part
of the solution does not represent the flow of
real gas whereas the subsonic part represents the
flow of real gas exactly.

If one solves the initial value problem of
Eqs. (4) and (5) in the region P using data at the
sonic line as initial values, by the method of
characteristics, for example, then one obtains a
continuous supersonic flow of real gas if the
choice of a free stream Mach number and the
function g(M) is apropriate.

Fig. 6 shows an example of the mesh of
characteristics. The stream line AB'C, obtained
from the solution, produces a new shock free air-
foil geometry partially modified from the original
airfoils.
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Fig. 7. An airfoil modified

from NACA2412.

Fig. 6. Mesh of characteristics.
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As stream tube of Nakamura's gas is narrower
than that of real gas, in the supersonic
region, the new airfoil is necessarily thinner than
the original one. If the choice of the free stream
Mach number or the function g(M) are not appro-
priate, a limit line appears in the solution, and

continuous shock free solution fails to be obtained.

The function g(M) for M > 1, in his calculation,
is chosen as follows.
Y+l

Y+1, Y~1

gM) = ) +AaM2-1)2 (M > 1) (8)
2

where A is a positive real constant.

Some examples of the shock free airfoils par-
tially modified from NACA 4 digit airfoils are
shown in Figs. 7 and 8.

A special merit of the present method is that
the initial airfoil sections can be given arbitra-
rily and that various airfoil sections can be
obtained by the choice of the function g(M).

An additional merit is that this method can
be applied to three dimensional wing-body
combinations.

(2) Relaxation Method

Ishiguro(14) developed an effective design
method for designing a transonic airfoil having
specified pressure distributions without regard to
the existence of shock waves. The fundamental
idea of the method is due to Tranen{13). The
procedure 1s to repeat the following two steps of
transonic full potential relaxation calculations
until the solution of the "direct step" give a
surface pressure distribution coincident with the
specified design pressure distribution. The final
"designed" airfoil geometry is obtained by sub-
tracting the displacement thickness of the
boundary layer from the final temporary airfoil
given as the solution of the "inverse” step.

1. Direct Step: the full potential equation(9),
2
(@2-0%) 0y = 2009, + (a2-V2)oyy = O (9

is solved for a temporary airfoil geometry given
as the Neumann's boundary condition using the type-
dependent relaxation method.

2. Inverse Step: the same equation (9) is solved
this time as the Dirichlet's boundary problem by
specifying the design pressure distribution on the
temporary airfoil geometry. The solution obtained
does not generally satisfy the zero normal veloci-
ty boundary condition on the temporary airfoil
surface. An adjustment is made to modify the
airfoil geometry so that the boundary condition is
satisfied.

In Tranen's method, the man-in-the-loop pro-
cedure was necessary and it took about one hour
of computing time to solve the problem. In the
present method, however, the procedure is
completely automated without any man-in-the-loop
procedure. The computing time is reduced to only
130 sec on the NAL AP system in batch mode for®
most reasonably-formed design pressure distribu—
tions. The following improvements have been made.
The relaxation scheme was changed to the more
advanced Jameson's rotated difference scheme,
incorporating the Poisson solver(16), The initial
potential distribution to start the relaxation is
given from the solution of the previous step so
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as to satisfy the boundary condition. This re-
duced a large amount the computing time. The
temporary airfoil is rotated to yleld the
specified 1ift coefficient C;,. The potential at
imaginary boundary grid point inside of airfoil
contour is solved simultaneously along with the
internal grid points using line relaxation.
The boundary layer effect is incorporated by cal-
culating the displacement thickness. The actual
airfoil geometry is obtained by subtracting the
displacement thickness from the converged tem-—
porary airfoil geometry.

The actual computing procedure is given as
the following flow chart.

2Dy » Stop

A(Mod=0) > %4? C~>E~>F > G~ (Mod=Mod+1)

The outline of the each iterative step is des-—
cribed.

A. Input: Design pressure distribution, Cp(x), on
the upper and lower surfaces and free stream
Mach number, M®, are given as the input. The x
axis is taken as parallel to the free stream
direction. The surface distribution of the local
Mach number, M, density, p, velocity, U, and the
1lift coeffictent, C;, are then obtained from the
specified pressure distribution. The initial
temporary airfoil geometry is also input arbitra-
rily. In the program, families of initial air-
foils are programmed and one can choose any of
them specifying a parameter.

B. Rotation of the temporary airfoil: The angle
of attack, O, at which the value of Cp, of the
temporary airfoil is equal to the specified Cj is
calculated by the use of the direct method
(direct step). The temporary airfoil is rotated
to have the angle of attack of 3. The tralling
edge, with finite value of thickness given, is
modified to be perpendicular to the x axis.

C. Direct problem of the temporary airfoil: Again
the flow past the rotated airfoil is calculated
using the direct step now with the angle of

attack fixed. The pressure distribution Cp(x) is
obtained.

D. Calculation of the displacement thickness of
the boundary layer: The turbulent boundary layer
and its displacement thickness are calculated
from the Cp(x) obtained above by use of the Nash
and MacDonald's method. The temporary actual
airfoil geometry is obtained by subtracting the
displacement thickness from the temporary air-
foil geometry.

E. Test on convergence: The criterion of the
convergence of design loop is given by the mean
weighted square of pressure distribution dif-
ference between the specified design distribution
and the one obtained in step C. A specified
value of the criterion is given as an input. The
loop is also stopped by specifying the total com-
puting time or maximum number of iteration loops,
Mod.

F. 1Inverse problem step: The temporary airfoil
geometry given at step B is not an inpermeable
solid boundary but is assumed to be a contour in
the flow field on which the tangential velocity
component is specified as U. Here, U is as given
previously in step A. The normal velocity com-
ponent, V,, is calculated, using the finite
difference once the potential distribution has
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Fig. 9. Inviscid shock-free supercritical

airfoil design.

been obtained, as the solution. The solution is
obtained for specified circulation, T, i.e,
specified Cr, and closure condition, Cq = §ands
= 0. Jameson's rotated difference scheme with
Poisson solver are modified to use in the present
inverse problem setting. Conformal mapping into
a unit circle, reduced potential form and simul-
taneous line - relaxation, including an imaginary
boundary grid point are used for improving the
convergence.

G. Modification of temporary airfoil geometry:
The velocity distribution, in the neighborhood of
the temporary airfoil geometry, was obtained in
the previous step. Normal velocity, V,, along
the geometry does not vanish if the design loop
is not convergent. A new contour, on which the
normal velocity vanishes, is sought using the
mass flow relation between the new contour, that
is the new airfoil geometry, and the old tem-
porary airfoil geometry. The design loop goes
back to step B now with the new contour as the
temporary airfoil geometry.

To confirm the capability of the present
design method, one of the inviscid shock-free
supercritical airfoils of Garabedian was re—
produced. The surface pressure distribution, Cp,
for the Garabedian airfoil(17), 75~06-12, was used
as the input design distribution. The calculation
was made as the inviscid flow case of Mach number,
Mo = 0.75, and 1lift coefficient, Cy, = 0.629.

The step D was bypassed since there was no boundary
layer modification. The scheme used was a
nonconservative relaxation scheme in the present
and the following cases. The result is shown in
Fig. 9.

In Fig. 9(a), the design Cp's are shown by
mark +. The solid line represents the obtained

Cp distribution for the initial temporary air-

foil geometry. A strong shock wave appears on the
upper surface. With only two iteration loops,
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Fig. 10. Design for NACA 641-212 using
experimental data.

however the converged shock-free airfoil geometry
is obtained. The pressure distribution for the
converged airfoil geometry is shown in Fig. 9(b)
and compared with the design distribution.

The agreement is excellent. The designed
airfoil geometry and sonic line are also shown
in the same figure. The comparison with the
original airfoill geometry designed by )
Garabedian's Hodograph method is made in Fig. 9(c).
The agreement is also excellent.

Next, a viscous flow design, using an ex-
perimental data for NACA 641~212(2), was tried.
The design condition was Mach number, M, = 0.728,
lift coefficient, Cp = 0.425 and Reynolds number,
Re = 2 x 106, A converged solution was obtained
at the iteration loop made of 4. The pressure
The agree—
ment is remarkable except for the shock and the
trailing edge regions, At the shock region, the
solution is represented by a discrete finite
difference solution of finite grid point width
while the experimental pressure distribution
is smeared due to the shock boundary layer in-
teraction. At the region close to the trailing
edge, separation occurs in the experiemnt which
cannot be taken into account in the calculation
and some kind of means for the extrapolation
of Cp is accomodated to obtain the converged
numerical solution. A severe convergence
criterion at such regions is not neccesarily
required. Rather, an appropriate relaxation of
criterion by a weighting function leads to a
better result. The airfoil geometry shown by
the solid line is the contour before the boundary
layer thickness is subtracted and has a finite
trailing edge width. The small dots represent
the final actual geometry which has a closed
trailing edge.

In Fig. 10(b), a comparison was made with the
original NACA 641~212. The overall agreement
was obtained as can be seen in the overlapped



plot of contours while a small discrepancy, notice-
able in the afterbody region, may be attributed
to the insufficient turbulent boundary layer cor-
rection.

Further examples of this calculations will
be described later in IV. 1.

2. Unsteady Aerodynamics

€9

Small Perturbation Analysis

In the field of unsteady transonic aero-
dynamics, a computer program based on the two-
dimensional transonic small perturbation equatiog
(ISP equation), has been developed by Isogai.(l8

The transonic small perturbation equation
expressed by the dimensionless quantities is given
by

(I-ME- (HLMpbx) by + Oyy = 200y

2
- M0y, =0 (10)
where M_ and ¢ are the freestream Mach number and

the perturbation velocity potential, respectively,
and a constant m is adjusted to match the critical
pressure coefficient C¥ to its exact isentropic

value. The flow tangency condition is given
at y = 0. At the far-field boundaries, the fol-
lowing conditions are satisfied:
r{s) (g -
¢ = — sgn(y) + tan 1(—59 ‘.....
2r |2 By
for ¥_ <1 (1)
or
¢ = 0 upstream of the
shock wave K
for M 21 (12)

downstream of the
shock wave

In Eq. (11), r(8) is the mean steady-state value

of the circulation and 8 is defined by Vl—Mi.

The above boundary value problem was solved
numerically, in the stretched Cartesian grid
system, by applying a time-marching, semi-implicit
and implicit, two sweep procedure. To capture
the shock wave motions groperly, a quasi-
conservative scheme(20-22) yaq employed.

The present TSP code can be used for the
calculations of the unsteady aerodynamic forces in
the wide range of the reduced frequency, based on
semichord, 0 £ k < 0.5, at the transonic Mach
numbers from suberitical to above Mach 1. To
see the capability of the code, the calculations
were performed for a NACA64A010 airfoil oscil-
lating in pitch about quarter-chord axis at Mach
number 0.80, for which the experimental data(23,24)
are available. 1In Fig. 11, the mean steady
pressure distribution is shown, being compared with
the experimental data of Ref. 23.

A relatively weak shock is present near mid-
chord. 1In Fig. 12, the chordwise distributions
of the in-phase and out-of-phase components of
the first harmonic of the upper surface pressure,
are shown, being compared with the experimental
data(23),  The reduced frequency considered is
0.2. The peak value of the in-phase component
and the rapid variation of the out-of-phase com—
ponent observed around midchord are the effects of

NAGAB44010 NACAB4A010
Moo=0.80 200 M. =0.80
Cp a=—0.08" —Cpo| @ m=0° ——  ISOGAI
08 og — 1S0GAI k =0.20 0'] Expenment
Expenment fe -&-) Dawis)
(Davis) ?/ am -0.08°
Re=12X10° 10 f Re - 12X10°

o Upper surface a = ag t1"smkt

Lower surface (emsaiz)

0.4
_10 ,
=10 0 1.0
1.0 o0 1.0 *
Fig. 12. Upper surface
unsteady pressure dis-
Fig. 11. Steady pres-  y.ipution on NACAGLAOLO

sure distribution on

NACA 64A010 airfoil. airfoil oscillating in

pitch about quarter-
chord axis.

the shock wave. The agreement of the present
finite difference calculations with the ex-
periment is satisfactory.

In Fig. 13(a) and Fig. 13(b), the variation
of the in-phase and out—of-phase components of
the first-harmonic of 1ift and pitching moment
(about the leading edge) versus reduced frequency
are compared with the experimental data and those
predicted by the linear theory (the doublet
lettice method%zs) The predictions based on
Euler's equation, which are taken from Ref. 23 are
also plotted for reference.

The agreement between the present calculation
(TSP code) and the experimental data is good,
especially for the out-of-phase components of
both lift and pitching moment for the range of
the reduced frequency, 0.1 £ k £ 0.3. The dif-
ference between the two (ISP code and the
experiment), however, becomes larger as the
reduced frequency gets smaller than 0.1. This
might be attributed to the effects of the shock
wave and turbulent boundary layer interactions,
which are neglected in the present potential
flow calculations.

The unsteady aerodynamic forces calculated
by the present TSP code have been applied to the
flutter analysis of a NACA64A010 airfoil (at zero
mean angle of attack) in two-degrees—of-freedom
(see Fig. 14). The conventional U~g method was
employed for determining the flutter boundary.

As an example, the flutter calculations
were performed for a binary system (plunging and
pitching) having the following parameters:

a =-0.30, x.g = 0.2, r2g= 0.24;

wy/wg = 0.20

where a and xcg are the locations of the elastic
axis and the center of gravity, respectively,

r.. 1is the radius of gyration of the airfoil about
thé c.g. position, and w,/wy is the uncoupled
frequency ratio. These parameters are all non-
dimensionalized by the semi-chord b.

The normal modes and the resulting flutter
boundary versus Mach number are shown Fig. 15,
where W is the mass ratio and wj and wy are the
first and second natural frequencies respectively.
For comparison, the flutter boundary, predicted
by using the linear aerodynamic theory, (the
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doublet lattice method)(zs) is also plotted by
the dash-dotted line in the same figure. Since
it was not possible to obtain the periodic solu-
tions of the aerodynamic forces at Mach number
0.875, the flutter points at M_ = 0.85 and

M_ = 0.90 are connected by the dotted line. The
remarkable feature of the behavior of the flutter
boundary is that the rapid decrease of the
flutter speed toward M 0.825 and the sharp in-
crease of the speed toward M_ = 0.90, thereby
producing the "transonic dip". It might be of
some value to mention about the shock wave
patterns corresponding to this flutter boundary.
At M, = 0.825 the shock wave is located about
sixty percent of chord position while it reaches
to the trailing edge at M_ = 0.9. Therefore the
effects of the shock wave on the unsteady aero-
dynamic forces are quite strong at M = 0.825,
while there is no effect of the shock at M, = 0.90.
Further details of this flutter analysis and other
examples will be published in Ref. (18).

(2) Euler Equation Analysis

Isogai's TSP analysis is efficient in com—
puting. The isentropic shock captured, however,
is not accurate when the shock becomes strong.

For more accuracy of shock relation, Euler equa-
tion analysis should be applied. Ishiguro(z
solved the complete unsteady Euler equations using
the time-splitting Lax-Wedroff scheme with
artificial viscosity. Magnus and Yoshihara(27),
used the similar scheme, without time splitting,
before.

In her calculation, the infinite exterior
region of physical plane (x, y) is mapped onto the
interior of a finite rectangle in the com-
putational plane (£ n) using three successive
mapping transofrmations. The main feature 1is the
use of conformal mapping to get orthogonality in
physical plane for the easy treatment of an
oscillating airfoil boundary condition. An ex-
ample for a uniform mesh in the computational
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Fig. 15. Flutter velocity coefficient versus
Mach number for NACA64A010 airfoil.

plane is shown in Fig. 16 as an image in the
physical plane. Here the NLR 7301 airfoil is
used with A = 4/100 and An = 1/30. A mesh
refinement is made in the vicinity of shock in
£ direction by a factor of 4 as shown.

The mesh system is not altered during the
calculation because a quasi-planar boundary
condition is assumed.

The two-dimensional unsteady Euler equations
are written in the following conservation form:

We + Fx(W) + Gy(W) = 0 (13
where
P pu2 QV
W= 23 » FQW) = 2::\) T » GO = S:gw ’
e u(etp) v(etp)
o - {200 oo e

Here, p is the density, u and v are the Cartesian
components of the velocity, e is the total- emergy,
p is the pressure, ¢ is the sound speed and Y is
the specific heats ratio. Eq. (13) are trans-
formed to the following equations in the
computational plane using the chain rule:

Wy + Fr(WE, + G- (WE, + Fr(Wn
t £ X & y n X as)
+ Gn(w)ny =0

where the transormation derivatives are given by
the previous mapping procedures.

Using the notation W§ + W(;, Ny, NAt), the
difference approximation tg Egs. (15) at interior
points in the computational rectangle is written
as follows:

+1 +2 1
wﬁj = LnLEwﬁj’ ij = VnV€L€LnW§; .
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NLR 7301

Fig. 16. Image in the physical plane of a
uniform mesh in the computational
plane.

Here, the integral operators, Lt and Ly are the
one~dimensional two-step Lax-Wendroff scheme of
second-order accuracy. The size of time step is
taken as a suitable fraction (less than unity)
times AT, where AT is the maximum time step given
by the von Neumann condition. At = 0.2AT was
required to keep stability of the computations.
The operators of artificial viscosity Vg and Vn
are applied and are determined appropriately in
the computation so that the computations are
stable.

The airfoil boundaty conditions are put along
a fixed contour coincident with the airfoll sur-
face location in its median attitude, assuming
the amplitude of oscillation is small. In the
present calculation, sinusoidally oscillating
piltching motion:

o(t) og + Ao sin 2kt,

of the airfoil is assumed. Here, tg 1s the mean
angle of attack, Ac is the pitch amplitude of the
angle and k is the reduced frequency given as

k = we/20,_.

The condition of the sinusoidal rigid body
oscillation of the airfoil must be satisfied so
that the fluid velocity normal to the surface,
matches the body mechanical velocity component
in that direction. The dependent variables at
the surface are obtained as follows:

1 42 ~ N+
W= 0 Taleyy, Wy = 0 VelghT

(16)
where L, is an extrapolation operator and O is an
oscillation operator which performs cumbersome
operations after Magnus and Yoshihara. At the
upstream boundary, the fixed uniform flow con-
dition was given. On the downstream boundary,
simple numerical approximation was made as follows:
using the entropy value sjp,; at the adjacent
inner mesh point (IB,j), the boundary values were
set equal to the uniform flow values if sfp . is
nearly se and continuative condition were ség if
STB, § 1s greater than s« except pressure which
was sSet equal to pew.

Kutta condition 1s assumed by taking the
average of the upper and lower side pressures at
the trailing edge. -

The procedure of unsteady flow calculation
consists of two steps. At first, steady flow
solution at uniform stream Mach number M~ at
mean angle of attack 0g, is calculated as a time
asymptotic solution using an appropriate initial
condition. Next, the unsteady flow by the pitch-
ing motion is started using the above steady
flow solution as the initial condition.

The computation is continued until a periodicity
of unsteady flow is established. It usually
takes three to four cycles. The CPU time for one
cycle requires about 30 min for k = 0.25 on the
NAL AP System, The solutions W at a number of
equally spaced phase angles during the pitching
cycle are stored in file for Fourier analysis.
Forces and moments were calculated from the
integration of surface pressure distribution.

Flow past an(§§§7301 airfoil was calculated
and is shown here , In order to compare with
the experimental results by Tijdeman(2 .
Tijdeman carried out the experiments of steady
flow at M = 0.70 and & = 2.5°, 3.0°, and 3.5°.

CALCULATION

o
« (a) (b} <7 isHiGuRo) (el
o o
w | ?\_52\20 004 ©w (@ 3 +—, © w |
|t “:1‘*\ t - Ay, O - o
i TR N Y e &
oli ° Vi gl 4 o f e
o S s e S 2
e e — ‘,—‘-‘_—"'—CPG L —-. —.a. t — = (p* e e e — o — = - Q'—'—CP.
1 ::‘XO‘:A;A\A Ly A a
& pa b ® OO P Q@ ap 3
2 n o W 5 [ 8888 o as888s
7 iae®” o, \9\6\'? "o % N B N v asa LN
o 2 ] o L)
200 Re\q’ e, K % % SWWUNSTEADY 8, %
s %%, 3 e J FLOW CHE R
ek EXPERINENT > 2k  CALCULATION's, 2 . 5,000 .
- (TIJDEMAN) 7 (ISHIGURO)  *** ¢ o 3.250 b
STEADY FLOW(k=0) - .
o Ma=0.70 o STERDY FLGN[R;U_]O o ::.322 (k=0.182)
- ou=3.5" T . 200 ©=0-70 < , 2.0 Ho=0.70
-g=3.0° §‘~5° CreLl §1.w%ﬂu
2 o §=2.5" x/c ki 1.00 e = 1.00 X/C
'0.0' T T T r. T 1 T 1 1‘-0 10:0 T T 0‘.5 T T T 7 II-O 'u'.u T T T 17 nl.sl T T 7 1l.l:'

(a) Experiment by Tijdeman, k = O.

Fig.

(b) Ishiguro, k = O.

17. Comparison of pressure
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(c) Ishiguro, k = 0.192.

distribution.
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Fig. 18. Isobar patterns and sonic lines at

various phase point of the pitching
cycle.

Those pressure distributions are shown in Fig. 17
(a). He then carried out the unsteady flow ex-
periment of pitching motion with ag = 3°, Ao =
0.5°, and k = 0.192 about an axis location

(X = 0.4, Y. = -1/60). Due to the difference of
assumption and boundary condition between the
present calculation and the experiment, an angle
of attack of a steady Euler flow solution closest
to his experimental pressure distribution was dif-
ferent from that of the experiment.

Fig. 17(b) shows the result and angle of
attack 0 = 1.5° solution was chose as the best.
Then the unsteady flow was computed applying the
same pitch amplitude and reduced frequency with
0o set 1.5°. The resulting instantaneous pressure
distribution during the third period is shown in
Fig. 17(c). It is noted the amplitude of pres-
sure variation during the pitching motion is
smaller than that of a quasi-steady flow condition
shown in Fig. 17(b). Fig. 18 shows the isobar
pattern and sonic line around the airfoil at
various phases of one pitching cycle. The super—
sonic region continues to grow after the maximum
attack angle has been reached and continues to
shrink after the minimum angle of attack has been
reached.

For a better understanding of flow, Fourier
analysis was applied to the local pressure dis-
tribution, axial and normal forces and pitching
moment. In Fig. 19 the magnitude of local ACp,
and its phase of the first harmonic, are compared

with those of Tijdeman's result. Thin airfoil
theory prediction is also plotted for comparison.
The high pressure peaks are generated in the
shock wave region. Thin airfoil theory can not
predict this phenomena. The present result
agrees quite well with the experimental results
except for the small deviations for the location
of shock and magnitude of components.

3. Three Dimensional Analysis

Takanashi (30) developed a method of analyz-
ing transonic flow around a three dimensional
wing based on an integral form of transonic
small disburbance equations. The governing in-
tegral equation can be written as

o (%,y,z) = (X,7,2) +

a7

where @ = k/B%¢, ® is periurbatiou potential,

B = /1—M£, My is free stream Mach number, k =
(Y+1)M&,i = x, §= 8y, z=208z, ¢ is a potential
of linearized theory,

1

v = - (18)
/&-E)2 + (3-7)% +(z-T)7

and the domain of integral is the entire flow
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(a) Experiment by Tijdeman. (b) Ishiguro.
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Fig. 19. Amplitude and phase lag of the first
harmonic of local surface pressure.



field except wing surface, shock wave and the
singular point of V.

Differentrating Eq. (17) with respect to ¥ and

putting z = 0, we obtain
B(,5,0) = 5(,,0) +-- T (%,7,0)
2
1 ™ o 19
-— {d€ \dn Suz(g,mé)wggdi
4m
]17» = 0
where u = ¢y and _— .
() dE = lim “( )d§+3( )dé] (20)
|- —00 €"0 00 x+e

Evaluation of Eq. (19) requires a knowledge of
ﬁ(i,?,i) over the entire flowfield. Takanashi
approximated the variation of G(X,¥,Z) with Z by

the following relations.
4(%,y,2) = i(%,¥,0)/[1+2RZ+AR?Z?] (21)
where R and A are positive real parameters. R and

A are so determined that iz and Gzs of Eq. (21)
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-.2
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Me] :
. A
! ﬁj)1
; ; i
: ax
m=M 1 1 ;
M - gt
E AY
Fig. 20. Computational mesh of a rectangular
wing.
~-— Murman { non-conservative)
--~ Murman (conservative)

0 5
satisfy the fundamental differential equations at ° Nm=587 ¥ M= S08 %
wing surfaces, the ordinate of which is defined by ’ ’
£ Fig. 21. Pressure distributions on a biconvex
R = —fﬁ(i,?)/[Zﬁ(i,?,O)] (22) airfoil A(t/c=0.06).
%y % d (~) correspond to supersonic and
A= 4 - (B2 2 sign (+) an P sup
4 (ui uY?)/(ZR ) (23) subsonic flows, respectively. U are evaluated

where the asterisk denotes the value at the sonic
point. Substituting Eq. (21) into Eq. (19) we get

e o 1 o, _ _
W(%,5,0) = up,(%,7,0) +=&%(%,5,0) + I(X,¥)
2

where (24)

1 o

I(%,9) = -—
47

i

= (7 82 (E,1,0 .
i g——“ €:10)__ g
). 0(1+2Rl;+)\R %)

Eq. (21) is different from the approximation used
by Sprelter » where only U, at the wing sur-
faces has been considered. :
For a rectangular wing, wing surfaces are
divided into small rectangles, on which velocity
U and coefficients R and A are assumed to be con-
stant (see Fig. 20). Then it is easy to integrate
Eq. (24).
Eq.

g

(24) can be written as

4(%,5,0) = 1 * /1-2(G +1) (25)

— Present Method

--- Bailey § Steger (non-conservative) Mo=908  R=4

Midspan

Fig. 22. Pressure distributions on a rectangular
wing.
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by the iteration. In case shock waves exist on
the wing surface special attentions are necessary.
Assuming the location Eg(¥) of shock wave to be
somewhere on the wing surfaces. Eqgs. (22) and
(25) are modified to

R = - ufzz(%,5)/[20(%,7,0)] (26)
9(x%,¥,0) = 1 = /1-2(ua;+I) 27

where u(y) is a parameter, which modifies the
thickness of the wing temporarily, so that the
shock wave locates on is(?). u and the sonic
point %X*(y) are determined from the condition at
which, the value and x derivative of the quantity
in the square root of Eq. (27) are zero. If
U ¥ 1 after iteration, then the location of shock
wave is changed until U = 1 holds.

Pressure distributions over the 67 circular
arc airfoil have been c§lculated and compared
with those of Murman(32 in Fig. 21.

— Present Mathod
—.— (GArabed iNKKOrn (non-conservative)
---- GarabediangKorn (conservative)

_
% 1.0

Fig. 23. Pressure distributions on NACAO0Q12
airfoil.



The present calculations agree well with those of
Murman based on a conservative scheme. Results
on a rectangular wing having the aspect ratio of
4 are shown in Fig. 22 and are compared with the
calculations of Bailey & Steger (33 , based on a
non—-conservative scheme. The difference in the
location of the shock wave is similar to that be—
tween the present results and Murman's non-conser-
varive calculations. Finally, the result for the
round nosed NACAOO12 airfoil, calculated by use
of Riegel's factor, is compared with the cal-
culation of Bauer et al in Fig. 23. Agreement
between the present calculation and the
calculation based on a quasi-conservative scheme
is good.

4. Viscous Effect Evaluation

The two dimensional analysis and design codes,
mentioned above in III(2), incorporate the viscous
effect, adding or subtracting the displacement
thickness of the turbulent boundary layer to or
from the thickness of the airfoil. For three-
dimensional flow analysis, however, no viscous
effects are incorporated at present. A new
finite difference scheme, for three-dimensional
‘compressible turbulent boundary layer e%uﬁgions,
is currently being developed by Matsuno 34) | The
details are left for Reference (34). His scheme
is efficiently fitted for vector processing and
has no dependency on the cross-flow direction
which is inherent to the well-known Cebeci-Keller's
method(35). The work 1s progressing presently to
accomodate the method to a general plan form of
a swept wing and will be presented soon in a
separate paper.

When the viscous effects become significant,
the above described modification, using the
boundary layer equations, is not adequate and the
more accurate approximation of Navier-Stokes
equations must be applied. Analysis at such a flow
condition, at a high transonic Mach number with a
strong shock wave boundary layer interaction, is
inevitable during the process of transonic wing
design. For this purpose, the development of two-
dimensional time-averaged Navier-Stokes analysis
codes is now under study at. NAL.

It is still in the preliminary stage and is
too early for presentation. Only a brief outline
will be given here. One is an explicit finite
difference scheme. The disadvantage of such a
method is the well-known short time step for
stability. Thus is requires a large amount of
computing time. Nevertheless, such a method is
more reliable than recently developed time—ef-
ficient inplicit schemes because of its
simplicity and long-time experiences.

Consideration for the extensions of the method to
multi-element airfoil and three-dimensional wing
are also being taken into account. Grid generation
methods are also studies to apply for this purpose.
Another scheme under development is the implicit
scheme using the approximate factorization tech-
nique The original scheme, though being
time-efficient, is not satisfactory in the
practical calculations due to deteriorating inter-
ference between the scheme and grid geometry,
conservation characteristics, and stability.
Therefore, improvements are being undertaken for
better boundary condition, mesh geometry and
numerical algorithm. The result obtained so far

is acceptable. These Navier-Stokes code develop-
ments are expected for practical application on
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the planned forthcoming computer called Numerical
Simulator; the details of which are giyen later
in the present paper.

IV. Application of Computatiomal Aerodynamics

1. Optimization of Airfoils

'

Hicks(37) introduced the numerical optimiza-
tion method incorporating non-linear programming
with the aerodynamic analysis code. His method
is epoch making in the sense that an optimum
airfoil can be obtained antomatically and that the
conditions at off design point, no drag creep for
example, can be incorporated. At the present
time it is a restriction, as well as a progression,
that, in his method, the optimization was con-
ducted through parametric change of airfoil
geometry without referring to the historican
accumulation of knowledge about the optimum pres-
‘'sure distributions. Airfoil geometries of
sufficient -characteristics can not be represented
by a few parameters, whereas to use too many
parameters is not practical due to the pro-
hibitive time consumption for computation. Based
on the above, satisfactory results have not yet
been achieved for designing completely new air-
foils, although for the modification of given
airfoils good results have been accomplished.
For this reason it would be more effective to
design airfoils using pressure distributions which
have historical accumulations in order to obtain
optimum airfoils by use of a few parameters in a
short time.
Kamiya designed airfoills having specified
pressure distributions represented by several
parameters by use of Ishiguro's method described
previously in IIT.1(2). Fig. 24 shows an example
of the pressure distributions. The pressure
distributions are represented by appropriate
curves drawn through two neighboring points of
L,A,B,C,D and T for the upper surface and L,E,F,
G and T for the lower surface. These pressure
distributions are difined after the guide line
proposed in Ref. 1. Optimizations are conducted
by changing the values of x/c¢ or p/pg of these
points manually, where x is streamwise distance
from the leading edge, ¢ is the chord length,
p is static pressure on the airfoil surfaces and
p. is the stagnation pressure.

° Figs. 25, 26 and 27 show an example of the
optimization. The design point for this study

is defined to be Mw = 0.74, t/c = 0.122 and

Cr, = 0.85 where t/c is the thickness ratio.
The design objective is wave drag minimization at

[ ]
—PP—o 74-85-12.2
(a)
Cl41H7472

T

L (b)

X/c
Fig. 24. Conceptional Fig. 25. Examples of
diagram of a specified optimized airfoil
pressure distribution. geometry.
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Fig. 26. Pressure dis-~
tributions on the air-
foils shown in Fig. 25.
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Fig. 28. Example of
optimized airfoil
geometry.

Fig.27. Calculated in-
viscid drag coefficient.

the design point under the constraint condition
that the location of the shock wave on the upper
surface be at 70% of chord from the leading edge
and that the flow be inviscid. The resulting
airfoil is referred to as 74-85-12.2 according
to the values of Mo, Cp and t/c at the design
point. Fig. 25 (a) shows the geometry of 74-85-
12.2 and Fig. 25(b) shows that of the airfoil
referred to as Cl41H7472 in Ref. 38, the design
objective of which is also the inviscid drag
minimization at the design point having Mo = 0.72
and o = 2.0°, through changing the geometry of
the upper surface without changing the thickness-
to-chord ratio under the constraints conditions
of:
Cy > 0.85 and Cg < 0.002 at o = 2° and Mo = 0.74.
The thickness-to-chord ration of both airfoils are
the same. o

The dotted lines of Fig. 26(a) and (b) show
pressure distributions of Cl41H7472 at o = 2°
for Mo = 0.72 and Mo = 0.74 respectively, cal-
culated at NAL which coincide exactly with those
described in Ref. 38. The solid lines show
pressure distributions of 74-85-12-2 at the same
Mo and CL as those of Cl41H7472. The strength
of the shock waves at Mo = 0.74, for example, are
weaker for 74-85-12,2 than for Cl41H7472.
Therefore the drag coefficient of the former is
smaller than that of the latter except in a region
near Mo = 0.72 where the difference is small as
shown in Fig. 27. Where the drag coefficient of
the latter calculated at NAL is somewhat different
from that described in Ref. 38 contrary to the
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excellent coincidence of the pressure distribu-
tions. The reason for which is not clear Figs. 26
and 27 suggest that it is easy to optimize air-
foils by changing pressure distributions paramet-—
rically rather than by changing airfoil geometry
so that one can obtain good airfoils in a short
time if one applies the numerical optimization
scheme to pressure distributions specified
parametrically. .

Fig. 28 shows an example of airfoil designs
for which C;/Cp is maximized for the conditions:
Mo = 0.7, t/c = 0.15, Ry = 2 x 107 and Hya, < 2.25,
where R, is the Reynolds number and Hma is the
maximum value of the ratio of momentum Fhickness
to displacement thickness of the boundary layer
on airfoil surfaces. The condition on Hy, . is
assigned in order to avoid boundary layer separa-—
tion. The value of C;/Cp in this case is 88.0.

2. Evaluation of an Airfoil Analysis Code

As an example of the evaluation of analysis
codes, the evaluation of the airfoil analysis
code of Bauver et al is described here. Calcula-
tions usually diverge at a free stream Mach
number, higher than some critical value, which
changes depending upon airfoil geometry and 1lift
coefficient. Fig. 29 shows an example of such a
boundary. The calculations diverge in the hatched
region for the airfoil described in Ref. 1 at the
value of a Reynolds mumber of 2 x 106.

Fig. 29 also shows the locus of a drag
divergence Mach number. In Fig. 30 the calculated
pressure distributions are compared with those
for experiment at the same Mo and Cj, where the
solid lines denote the calculations based a non-
conservative scheme (NC) and the dotted lines
denote those based on a quasi-conservative
scheme (QC). In both cases the relaxation pro-
cedure is modified to be suitable for the NAL AP
system (AP). Fig. 30(a) shows the pressure
distributions at the free stream Mach number
appreciably lower than Mpp.

Fig. 30(b) shows those at Mpp and Fig. 30(c)
shows those at Mo appreciably higher than Mpp.

The non-conservative calculations agree well with
the experimental data whereas the quasi-conserva-
tive calculations do not agree with the experiment
if Mo is higher than Mpp where the shock wave is
strong. ‘

As to the value of Mpp the quasi-conservative
calculations agree with the experiment better than
the non-conservative calculations(39). 1In Fig. 31
the quasi-conservative calculations are compared
with the experiment for thirteen airfoils des-
cribed in Refs. 1 and 2. The calculated values of
My, are always lower than the experimental ones.
The averaged discrepancy is about 0.02.

. 777-626-13 Fig. 29. Region of con-
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V. Facilities

1. High Reynods Number Two~Dimensional Wind
Tunnel

The need for high Reynolds number tests at
transonic speeds has been recognized since the
late sixties. As a first step towards high
Reynolds number testing, construction of a two-
dimensional pressure wind tunnel , including
all the back up facilities and the data processing
system, was commenced in 1973, and finished in
March 1980.

The general view is shown in Fig. 32. Main
characteristics are shown in Table 1 and the capa-
bility of this wind tunnel is shown in Fig. 33.

DRY AIR TANKS

0 .5 i/c 0 .5 X/c
(a) Meo<Mpp - (b) MN%MDD' {c) Me>Mppy -
Fig. 30. Pressure distributions of T77-626-13 airfoil.
Table 1. Main characteristics of AL twvo-
Moo T dinensional transonic vind tunnel.
'47 | Fig. 31. Comparison .
9 Ciez between experimental and NAL Two-Dimensional
.85 —© s computational drag Transonic Wind Tunnel
divergence Mach number. Type Intermittent blowdown
(YN
80 Cow sl Mach number range: 0.2 - 1.15
o
a 40 x 100 (refered to the
7 a Hax Reynolds model chord length of
5 s pUmbEL 0.25m, and at M=0.8)
' ‘70.70 .75 .80 .85 Mppgxp 0.3m x 1.0m cross section,

Test section size: and 3.0m in streamwise

length
Stagnation pressure: 392 to 1176kPa
Running time: 9-100 sec.

Turn around time: Less than 40 min.

Models are mounted so as to span completely
the 0.3m width of the test section and are sup-—
ported at each end by clamps which are mounted
just outside of the side wall, Air leakage at
the side walls is prevented by O-rings.

The top and bottom walls of the test section
are made up of slotted walls of variable open
area ratios of 0-10%. The side walls are equipped
with a pair of boundary layer suction plates of
0.465m in effective diameter, 0.0lm thick, made
of 5u-sintered metal; flow resistance through
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Fig. 32. NAL two~dimensional transonic wind tunnel.
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R x 1076
(ReF. LENGTH 0,25M)

Table 2. Speed Ratio of AP Application Programs

to CPU.
0 5 i APD RATIO
DURATION Method of Calculation (sec) (sec) (CPU/APD)
TIME OF 1. Eigenvalue QL Method 468.4 3,870.0 8.3
40 L\\STEADY STATE | 5. Quadruple Integral 516.0 | 3,000.2 5.8
( 10 sec, 3. PDE by FoM 123.0 670.6 5.5
20 sec. &. GAUSS-SEIDEL Iteration Method 47.2 210.5 4.5
30 r 5. PDE by FDM 1,132.9 6,527.1 5.8
6. Matrix Inversi
(Dimension: 400 x 400) 15.6 108.7 7.0
3 J 7. Eigeavalue Iteration Method
2 Egommiiun Teraries wo | ma | ;s
10 Table 3. Computer Requirement for Three—
[ Dimensional Flow Analysis.
O CONFIRMED
0 \ . . : , , Code* TFP TANS
0 0.2 0.4 0.€ 0.8 1.0 1.2 1.4 M Variables 12
Grid Points 106 2_x 106
Fig. 33, Capability of NAL two-dimensional 7 8
wind tunnel. Memory 102 103
Operations/point 10 10
3
these plates is 60,000 x dynamic pressure. If Iterations 103 10
optical observation such as shlieren photographs mance®s 200 3000
or laser holography should be required, these Performa A
suction plates can be replaced by glass windows.
Pitot rake for wake traversing is inserted into * TFP: Transonic Full Potential code

the flow through the slit opened in a side wall.

Data processing is taken with 48 chamnels of
an AD converter, an HP-21-MXE series CPU with
memories of 96kW, a Versatec 1,200 A plotter, a
line printer, magnetic disks, a magnetic tape re-
corder and so forth.

2, The Numerical Simulator Project

At the NAL the FACOM 230-75 dual CPU system
was installed in 1975 and one of the CPU's was
replaced by an APU (array processor unit) in
1977. The APU uses high speed IC devices and
consists of three pipelines: addition, multipli-
cation and logic operations. The maximum hardware
speed is 22 MFLOPS for adding, 11 MFLOPS for
multiplying and 22MFLOPS for a vector inner pro-
duct. Vector dividing is the weakest point of
the pipeline and the speed is 1.2 MFLOPS.

Table 2 shows the ratio of CPU time to APU
time for several kinds of computations. An
average value of five was accomplished. This
performance is better than the CDC7600.

The performance of the AP System has not yet
surpassed by the latest general purpose computer.
But within a few years the machine becomes
obsolete. It has several weak points. The memory
is limited to 1 million words of which one job can
occupy only less than half. It is not large and
high speed enough to run Navier-Stokes code.

Three dimensional codes, now available, are only
the transonic potential codes.

A new vector processor system is under study
at NAL to overcome those shortcomings and to meet
the demand of large scale computations. The sys-
tem under study is provisionally called Numerical
Simulator. - A Working Group for technical
evaluation of the NS Project has been working
since last year. It covers evaluation of the
necessity, technical possibility, required per-
formances and specifications of the system, and
applicable fields of interest. This is similar to
the NASF project of NaSA(4L)
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TANS: Time-Averaged Navier-Stokes code
*% MFLOPS

Table 3 shows a crude estimation of computer
requirements for 3-dimensional transonic flow
analysis. It should be noted that even the tran-
sonic full potential (TFP) calculation requires
a speed of 200 MFLOPS and a memory of 10 million
words when the production code of a wing-body
configuration should be run on a practical design
pace. A time-averaged Navier-Stokes (TANS)
calculation needs a computer with a one-order
higher speed, if similar productivity, as the
former, is vital. At present, the required per-
formance of a Numerical Simulator is a speed of
800 to 1,000 MFLOPS and a main memory of 128
million words (Fig. 34.)
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Z ik Hi-Re-NS . W :Wing
z & A :Airfoil
< Inviscid Ns 3 I
=, 1 1 = 1 1 i
162 100 1@ 100 1027 108 0% 1 10°

COMPUTING SPEED ( MFLOPS)

Fig. 34. Performance of several computers.



Several design models are studied. Design
A is a multiple pipeline processor system made of
several Pipeline Processing Elements (PE's). Each
PE itself is a gigantic processor with several
pipelines and several ten million words of PE
Memory performing several hundred MFLOPS of speed.
The total performance is multiplied by the number
of PE's. Design B is a multiple processor system
made of one hundred Processing Elements. A common
main memory and the PE's are connected through a
Matrix Switch. Each PE has a speed of 20 to 30
MFLOPS, comparable to the present AP system.
Design C is a distributed array processor system
of two-dimensions.

We except the Numerical Simulator is not the
last computer and its successor should be built
before 1990. Therefore, the architecture should
be one which can be extended to Numerical Simulator
2 without basic modification of design. The NS2
will have a speed of 30 billion FLOPS and a memory
of 1 billion words under the same design and using
the most advanced elementary devices of the day.
Commercial vector processors for general purposes
will not meet our requirement. We think, from
our experience, this type of computer should be
order-made. It 1is not amazing that the estimated
cost is less than 10 billion yen because ready-
made hardware technology will be fully utilized.
If such a budgetary measure is taken, the Numeri-
cal Simulator is expected to be operational before
the mid 80's.
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