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Abgstract

Numerical methods for three-dimensio-
nal steady supersonic inviscid flow around
bodies modelling vehicles and their sepa-
rate parts are reviewed. Three main groups
of methods are cosidered: finite-differen-
ce net methods,method of characteristics,
method of integral relations (including
method of lines). A number of different
examples with numerical results concerning
flow structure and aerodynamic properties
under various flight conditions are dis-
cugsed. In some cases nonequilibrium pro-
cesses in the air are taken into account.

I. Introdgction

One of the most important problems in
supersonic aerodynamics is the determina-
tion of flow-fields, forces and moments
acting upon a flying vehicle, as well as
the determination of heat flows. About two
decades ago the physical experiment in
wind tunnels played the main role in this
research. Today,however, the computational
experiment has become dominate. One of the
reasons of it is an extremely high price
of experiments in wind tunnels, besides
there is a tendency for both price and
time of such experiments to grow exponen-
tially.

Once computers were invented they
have been used widely in aerodynamics ever
gince. Now a new branch of that science -
computational aerohydrodynamics has been
developed. The computational experiment
has definite advantages: high precision,
possibility of investigation of separate
influence of different factors. It can al-
so be used when physiéal simulation is im-
possible in principle (for example, at hy-
personic speeds). The success in the de-
velopment of numerical methods and increase
of the computer capacity make it possible
to solve more and more complex problems,
passing from the treatment of separate ae~
rodynamical elements to a whole vehicle,
taking into account high temperature
effects (physical-chemical processes, radi-
ation). Much success has been achieved in
study of inviscous gas flows, which furni-
shes enough information in & number of in-
teresting cases. Further consideration of
viscosity may be carried out in the frame
work of the boundary layer theory.

A review of the development and the

present state of numerical methods for
three-dimensional steady supersonic invis-
cid flows around bodies with shock waves

is pregented in this paper. The methods

use models of perfect gas with constant ra-
tio of specific heats ¥ and also of equi-
librium and nonequilibrium reacting gases.
The radiation effects are not discussed

‘because numerical methods of radiation gas-

dynamics are an individual topic.

Three main groups of the methods are
reviewed: the finite-difference net metho-
ds, the method of characteristics, the me-
thod of integral relations with method of
lines. The finite-element method is not
touched upon because it is not yet utili-
zed for computing three-dimensional nonis-
entropic supergonic flows. In the survey
the main attention is paid to a series of
practically important cases of supersonic
three-dimensional flows. Some numerical
results of flow researches both for the
main parts of vehicles and for vehicles as
a whole are presented. Flow structures and
aerodynamic properties of bodies under va-
rious flight conditions, in particular,the
influence of nonequilibrium processes are
discussed. The numerical results,belonging
mainly to different Russian scientists,are
cited because, they have made a great con-
tribution to the development of computati-
onal aerodynamics and these results are
not well known abroad.

The more detailed survey by the same
authors (1) dealing with the numerical me-
thods for both two-dimensional and three-
dimensional supersonic flows and contain-
ing over four hundreds references has pre-
ceded this review.

I, Pinite~difference net methods

Finite-~-difference net methods for cal~
culating supersonic flows have received
wide agplications. In these methods origi-
nal differential equations have been appro-
ximated by finite-difference expressions
using a net that is not connected with cha-
racteristic directions. In spite of a lar-
ge number of the methods they canbe clagsi-
fied according to some features.

There are explicit and implicit, one-~

step and multi-step, one-reference plane
and multi-reference plane finite-differen-
ce schemes, Calculations in all schemes
are carried out step by step from certain
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reference plane to the next one. In any
explicit scheme the solution in the subse-
quent reference plane depends on the pre-
vious plane only, but in any implicit sch-
eme it depends on preceding and subsequent
reference planes. Explicit schemes are sub-
mitted to a stability condition and there-
fore to a step size restriction. Implicit
schemes have no such restriction bui they
require iterations. In two-step schemes
there are two stages of solution: at first
intermediate values are obtained, and then
final ones are calculated. These schemes
are clagsgified as splitting schemes. There
are analytical, geometrical and physical
splittings. The order of accuracy of a sch-
eme is determined by the error of the so-
lution. Second-order accuracy schemes are
more often used for flow problems.

There aré two approaches in calcula-
ting shock waves -~ shock fitting and shock
capturing. According to the first approach,
all the shock waves are treated as strong
discontinuities being boundaries of the
corresponding subdomains of the solution.
According to the second approach the exig-
tence of shock waves is not explicitly
supposed.They appear in numerical solution
as narrow zones with large gradients of
gasdynemic functions.

When & subsonic region arises in stea-
dy supersonic flow, the time-dependent sta-
tioning principle often is applied.In this
cage the complicated steady elliptic-hyper-~
bolical problem is replaced by the simpler
unsteady hyperbolical problem owing to the
addition of the time asthe fourth independe-
nt variable. For conical flow the self-gi-
milar stationing principle is usually used.

All the above mentioned features may
occur in finite-difference methods in dif-
ferent combinations which leads to a large
variety of computional algorithms. Certain
methods are effective for certain problems
only. We shall discuss the finite-differen-
ce methods which were practically applied
for computations of three-dimensional su-
personic flows,

Explicit first-order method. Thig me-
thod(which 1s known as Godunov method)
with many applications is reviewed in the
book (2). At first it has been developed
by Godunov,Zabrodin and Prokopov (3) for
axisymmetric supersonic flow problem using
the time-dependent stationing principle.
Its extension to three-dimensional steady
problems has been carried out later by
Ivanov et al (4). The governing equations
are written here in the integral form. The
solution (for each pair of neighbouring
cells) of the self-similar problem of in-
teractionof two semi-infinite streams ha-
‘ving the parameters from preceding referen-
ce plane is the basis of the algorithm.The
method can be suitable for both smooth and
discontinuous solutions. For .smooth solu-
tions it has the first order accuracy. The
method is an effective tool for the inves-
tigation of very complicated flows with
discontinuites of various kinds. However,
for smooth flows it becomes noneconomical,
because of the step size restriction. Besi-
des it is difficult to adapt it to the ca-

ge of reacting gas flows.

As an example of the application of
this method the results by Ivanov and Niki-
tina (5) for the flow-field about the front
part of the vehicle at M5 and angle of
attack «=5° are ghown in Fig.1. Here so-
1id end dashed lines represent the body,
double lines represent the bow shock, and
thin lines are the isobars (P/2,).

Fig.1 Flow about vehicle nose.

With some modificetion of this method
and the application of shock capturing ap-
proach the supersonic flow about blunt cone:
at angle of attack has been computed by
Kolgan (6), while the flows about two del-
ta shaped vehicles with swept X =70° and
different convex lower side at My=5 ,A=5°
has been calculated by Kosykh and Minailos
(7). The cross-flow is given in Fig.2,
‘where the bow shock attached to the body
apex, the embedded shock, the characteris-
tic, the cross-flow sonic line are drawn
by solid, dashed and dash-dotted lines.

: Y y
I~

=13

0 02 04 z
Fig.2 Cross~flows about two deltaplanes.
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Implicit second-order method. It has
been suggested by Babenko and Voskresensky
(8). This method was the first method spe-
cially developed for three-dimensional su-~
personic flows and it is used widely in
various modifications now. Computational
algorithm advances the solution throughthe
successive reference planes along the body.
The solution of the local boundary-value
problems on the reys, which lie in meridi-
onal planes and pass from body to bow sho-
ck wave, is the basic element of the algo-
rithm.These local problems are solved from
ray to ray by the sweep method, known in
Rugsien literature as the "progonka" me-
thod. Because these problems are intercon-
nected through the right parts of the fini-
te-difference equations, the iteration pro-
cedure is necesgsary.

The detailed description of the meth-
od with stability and convergence analysis
and some improvements are given in the bo-
ok by Babenko et al (9). Afterwards Yu.N.
D'yakonov, Yu.Ya.Mikhailov, Yu.B.Radvogin
and others have improved the stability of
the method in complicated cases.

A great number of numerical investi-
gations for three-dimensional purely super-
sonic flows ebout pointed and blunted bodi-
es were carried out. The numerical soluti-
on of the classical problem of the super-
sonic perfect gas flow about circular cone
at angle of attack was obtained in (9).
The results are represented as the tables
of gasdynamical functions for the cones
with gemi-angles w=10%45°at Msz2+7 and
sngles of attack «=0+20° . Some examples
of equilibrium air flows about pointed bo-
dies are also given here.

The flow about a circular cone at an-
gle of attack that exceeds the cone semi-
angle is investigated by Bachmanova et al
(10), while the case of elliptical cones
is considered by Vetlutskii and Ganimedov!
(11). Three-dimensional flow about stron-
gly flattened elliptical cones and non-co-
nical body are studied by Voskresensky et
al (12). Pig.3 shows some results for the
non-conical flattened body of deltaplane
type. The plot reveals a sharp pressure
maximum on the side of the vehicle.

=)

6 |- SHOCK WAVE

%,

M3
d=10°

0

45

Fig.3 Flow about deltaplane.

The method has been extended by Voskresens-
ky (13) to the case of profilied delta
wings with shock wave attached to the le-
ading edges. The table (14) of the flow-
field about flat delta wings with swept
X=45%75° 8t Mao=47+/0 and «<15° were
calculated. The flow-fields about delta,
swept and rhombic-shaped sharp tip wings
were determined (15). These calculations
reveal that trensition from flat surface
on the lower side of delta wing to convex
surface radically changes the character
of the loading distribution on the wing.
It ascertains the great importance of the
lower delta wing form surface.

The supersonic domain of streams abo-
ut blunted bodies at angles of attack was
calculated by some authors. The perfect
and equilibrium gas flow about spherically
blunted direct and inverse cones were in-
vestigated by D'yakonov et al (16). Sphe-
rically blunted body with elliptical cross-~

-gection was considered by Mikhailov et
al (17). Some results calculated by Rad-
vogin for the blunted complicated body at
"Mo=15 , a=10° are shown in Fig.4. The
body cross-gection, the shock wave and
the isobars are presented here.

My= 15
o= 15°
¥y = 14

%-40p,

Fig.4 Flow around blunted body.

In order to calculate mixed subsonic
-supergonic flows around blunt nose part
of bodies Babenko and Rusanov (18) have
modified the method. They have taken go-
verning unsteady equations and used time-
dependent stationing principle. At first,
axisymmetric case was congidered and later
Rusanov {(19) and Babenko (20) have ex-
tended the method to a three-dimensional
case., Rusanov and Lyubimov (21) have con-
sidered the front parts of spherical and
elliptical paraboloids at M. =4+70 and

A <15° and Babenko et al (22) - ellip~
soids of revolution with large axis which
lie across free stream at Msz6+20 , The
method elso was modified and used by Vos-
kresensky (23) for the mixed flow about
the front part of an arbitrary wing with
blunted airfoil, In Pig.5 one example of
the computations is presented where the
shock wave in front of the delta wing at

Mo=35 and A=5° is shown.

The method in its original form was
intended for the calculation of smooth
flows. Embedded shock waves of weak inten-
sity only could be computed introducing
some dissipative terms in the scheme.
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Weiland (24) has modified the method taking
the conservation form of the governing equ~
ations and computed the flow about a blunt

nosed cylinder at M, =/4,d=10° capturing

an embedded shock wave.

MgF35, o =5° x

Fig.5 Shock wave in flow about delta wing.

Three~dimensional supersonic nonequi-
librium flows are very complicated for nu-
merical analysis. An unpublished example
of such calculation for the ellipsoid of
revolution at M.=15,d=24° H=60 «m. was
kindly presented by Yu.B.Radvogin. The
shock wave, the sonic lines and the tempe-
rature distributions in the symmetry plane
are shown in Fig.6.

T°k

13

SHOCK WAVE

Ms15 | H =60 xm.
X =24°

Fig.6 Nonequilibrium flow about ellipsoid
nose.

To reduce the number of nodal points
the method was modified in some works by
introduction of trigonometrical approxima-
tion in respect of meridional angle. In
this menner Mikhailov and Savinov(25) have
calculated a perfect air flow about the
front part of ellipsoids at angles of at-
tack and yaw,while Savinov and Shkadova in
(26) studied nonequilibrium carbondioxide
flows about the front parts of blunted co-
ne and segment-conical body. The relaxati-

onal equations in(26) are integrated in
the symmetry plene only, while in other
meridional planes nonequilibrium effects
were taken into account totally by trigono-
metrical interpolation of a frozen adiaba-
tic coefficient and an energy influence
function. The same approach was utilized
by Burdelny and Minostev (27) for purely
supersonic domain of nonequilibrium three-
dimensional flow about segment-conical bo-
dy.

Splitting methods. The numerical so-
lution of tﬁ%ee-ﬁimensional flow problem
using the time~dependent stationing prin-
ciple requires the computers with high ca-~
pacity. Bohachevsky and Mates (28) calcu-
lated with the help of simple one-step ex-~
plicit Lax scheme the flow-field about the
nose part of reentry vehicle "Apollo" at
angle of attack.

However, explicit schemes with split-
ting are more efficient for multi-dimensi-
onal problems. The splitting can also im-~
prove both the stability and the convergen~

ce of the scheme., According to Yanenko,

three kinds of splitting can be distingu-

ighed:

1) analytical splitting on which two-step

and multi-step schemes are baged;

2) geometrical splitting on which the fra-
ction-step method or alternating directi-

on method is basged;

3) physical splitting on which methods of

particles are based.

Two-step schemes. The first success-
ful two-step scheme was Lax-Wendroff se-
cond-order scheme. MacCormack suggested
another two-step second-order scheme,the
so~called "predictor-corrector" scheme. In
thig scheme at the stage "predictor™"the
stability is provided and at the stage '"co-
rrector" the conservation laws are fulfi-
led and the accuracy is increased.

Let us discuss some applications of
these schemes for three-dimensional super-
gonic flow. At first,we shall consider se-
veral cases of simple aerodynamical bodies
and then of more complicated configuratio-
ns. In all these cases(with the exception
of three below mentioned cases) MacCormack
scheme has been utilized. Using the time-
dependent principle and shock-capturing
approach,Kutler and Lomax (29) calculated
gome flows about circular cone at large
angles of attack, flat delta wing, delta
wing with half-cone. In the same manner
the flat deltsa wing with subsonic leading
edges was considered by Bazzhin and Chely-
sheva (30). Fitting the bow shock wave,
Pandolfi (31) studied flow about elliptic-
al cones at angles of attack and yaw. Using
the same approach the flat delte wing with
half-cone was calculated by Lobanovskii(32).
An interesting three-dimensional internal
corner flow problem isc°solved by different
authors. A system of shock waves found by
Marconi (33) is sketched in Fig.7.

Using Lax-Wendroff scheme, Li computed
(34) nonequilibrium oxygen and nitrogen
flow about the fromt part of ellipsoid at
angle of attack. Among works where the mi-
xed flow about blunt nose together with
subsequent supersonic domain are calcula~
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ted let us note the work by Walkden et al
(35). Here the flat delta wing with blunt
leading edges at angle of attack is comsi-
dered.
— — EXPERIMENT Re=144+~40%

oo NUMERICAL SOLUTION (KUTLER)

_— M”‘=‘3.|7, 8'=8Q=12,2°, A=0

! aa M,,tﬁ.o,d=9.85: A=D

Y-Yo

0.3

0.1

0.1 03

Fig.7 Shock waves in int;}nal corner flow.

Moretti (36) has recently suggested
two-step " A - scheme" and determined
the supersonic flow about strongly flatte-
ned elliptical cone at angle of attack. In
thie scheme fixed computational net is
used. However, the governing equations
have characteristic form. The net points
are chosen so that the computational and
physical regions of influence should be
close.

The increase of computer capacity up
to tens of millionsoperationsper second
makes it possible to calculate supersonic
flows about complicated configurations re-~
sembling real vehicles. In such calculati-
ons splitting schemes and bow shock fitt-
ing approach are used as a rule. Embedded
shocks are eitherfitted.orcaptured. Marco-
ni and Salas (37) computed the flow about
the nose of an aircraft. The embedded sho-
cks,appearing in calculation,were fitted as
boundaries of subdomains of the solution.
The numericel and experimental values of
the pressure coefficient Cp on the upper
side of the fuselage is plotted in Pig.8
at Ms52.2 and«=5°,79° ., The pressure pe-
ak is due to the embedded shock before the

3 .
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Fig.8 Pressure distribution along aircraft
nose.

Other authors using the congervation
form of governing equetions spread embed-
ded shocks. Kutler and Lomax (38) determi-
ned the flow-fields about the front part
of a spacecraft in the perfect and equili-
brium gir. The local subsonic domains are
ignored in these calculations. D'Attore et
al (39) computed the flow about the model
of the aircraft B-1 at M=16,22 andd=253°.
The authors used Lax scheme with dissipa-
tive terms. The flow-field was divided in-
to several computational domains.

Fraction-gstep method and method of

articles. in the fraction-step method (or
Eﬁ the alternating direction method) the
multi-dimensional finite-difference opera-
tors are split into one~dimensional. Thus
the problem is reduced to the solution of
sequence of one-dimensional problems. At
first the splitting scheme was suggested
by D.M.Peaceman and H.H.Rachford and also
by J.Douglas for heat conduction problems.
Later, the scheme of geometrical splitting
was worked out by other authors, in parti-
cular, Yanenko (40) made a considerable
contribution in the development of the fra-
ction-step method.

Rizzi and Inouye (41) used splitting
in their method of "finite volumes". The
governing equations in their work were wri-
tten in the integral form, and the average
values of functions in cells were determi-
ned by means of volume integral. They in-
vegtigated the case of a blunted cone. Ri-
zzli and Bailey calculated the nonequilibri-
um flow about the front part of a spacecra-
ft vehicle. In PFig.9 the cross-sections of
the bow shock wave for this vehicle at
M2 , L =44° d H=65wn. are shown 42).

(]

0 % & 12 15 bl
A 8 c
A= 44°

@?DQ

. A c
Fig.9 Shock wave in nonequilibrium flow
about spacecraft vehicle.

The splitting by physical processes
is involved in methods of particles: PIC
by F.H.Harlow, FLIC by R.A.Gentry,R.E.Mar-
tin,B.J.Daly,in the method of large partic-
les by O.M.Belotserkovskii and Yu.M.Davy-
dov. Thus Fuler and Lagrange considerations
of the medium movement can be used in turm
and therefore their begt features can be
combined. These methods for the supersonic
flow problems are applied with the time-

Mz217 H=65xm
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dependent stationing principle and the
shock-capturing approach. In three-dimen-—
sional case these methods are practically
not used now, because for sufficient accu-
racy they require computers of very high
capacity. Here only two examples concer-
ning parallelepiped in supersonic stream
are given by Pyzik and Tarnogrodzky (43)
and Davydov (44).

III. Method of characteristics

The method of characteristics is used
for purely supersonic flows of an inviscid
gas, when the gasdynamical equations belo-
ng to hyperbolic type. The method is based
on treatment of charecteristic surfaces,
where the original system of governing eq-
uations is replaced by the equivalent sy-
stem of characteristic compatibility rela-
tions depending on only two variables in
a three-dimensional case. These relations
are represented in a finite-difference fo-
rm on a characteristic net which is not
rectangular, beforehand unknown, but is cre-
ated in the course of the solution. There
are characteristic nets of direct and in-
verge types. In the first case characteri-
stic surfaces are issued downstream and
their intersection gives a mew net point.
In the second case, the solution is advan~-
ced using successive reference (initial
data) surfaces (where one independent va-
riable is constant) with fixed net points
in respect of two other variables. Here
characteristic surfaces are issued upstre-
am to the preceding reference surface
where some interpolations are employed.

The method of characteristics has the
following advantages: better treatment of
region of influence of solution, simpler
control of stability, convenient computi-
onal algorithms for net points on the body
and on the shock wave with simultaneous
determination of streamlines (which are
required to calculate nonequilibrium flows,
since the relaxation equations are descri-
bed along streamlines). However, the meth-
od is not universal, being applied only to
hyperbolic domains. Use of the direct net
gives irregular position of net points,
demands the calculation of their locations,
results in low accuracy for small intersec-
tion angles of characteristic surfaces. It
is reagonable to apply the method of chara-
cteristics computing flows with few shock
waves, which are treated as discontinities,
and solving variational problems when ri-
gorous treatment of region of influence is
necegsary. It should be noted that some
three~dimensional finite-difference net
methods includes the characteristic algo-
rithms for boundary points on a body and
a shock wave.

It is possible to construct various
three-dimensional characteristic computa-
tional schemes having different elementary
cells, order of accuracy and being of sim-
plicial or nonsimplicial types. The review
and the analysis of such schemes are given
in (45). They may be divided into the sch-
emes with bicharacteristics and the sche-
mes with characteristic lines on coordi-

nate planes.

Schemes with bicharacteristics. The
direct tetrahedral scheme of Rusanov has
been practically realized by Podladchikov
(46). Here the region of influence is de-
termined exactly, but the irregularity of
net resulting in growing calculational er-
rors restricts the application of the sche-
me to small angles of attack and small bo-
dy lengths.

The inverse tetrahedral scheme with
three bicharacteristics having the first
order of accuracy has been proposed by
Minostsev (47) for smooth bodies. There
all the functions on each reference plane
between a body and a bow shock wave are
represented by continuous interpolations.
Perfect gas flows about inverted cones
with segment~shaped bluntness have been
calculated by means of the scheme. Two pro-
jections of the flow pattern about the bo-
dy with the semi-sngle w=-30° gt M,=o0
X=30°, y=t4 are drawn in Fig.10. So-
1id lines show the streamlines on the bo-
dy, dashed lines show the isobars on the
body, which are continued over the symme-
try plane, dash-dotted line ghows the so-
nic line., The pressure on the leeward side
of‘;hs flow is seen to be c%?se to zero,
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Fig.10 Flow about segment-conical body.
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The inverse pentahedral scheme with
four bicharacteristics has been developed
by Magomedov (49). He has proceeded from
Butler's idea to introduce the fourth ad-
ditional bicharacteristic in order to eli-
minate the differentials along the nonbi-
characteristic directions involved in the
compatibility relations. Computations of

perfect and equilibrium air flows about
gpherically blunted cones at an angle of
attack have been carried out with this
scheme, Chu (50) has suggested & scheme
in which the number of bicharacteristics
used is more than necessary and the over-
determinate system of equations obtained
in the calculational procedures is solved
by minimizing residual function.

Schemes with characterigtic lines on

coordinate pilanes, 1t turns out to be a
fruitful idea to treat two~dimensional
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traces of characteristic surfaces on coor-
dinate (meridional) planes and to connect
the values of functions on them by some
interpolations. The approach, in which
such interpolations are carried out still
in the original system of equations to el~
iminate the third independent variable,
is_particulary simple. Such a scheme is
utilized by Moretti (51), however it has

a number of demerits ( linear interpolati-
ong, direct net, the first order of accu-
racy, instability in Neumann's sence).

An effective scheme using two-dimen-
gionael characteristic compatibility rela-
tions has been worked out by Katskova and
Chushkin (52). They have applied continu-
ous trigonometric interpolations, inverse
net, normalized independent variables, an
iterative procedure which assures the ge-
cond order of accuracy. Supersonic perfect
gas flows about blunted cones (52) and
about ducted bodies (53) at angles of at-
tack were computed with the help of this
scheme. Later on it was extended to the
nonequilibrium case (Chushkin (45)). Vari-
ous three-dimensional supersonic flows
with exact trestment of nonequilibrium
physical-chemical processes (dissociation,
combustion) have been analysed for the
first time by this scheme (54). We present
in Fig.11 gome results for direct (w>0) and
inverse (w<o) elligtical cones with elli-
psoidal bluntness (42 =15, 6=fm ) in
the stream of nonequilibrium dissociating
oxygen at My=10 ,d =10°, Po=0.001 atm 1. =300°K .
The shock wave and the temperature distri-
bution along windward and leeward body ge-
neratorg are drawn by solid and dashed 1li-
nes, respectively.

y4
ul Mg, d=10° 2
\ B=0001atm "
X
\ T=300°K
x
-30°
1 ' '
a5 1.5 25 T

Fig.11 Nonequilibrium oxygen flows about
blunted cones.

The corresponding data for frozen flow il-
Justrating the dissociation effect are de-
picted by crosses for the cone w=-30° .

equilibrium flows. Rakich et al (55) have
employed it with some modification (choos-
ing as the reference surfaces the planes
normal to the body surface, rather than to
the body axis) to calculate three-dimensio-
nal nonequilibrium air flow about the fro-
nt part of an aerospace vehicle. A scheme
of gimilar type, but with direct net has
been constructed by Grigor'ev and Magome-
dov (56).

An explicit net-characteristic scheme
hes been worked out by Magomedov and Kho-
lodov (57),They have developed the idea of
Courant-Isaacson-Rees, Here traces of cha-
racteristic surfaces on two coordinate
planes are considered, the solution is ad~
vanced following to successive reference
planes with a fixed net. Finite-difference
approximation of characteristic compatibi-
lity relations and linear (or quadratic)
interpolations with respect to the net po-
ints are carried out for each elementary
cell. Flow-fields about various blunted
bodies in perfect and equilibrium air have
been investigated with the aid of this sch-
eme, The results obtained by Belotserkova-
kii and Kholodov (58) for the cone having
the spherical nose and the segmental aft
are presented in Fig.12. Here the shock
waves and the body pressure distributions
in the flow symmeiry plane are shown for

Mo=2 , y=1.4 and various angles of at-
tack o = 9% rgge o
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Fig.12 Flow about blunted body.
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IV. Method of integral relations and me-
thod of lines ’

Method of integral relations. It was
the method by which the First numerical so-
lution of aerodynamic problems using compu-
ters were obtained. Dorodnicyn (59) propo-
sed this method in 1951 developing the me-
thod of lines. Here the governing system of
equations is taken in the divergent form
end the integration region is subdivided
into N nonintersecting strips. This system
is integrated across each strip. The appli-
cation of certain interpolations with nod-
es on the strip boundaries reduces the ob-

This scheme is very efficient for non- tained integral relations to the approxi-
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mating system of ordinary differenial eq-
uations. Dorodnicyn (60) has also given
the generalized form of the method of in-
tegral relations where the approximating
system, which better approximates the so-
lution, is obtained owing to the introdu-
ction of certain weight functions.

The advantage of the method of integ-
ral relations is the actual elimination of
one independent variable with the exact
integration in respect of another variable
that results in extreme simplicity of com-
putational algorithm and little computer
storage required. Boundary conditions are
very easily realized in the calculational
procedure, in particular in cases of sin-
gularities on boundaries (discontinity of
slope or curvature of body surface, sin-
gularity on the axis in the cylindrical
coordinates). Sufficient accuracy of solu-
tion is reached in many cases for a small
number of strips (N=1+3). However, if a
boundary-value problem of high order ari-
sﬁs, the efficiency of the method dimini-
shes.

The method of integral relations hasg
been extensively applied to compute mixed
flow about nose part of blunted bodies at
supersonic free stream. Belotserkovskii (61)
has obtained the first solution of the
bluni-body problem for the direct formula-
tion. The mixed flow behind the detached
shock wave may be calculated by two diffe-
rent schemes in which the strips are cho-
gen along or across the shock layer respe-
ctively. The method of integral relations
has been used by some authors to compute
supersonic flows about cones (see, for ex-
ample,(54)) and delta flat wings at angles
of attack.

When a three-dimensional flow about
a body at angle of attack is considered,
at first the governing three~dimensionsal
gystem of equations is reduced to the two-
dimensional one by means of trigonometric
polinomials in respect of the meridional
angle, then the two-dimensional method of
integral relations is applied to the sys-
tem obtained. Minailos (62) has utilized
this approach in the blunt-body problem,
considering the whole shock layer as a si-
ngle strip.

Chushkin has solved the three-dimen-~
sional problem of flow about a cone of fi-
nite length, having small bluntness and
the semi-angle greater than the limiting
one. To remove certain calculation diffi-
culties due to large gradients of gasdyna-
mic functions near the body apex, this au-
thor as in (63) has introduced special va-
riables. The shock waves and body pressure
distributions calculated by him are plott-
ed in Fig.13 for the cone with semi-angle

W=75° at Mo 4, y=1.4 and a number of« .
When the angle of attack increases, large
pressure gradients arise in the vicinity
of small bluhtness, and the local super-
sonic zone appears there for greater va-
lues of « » The decreage of bluntness
redius and increase of free-~stream Mach
number have similar influence.

To compute three-dimensional mixed
flows of perfect, equilibrium and nonequi-

librium gases about bluntnesses, Golomazov
(64) has developed the scheme of the meth-
od of integral relations with strips acro-
ss shock layer.
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Fig.13 Flow about blunted large-angle cone.

To numerically analyse three-dimensi-

onal purely supersonic flows Chushkin (65)
has worked out an algorithm of the method
of integral relations, using approximati-
ons across N strips between the body and
the bow shock and carryingout trigonomet-
rical approximations with XK meridional
plenes between the windward (y=0°) and
leeward (y =78¢°) planes of symmetry. As an
application some external flows about duct-
-ed bodies at angles of attack with attached
shock wave have been investigated. The pre-
ssure distributions along five generators

= const are presented in Fig.14 for the
ducted body, having shape of truncated co-
ne with semi-angle w=15° at M.=5§,
X =10°, y=1.4 .The convergence of numeri-
cal solution for various K 1s also illus-
trated and the solution is compared with
the calculation by the method of characte-
ristics (53)(black points in the graph).
Downstream the pressure tends to the corre-
sponding value for a sharp cone ( triang-
les in the graph,(9)).
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Fig.14 Flow about ducted body.
Method of lines. This method has been
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used by Telenin and Tinyakov (66) for th-
ree-dimensional mixed flows about smooth
bluntnesses. The approximating system of
ordinary differential equations integrated
along a series of rays from the detached
shock wave tothe body nose, is obtained as
in the second scheme of the method of inte-
gral relations, However in distinction
from the latter method, now the governing
equations are not taken in the divergent
form and are not solved in the minimal re-
gion of influence.

The application of the method of 1li-
nes has been elready presented above in
Fig.10 for a segment-conical body in the
perfect gas stream (48). Studying this bo-
dy at angle of attack in nomequilibrium
air stream Shkadova (67) has extended the
method of lines to this case, having work-
ed out an effective two-point implicit
scheme to integrate the relaxation equati-
ons near the equilibrium, where they beco-
me stiff. Some results for the segment-co-
nical body with radius of Zccmw are given
in Pig.15 for two angles of attack o and
free-stream parameters Mwn=20, po=10""aém,

7= 250°K when nonequilibrium effects are
important. Here the distributions of pres-
sure J=P2/p.V; 2. and of atomic nitrogen
concentration ¢ along the body in the
flow symmetry plane are shown. The corres-
ponding pressure curve for the perfect air
is also depicted by dashed line. As it is
seen, nonequilibrium effects increase the
agymmetry of the flow,
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Fig.15 Nonequilibrium flows about segment-
conical bluntness.

A geries of authors have solved by
the method of lines the supersonic conical
flow problem for the two-dimensional for-
mulation. The work by Fletcher (68) should
be noted, who has calculated the perfect
air flows about a circular cone. He has
explicitly taken into account the embedded
shock and the irrotational singular point
detached from the body surface.

A modified scheme of the method of
lines has been developed by Golomazov and
Zyuzin (69), utilizing piecewise continu-
ous approximations and a special calcula-
tional procedure near body surface. An ex-
ample of their computations (70) is pre-

sented in Fig.16 for the blunted cone with
a large semi-angle ( w=6¢°) at M.=10,
J=14 . In a small interval of angles
of attack, a local supersonic zone on the
leeward side near the detached shock wave
appears which has a bend there. The corres-
ponding behaviour of sonic lines is seen;
they have at «=J5° and 5.5° two branches,
which join together at «=6° . There is
also the single sonic line at «=¢0° , This
behaviour of the leeward flow-field for
body angle close to the limiting one is
due to the transition of flow from the
type determined by the gpherical bluntness
to the type determined by the cone genera-
tor.

Y| M=10, p=14
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Fig.16 Flows around blunted cone.

V., Conclusion

For solving the problem of three-dime-
nsional supersonic steady invigeid flow a
number of authors have worked out three
following types of numericel methods: the
finite-difference net method, the method
of characteristics and the method of inte-
gral relationg (including the method of
lines). The firgt type of these methods
hag widespread applications.

Now this problem may be congidered to
be mainly solved for classical aerodynamic
body shapes in supersonic streams of per-
fect and real high-temperature gases. The
tables of flow-fields have been calculated
with sufficlent accuracy for a geries of
cages (sharp cones, blunted cones and we-
dges, delta wings).

The present-day question is the nume-
rical computation of complete configurati-
on of vehicles in three-~dimensional super-
sonic streams. The successful solution of
this problem is possible by means of exis~
ting numerical methods, but it demands the
use of very powerful computers.
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