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Summary

A review is given of some theoretical and experi-
mental research on the aerodynamic characteristics
of airfoil sections for low speed flows.

Computer programs have been developed which combine
potential flow calculations withother computational
methods to predict the development of the laminar
boundary layer, the occurrence and possibly bursting
of laminar separation bubbles, the position of
transition and the development of the turbulent
boundary layer.

Special attention has been given to theoretical and
experimental research on the subjects of laminar
separation bubbles and transition. The paper will
review the main results of this research.
Capabilities of the resulting computer programs will
be illustrated through comparison with experimental
results for some airfoils.

1. Introduction

The choice of airfoils for specific applications
has long been determined by experimental investiga-
tions. The designer has been extensively supported
by such reference works as the NACA airfoil
catalogues containing a wealth of experimental
results.

With the advent of modern computational tools it
has become possible to design a special airfoil for
each specific application. For low speed flows the
pioneering work of R. Eppler and F.X. Wortmann
should be mentioned.

The work at the Delft University of Technology Low
Speed Laboratory (LSL) on airfoil analysis and
design was started by the first author during a
sabbatical leave, spent at the Lockheed Georgia
Company in 1966-1967. A prototype computerprogram
was put together, based on the then available
computational methods for viscous flows and the
conformal transformation method due to Timman(1),

A description of this program may be found in (2,3),
A special feature of this program was the so-called
e’ transition prediction method, based on linear
stability theory, which was developed independently
by Smith and Gamberoni(4) and Van Ingen(s’eg. ’
Later it became clear that for low speed flows the
formation and bursting of laminar separation
bubbles needed further detailed experimental in-
vestigations.

Over the years a number of computational tools for
low speed airfoil analysis and design has been
developed at LSL; in addition experimental research
on related topics has been performed. The present
paper gives an overview of this work.

2. Computational tools for two—-dimensional
potential flows

2.1. Direct and inverse methods based onconformal
transformation of the flow around a circle
into the flow around a single-element airfoil

It is easy to transform the potential flow around

a circle in the Z-plane into the flow around a
single-element airfoil in the z-plane if a
transformation function is specified. The well-
known Joukowsky transformation is given by equation
(1) through (3) in table 1, where b is a real
positive copstant. In the points Z = +b the
derivative is equal to zero which means that the
transformatidn is not conformal there. Choosing a
circle passing through. the point g = +b which
encloses the point ¢ = -b (fig. 1) produces an
airfoil with a cusped trailing edge at the point

z = +2b. By varying the position of the center of
the circle in the Z-plane a two-parameter family

of airfoils is obtained with variable thickness

and camber and cusped trailing-edges.

A three-parameter family of airfoils with an
arbitrary non-zero trailing-edge angle § may be
obtained from the von Kdrmin-Trefftz transformation
(equations 4 through 6 in table 1).

In equations (1) through (6) b and k are real
positive constants; k is slightly less than 2 and
is related to the trailing-edge angle § by

_ §
k—-2—’1—r' (10)

A not so well-known transformation function - which
however is very handy in applications - is due to
Mitler(7) (equations 7 through 9 in table 1).

Here b and k have the same meaning as for the von
Karmin-Trefftz transformation. The resulting air-
foils are very similar; the algebra however is
somewhat simpler for the Muller airfoils (for an
example see fig. 2). By increasing the number of
parameters, or by applying a series of successive
transformations, a great variety of airfoils may
be obtained. A review of these transformations has
been given by Blom(8). It is however not possible
to obtain an arbitrarily specified airfoil in this
way.

Numerical methods which transform a circle into an

arbitrarily specified airfoil have been developed
by Theodorsen(9), Goldstein(10), Lighthi1i(1D),
Timman and others.

We will discuss here in some detail Timman's method
because this has become one of the computational
tools at LSL.

In what follows we will take a circle (radius R)
in the Z-plane with its center in the origin in a
uniform flow with velocity Us under an angle of
attack o with respect to the horizontal axis (fig.
3). Choosing the circulation I' such that the rear
stagnation point is found at 6 = Ogt, we find

I'=4m R U sin(a - B ) (i)

The velocity on the contour of the circle is given by

Uc = 20 _[sin(6 - @) + sin(a - 8 )] (12)
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Table 1: Some classical conformal transformations.
We will choose the conformal transformation such d -
that the point 6 = 0 on the circle is mapped into a§-= T (16)

the sharp trailing—-edge of the airfoil.
The well-known Kutta condition then requires that
Ost = 0 for potential flow leading to

=4r R U sin o

Fpot flow a3

and

U (14)

Cpot Flow - 20U _[sin(8 - o) + sin o]

The lift in potential flow will then be zero for

o = 0. Later on we will apply a correction to the
1lift for viscous effects which will be effected

by allowing the stagnation point to move away from
® =0 to a small value Og¢ # O (see section 3.5.).
In that case equations (11) and (12) will be used.

The transformation function

z = £() (15)

will be chosen such that the flow fields at infinity
are the same in both planes. This means that also
the 1ift on the airfoil will be zero for a = 0.

In other words the airfoil will appear in the z-
plane in such an attitude that the free-stream
direction for zero lift is horizontal.

In what follows two real functions 0 and T will be
used, they are defined by
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Since 0 and T are the real- and imaginary parts of
an analytic function they are related to each
other; on the circle the relation is given by the
well known Poisson integral. Taking the absolute
value of (16) it follows that the ratio of the
length of a line—element |dz| in the z-plane to
the length of the corresponding element |dg| in
the g~plane follows from

|dz| = &7 |az] an

Taking the argument of (16) it follows that df has
to be turned over an angle T to obtain the
direction of dz. We will take the complex potential
equal in corresponding points of both planes. Hence
the ratio of the magnitudes of the velocity in
both planes is inversely proportional to the ratio
of the lengths of the line-elements. Hence

ol = u] (18)

The most general form of the transformation leaving
the flow field at infinity unchanged is given by

C; G G Cy
R R s Tl AETRIL s TIPS (19)
e z
or
dz _ El - EEE,_ EEQ - *a ¥ (20)
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The coefficients Cp in (19) and (20) are in general
complex. The fact that in (20) no term with g !
occurs, ensures that a closed airfoil is obtained
in the z-plane. It can be shown that this also
means that ¢ and T on the circle have to satisfy
the following set of "closing conditions" (see

e.g.

21
Sy
I g(®) d®@ = 0
0
27
I G(8) cos 8 d6 = 0 — (21a)
0
2n
I g(8) sin 6 d80 = 0
5 -
21
I T(6) d6 = 0 7
0
27
I T(8) cos 6 d6 =0 - (21b)
0
27
I 7(08) sin 6 d6 = 0 J
0

Later on these relations will become important when
we try to calculate ¢ and T for a given airfoil or
when we want to modify a given airfoil to obtain

an improved pressure distribution.

When ¢ is known on the contour of the circle the
velocity on the airfoil contour follows from (12)
and (18):

U

a=2¢ ° U lsin(6-a) +sin(a-0_)]

(22)

The circulation around the airfoil is the same as
that around the circle given by (11). When the
airfoil chord is denoted by c, the airfoil 1ift
coefficient follows from

o R,

¢y = Sﬂ‘z sin(a - Gst) (23)

dc

and the 1lift curve slope o from

dc 26

X _.grR - - st)

% 8m  cos(a est) (l 5o (24)

dc

For thin airfoils we should obtain 27 for —= so
that we can expect %

c s 4R (25)

a0

Denoting % by € we have

dc

L R
Ful 8m E-cos(a - est) (1 -¢) (26)
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and for small (o - 6st)

27

dc
2 R
50‘— 8TTE-(1"'€)

In potential flow we have es = 0 and hence € = 03
the ratio of the lift curve slope in viscous flow
(e # 0) to that in potential flow (¢ = 0) then is
(1 - ¢€).

Once ¢ and T are known as functions of 0 on the
circle the geometry of the airfoil is easily re-
covered from an integration of (16). On the other
hand the pressure distribution follows from (22).
This strongly recommends to use ¢ and T as primary
functions describing the airfoil rather than using
the coordinates. It should be observed that ¢ and

T on the circle are related by Poisson's integral
so that one function determines the other. In the
numerical applications of the method we always use
a discretization in which eY and T are determined
in 100 points equally.spaced around the circle. The
Poisson integrals are then replaced by finite sums
over these 100 function values; the coefficients in
the sums only depending on the number of points
being used. Since 4z is zero at the sharp trailing-
edge e¥ -+ 0 and hende ¢ > —» there. Moreover T has
a discontinuity equal to 2m — § at the trailing-edge.
In numerical applications the singularity at the
trailing-edge is avoided by performing the numerical
computations only on the differences between ¢ (and
1) for the given airfoil and a von Kdrman-Trefftz or
Miller airfoil having the same, trailing-edge angle.
The singular behaviour near the trailing edge can
then be handled analytically using (4) through (10).

To find the characteristic functions ¢ and T for a
given airfoil we start with an approximative von
Kirmin-Trefftz or Muller airfoil having the same
trailing-edge angle. Then corrections Ao and AT are
obtained in an iterative way until the approximative
airfoil is deformed into the given airfoil. To
ensure a closed airfoil the closingconditions (21a)
and (21b) are enforced at each step in the iteration,
The whole proces converges very fast in general.
Typical CPU times om an IBM 370-158 are 2.5 seconds
for a symmetrical airfoil and 4.0 secounds for a
cambered airfoil. An example is given in fig. 4
where the NACA 0012 airfoil is obtained in a few
steps. To show the rapid convergence a very thick
initial von Kdrmin-Trefftz airfoil has been chosen.
Once the final values for €% and T in 100 points
around the circle have been obtained they are stored
in a computer library for future use.

Often the designer will not be satisfied with the
characteristics of a given airfoil and he may want
to change the functions ¢ and T (and hence the
airfoil geometry) such that an improved pressure
distribution is obtained. This can be done as
follows. Let the pressure distribution for the
existing airfoil be known at a certain value of the
angle of attack and let it be plotted in the form
of
o,
a
U

oo

U = (28)

versus 0. The designer now may want to change this
curve in a certain interval to the curve
indicated in fig., 5. Then the existing and proposed
values of U define a correction Ac(8) to o(©) by
the following equation, derived from (18),



AO(e) = -ln lUproposed/UexiStingl

(29)
It should be remembered that arbitrary modifica-
tions to 0 are not allowed because these might
violate the closing conditions (21a). Therefore the
computer program applies a filtering proces to the
proposed function Ac(0) to remove the unacceptable
lower harmonics.

The result is a permissible function Ag and hence
also a permissible new pressure distribution

— in fig. 5). Once the correction Ac is
known the corresponding correction At follows from
the numerical approximation to the Poisson integral,
the corrected functions ¢ and T define the new
airfoil., For a detailed description of this
procedure the reader is referred to (2). An
example is given in fig. 6 where the pressure dis-
tribution for NACA 0012 at o = 0 is modified into
one of the laminar flow type.

(.._.._

2.2, Singularity distributions on single- or multi-

element airfoils and windtunnel walls

In many applications today methods are employed
which are based on the idea of putting singularities
such as sources/sinks, vortices and/or dipoles
inside or on the airfoil contour. The strength of
the singularities is chosen in such a way that the
contour becomes a streamline. Numerically these
methods reduce the problem to the solution of a
set of linear algebraic equations. They have the
advantage over conformal transformation methods

of being readily extendable to multi-element air-
foils and three dimensional wings. Sometimes
numerical problems arise for very thin airfoils

or near thin trailing edges.

At LSL we use a method programmed by Gooden(12) jin
which contours are replaced by a polygon; each
element is provided with a linearly varying
vorticity distribution.

Using such a method it is easy to determine the
effect of windtunnel walls on the pressure
distribution around an airfoil by also covering the
walls with vortex panels.

2.3. Combindtion of the methods of conformal
transformation and singularity distributions

The numerical problems, which may arise in the
method of singularity distributions for thin air-
foils and/or thin trailing-edges can be removed

by opening up the sharp trailing-edge to an angle
of 180 degrees by means of a conformal transfor-
mation. At LSL we use an inverse von Kdrmin-Trefftz
or a Muller transformation for this purpose; the
airfoil is then transformed into a nearly circular
contour. The numerical treatment is now easier
than for the airfoil contour for two reasons. In
the first place the singular behaviour near the
trailing-edge is described by the transformation
which can be handled analytically. Secondly the
singularity distribution on the nearly circular
contour behaves much smoother than on the airfoil
contour. Therefore the number of vortex panels ~
and hence the number of linear algebraic equations
to solve - can be greatly reduced.

Figs. 7 through 9 give some examples of application
of this procedure., Fig. 7 gives the transformation
of the Wortmann FX66-S-196V] airfoil into a near
circle; fig. 8 shows the same procedure applied to
the very thin Eppler 377 airfoil. The pressure
distributions calculated in this way and by Timman's

method are so nearly the same that differences can-
not be shown on a graph of reasonable size. The same
transformation can be applied to multi-element
airfoils. Fig. 9 shows two successive transforma-
tions which transform a wing and leading-edge slat
combination into two nearly circular contours.

2.4, A linearized method for flows around nearly
circular contours obtained by conformal
transformation from an airfoil

It was mentioned already in section 2.3. that the
application of a suitably chosen inverse von
Kirmin-Trefftz or Muller transformation to an air-
foil results in a nearly circular shape. When the
distance € between this contour (C, in fig. 10)

and a nearby exact circle (Cy in fig. 10) is small,
the singularity distribution may be put on the
circle to generate the flow around the near circle.
This has the advantage that the distributions may
be described by Fourier series which can be handled
very easily by Fast Fourier Transform routines.
Assuming small deviations € between the near circle
and the exact circle a linearized method has been
developed at LSL. This method has the advantage
over the usual linearized airfoil theories that it
is also accurate near leading- and trailing-edges.
In this method we use a vorticity distribution on
the exact circle Cy to make this circle a stream-
line in a given onset flowfield w. Then a source
distribution on C2 is added to make the nearly
circular contour C; a streamline instead of Cj.

The accuracy of this linearized method follows from
table 2 where some results are shown for an
elliptical contour with semi axes a and b (fig. 11)
where the vortex and source distributions have been
put on a circle with radius R = 1.

-v
exact in percent

0 Vexact

degrees| _ i |a=1.1|a=1.05a=1.1|a=1.2

b= .9|b =1.0lb =0.95|b = 0.9|b = 0.8

18 -.54 | ~1.24 | -0.64 +1.98 | -4.76
36 -.11 -0.37 +0.01 0.39 -2.89
54 -.21 +0.12 +0.21 0.74 +1.94
72 -.65 +0.15 +0.00 -0.16 -1.42
920 -.88 +0.09 -0.15 -0.68 -2.91

Table 2: Results of linearized method for ellip-
tical airfoils.

It follows from table-2 that even for rather large
deviations from a circle the resulting error is
only a few percent. The best results can be expected
when € is partly > 0 and partly < 0, see for
instance the case a = 1,05 and b = 0.95 in table 2.
In practice we use an approximating circle Co with
an area equal to the area within the nearly
circular contour C; with the center of the circle
in the centroid of the area enclosed by Cj. It
should be noted that in this way the singularities
on Cy sometimes stick out into the flow field out-—
side Cj. This is permissible since the equations
used have been derived for the flow outside Cjp.
Extending its use inside C2 without taking into
account the jumps in normal and tangential velocity
which should occur on Cp, just provides us with the
proper flowfield outside Cj.
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3. Computational methods and experimental research
for viscous flows

3.1. The laminar boundary layer

A well known engineering method for the calculation
of the laminar boundary layer is that due to
Thwaites(13). The accuracy of the method is quite
good for the prediction of the momentum loss
thickness 0; it is less accurate for the prediction
of the separation position. The idea behind this
method is to use the von Kirmin momentum integral
relation

d (ﬁ) _28+2m(2+H) _

L
dx \v U T (30)

and the first compatibility condition of the
boundary layer

m='-——‘a; (3])

Thwaites assumed that % and H and hence L are
unique functions of m which allows us to calculate
%, my H, L and O as functions of x. The required
functions £(m), H(m) dand L(m) were deduced by
Thwaites from a number of exact solutions of the
laminar boundary layer equations which were
available to him at that time. The momentum
integral equation can be integrated easily between
two points x; and x5 if a linear relation

L=a+bm (32)

is assumed between L and m (Thwaites took a = 0.45;
b = 6). The result is:

(9.,

2
=a ] P! ax (33)
X‘—"-Xz X=Xl

*

As soon as 6(x) is known, m(x), 2(x) and H(x)
follow from the compatibility condition and the
relations 2(m) and H(m). This allows us to. find
the separation point and an approximation to the
boundary layer velocity profile. As was remarked
already the predicted values of 6 are sufficiently
accurate for engineering use. For the favourable
pressure gradient case (m < 0) also the velocity
profile is rather accurate, For adverse pressure
gradients (m > 0) the profile is less accurate and
hence the separation position is not predicted
accurately enough for the present purpose. This

is due to the fact that Thwaites' method belongs
to the class where a fixed relation exists between
% and m so that separation (£ = 0) is found at a
fixed value of m.

An improved method has been presented by Van Ingen
(14) in which %(m), H(m) and hence L(m) are allowed
to depend on an extra parameter. This parameter is

taken as m
separation.

s, the value of m = = — — at.

For each value of mgep a Thwaites-type method is
obtained, For large values of mgep, the method
gives late separation, for small values of mgep
early separation is obtained.
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Of course some additional information is needed to
determine mgep. When analysing experimental results
this parameter may be chosen such that ‘the experi-
mentally determined separation point is reproduced.
In cases where the separation point is not known
3 priori we use Stratford's two-layer method(13) in
the version of Curle and Skan{!6) to provide the
separation position.
It is easy to invert the present method so that we
can calculate the change in pressure distribution
which is needed for a certain modification of the
properties of the boundary layer. In this way it
was shown by an example in that a very minor
change in pressure gradient may produce an
appreciable shift in the separation position. There-
fore it seems that for the prediction of the laminar
separation position the accuracy of the pressure
distribution is much more important than the
sophistication of the calculation method. Therefore
it is thought that the present method is sufficient-
1y accurate for engineering use. :

.
Accurate laminar boundary layer calculations for
arbitrarily prescribed pressure distributions in
general show a singular behaviour at separation,
such that Ty and £ tend to zero as the square root
of the distance to separation (Goldstein 17)y.
It was shown in that this singular behaviour
is reproduced by the present method. It was also
shown that for a measured pressure distribution the
singularity may be prevented by a proper choice
of mgep. Therefore it seems possible that the
boundary layer equations may remain applicable
through separation if only the proper pressure
distribution is used. It should be remembered how-
ever that very small deviations from this pressure
distribution will restore the singular behaviour.
Therefore we must refrain from prescribing the
pressure distribution in the separation region;
instead we should prescribe a regular behaviour
of some other quantity like Ty, & or the displace-
ment thickness. It is of course very easy to invert
the present method and prescribe a quantity other
than the pressure and calculate the other boundary
layer parameters and the pressure distribution in
the separation region.

In order to be able to proceed in this direction
we should first gather more information about the
exact behaviour of the viscous flow near separation.
Therefore it is useful to recall here an analytical
solution of the Navier-Stokes equations which is
valid in a small neighbourhood of the separation
point where the jnertial forces can be neglected.
(See Legendre , Oswatitsch 19), Batchelof(zo)).
It follows that the separation streamline leaves
the wall at an angle Y (fig. 12) which is deter-
mined by:
dr

o
dx
%
9x |sep

tan(y) = -3 (34)

The streamlines can easily be calculated once Y.is
known; they follow from:

y2 (x tan(y) - y\ = constant (35)

where x is the distance downstream of separation.
For points at which the u-component of the velocity

is zero we find % = %—tan(Y).



The pressure gradient vector is at an angle %‘Y
with the wall and hence for shallow separation
regions where Yy is small the pressure gradient
normal to the wall is small so that the boundary
layer equations might still give a reasonable
result.

Since the Goldstein singularity leads to —
at separation, equation (34) would predict a
separation angle Y of 90 degrees. This is incontra-
diction to experimental evidence which shows small
angles Y. Therefore empirical informationis needed
to suggort the theory.

In (21) and (14) it was shown from an extensive
empirical investigation that for a wide variety

of separated flows it was possible to represent

Y by the following simple empirical relation:

—~00

B
uo
\

tan(y) = (36)

sep
where B assumed values between 15 and 20.

In (21) and (14) a simple method to calculate the
separated laminar flow was introduced. In this
method the shape of the separation streamline is
prescribed; it leaves the wall at an angle ¥y
determined by (36) in which B is assumed to take
the value 17.5. The resulting flow is required

to satisfy the von Kdrmin momentum integral
relation, the first compatibility condition at the
wall and certain relations between £, m and H
which follow from Stewartson's second branch
solutions of the Falkner-Skan equation. The
pressure distribution now follows from the
computation.

It is useful to define a shape parameter g in the
separated region with

=Y
g€=3% (37

where y is the distance between the wall and the
separation streamline. The x-coordinate may be
non-dimensionalised as

X - x
(38)

0 Rg
sep Usep

The shape of the separation streamline can be
prescribed in a number of different ways. In many
applications we used a straight separation stream—
line, leaving the wall at an angle Y given by eq.
(36). The shape factor g then follows from:

39

where 8% = 8/8gep -

Since in most cases the separation streamline is
slightly curved upwards in the laminar region a
better approximation may be obtained by assuming
a linear variation of g with x* downstream of
separation. Since 8 is still increasing somewhat
it follows that this leads, together with the
linear variation of g, to a separation streamline
which is slightly curved upwards. Then g follows
from
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(40)

It was conjectured from some unpublished measure~
ments at LSL that the velocity U at the edge of
the boundary layer may be - at least for engineering

use - described by a universal relation between
v* and x*.

sep

It should be observed that, when it is assumed that
also the shape of the velocity ptofile at separation
is universal, the detailed development of the
boundary layer downstream of separation would be
universal. This would mean that g is a universal
function of x* so that B indeed should be a constant
as was found from the experiments. The present
version of the calculation method for separated
flow at LSL uses a linear variation of g according
to (40) with B = 17.5. The calculation has to stop
when transition ocecurs either upstream or down-
stream of separation. In the latter case a so-called
laminar separation bubble occurs which deserves
some special attention. The subject of transition
prediction will be discussed in section 3.4.

3.2. Bursting of the laminar separation bubble

Once the separated flow has become turbulent it
may reattach as a turbulent boundary layer. How-
ever sometimes reattachment does not occur re-
sulting in so called "bursting" of the bubble

and in general a drastic change in flow behaviour.
A number of methods have been developed for
prediction of bubble bursting.

Owen and Klanfer(22) assumed that bursting occurs
when Rg¥ at separation is less than 400-500.
Crabtree(23) observed that there seems to be a
maximum limit to the pressure rise which a re~
attaching turbulent shear layer may overcome. From
a number of experiments he deduced that the
pressure coefficient

)2

sep’

Ur
o=1-(g

is nearly constant for short bubbles about to burst;
the constant value he suggested was 0.35.

If equation (41) 1is to be used to predict whether
reattachment will occur, the value of U, at the
possible reattachment point has to be known. In a
first approximation this may be taken from the
pressure which would occur, without the bubble being
present, at the position x. (see fig. 13).
Hortpn(é4) gave a method to predict whether and
where reattachment may occur, This method is based
6 dv) _ .
U dx/r
-.0082 for all reattaching turbulent layers.

A simgle criterion for bursting was shown by Van
Ingen 14) t6 be provided by Stratford's zero skin
friction limiting pressure distribution . This
is the adverse pressure distribution which a
turbulent boundary layer can just negotiate with-
out separation. This limiting pressure distribution
curve, starting at the transition point T (fig. 13)
can at low Reynolds number fail to cross the
"inviscid pressure distribution curve'. This means
that the requested pressure rise is more than the
Stratford pressure recovery can provide and hence
bursting occurs.

(41)

on the simple criterion that = constant =



3.3. Turbulent boundary layer and wake

In the present version of the LSL airfoil analysis
and design program the turbulent boundary layer is
calculated by means of Head's entrainment method
(26), The initial value for the momentum loss
thickness 6 is in general taken equal to the value
for the lamipar boundary layer at transition. When
transition is due to roughness the value of 0 may
have to be increased to account for the drag of
the roughness. A general procedure to take this
into account has not yet been included in the
program. Head's method also requires an initial
value for the shape factor H. This value can either
be specified by the user or it can be calculated
by the program. In the latter case H is taken as
the flat plate value given by Green when
transition occurs at or upstream of the pressure
minimuim. A value of H = 2 is used when a laminar
separation bubble occurs. For intermediate
transition positions H is interpolated linearly

in m/msep between the flat plate value and 2.

It appears that making H = 2 downstream of a sepa-
ration bubble results in too lowa drag coefficient.
This is due to the fact that the present turbulent
boundary layer calculation method does not account
for the increased turbulence level at reattachment.
It is clear that the problem of the starting
conditions for the turbulent boundary layer
calculation should be investigated in much more
detail.

In the present program the wake is not calculated
in detail. In fact it is dome implicitly by means
of the Squire-Young method which is used to
calculate drag. The contributions of the upper and
lower surface are determined separately.

Some improvement may result from replacing Head's
method by the lag-entrainment method due to Green
which can also be used in the wake. However,
it is expected that the most important improvement
would result from a better description of the
initial phase of the turbulent boundary layer.
At LSL some research on turbulent wakes is being
done by Passchier 28,29) | However this has not yet
advanced to a state where improved calculation
methods could be developed.

3.4, Transition prediction

In the present airfoil analysis and design program
transition is predicted by means of the so called
el method which was developed independently b

Smith and co-workers(4,30) and van Ingen(5,6sg2’33l

In this method linear stability theory is used to
calculate the amplification of unstable distur-
bances in the ldminar boundary layer.

The streamfunction of such a disturbance is des-
cribed by

1 (ox-wt)

U(x,y,t) = 0(y) e 42)

In the so-called spatial mode w is the real fre-
quency of the disturbance and o is a complex wave-
number

o=a, + i, (43)

. TOaixX .
This leads to a factor e © in the disturbance
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amplitude. The ratio of the amplitude a at a cer-—
tain position to the amplitude a, when the dis-
turbance considered is just neutrally stable
follows from

a g
— e
a
(o]

(44)

The so-called amplification factor o is a function
of x and w for a given boundary-layer. It can be
calculated as a function of x for a series of
frequencies as soon as stability diagrams are
available for the velocity profiles at successive
streamwise positions x. The envelope of the o-x
curves gives the maximum amplification factor og4
for the critical frequency which is a function of
X.

It was found that at the experimentally determined
transition position 045 attained nearly the same
value of about 9 in many different cases.
Therefore the method has become known as the e?
method. Of course the critical value of 0y should
be a function of the free-stream turbulence and
other disturbances such as sound. Therefore the
method is now being referred to as the e method.
A real problem of course is to specify n for a
given windtunnel facility or for free flight.
Different versions of the method have been used
where the critical value of 0z was not only varied
because of the free-stream disturbances but also
because improved numerical results of linear
stability theory became available.

A detailed account of the development of this
method at LSL has been given by van Ingen(33). A
short—cut method to predict transition in
separation bubbles is also described in (33),

The present version of the method being used at
Delft is based on a compilation of stability data
published by Wazzan, Okamura and smith(31),
Kimmerer (34) and solutions of the Rayleigh equation
for the inviscid stability of reversed flows as
occurring in separation bubbles (van Ingen(l4)).
All these data have been reduced to a table con-
taining about 300 members. Using this table a
stability diagram can be composed for any velocity
profile as soon as the critical Reynolds number is
known. In the present program the critical Reynolds-—
number is made a known function of the parameter
m/mgep used in the boundary layer calculation
method.

Although it is clear that the initial disturbances
cannot easily be described it was tried in ) to
define a relation between the critical value 04
and the r.m.s. value of the free-stream turbulence
level Tu (in %).

From available results on transition positions on
flat plates at different turbulence levels it was
deduced that a good correlation for Tu > 0.17 is
given by (see fig. 14)

10

Oa, = 2.13 - 6.18 log Tu (45)

1
and

10

Oa., = 5.0 - 6.18 log Tu (46)

2

where Oa; and 0aj correspond to the beginning and
end of the transition region respectively.

For lower values of Tu such a good correlation
could not be obtained. There is much more scatter



because at these low values of Tu sound distur-
bances may become the factor controlling transition
rather than turbulence. We use (45) and (46) also
for Tu < 0.1% but then Tu is considered to be an
"effective turbulence level" taking into account
also other disturbances. This leaves us with the
problem to determine Tu for a given windtunnel
facility or for free flight. At the time of
writing this paper an investigation was started
to obtain the effective Tu for differemt facili-
ties by comparing published transition measure-
ments with results of calculations with the
present method,

In the LSL airfoil analysis program we have to
start the turbulent boundary layer calculation

in a point rather than in a region. For the time
being we use simply as a starting point the
midpoint of the transition region. For this point
the amplification factor Orurb is given by the
mean value of 0a] and 0g9 according to equations
(45) and (46).

1

Oppp = 3-565 - 6.18 10 log Tu

tur “n

A further investigation is required to optimize the
choice for Oturb.

As an illustration fig. 15 gives the calculated
value of the drag coefficient for the NACA 0012
airfoil as a function of Ogyrb. It follows that
the result for Opypep = 9.75 correlates well with
the measured value in the NACA low-turbulence
tunnel as given in fig. 68 of Abbott and von
Doenhoff(33), According to equation (47) the
corresponding value for the effective turbulence
level is 0.10%. It should be noted that here we
match the calculated value for cq with the
experimental value. This does not prove that the
transition position is predicted correctly; errors
in this prediction may be cancelled by errors in
the drag prediction. A further detailed investiga-
tion will be performed to sort this out.

For the low~turbulence tunnel at LSL we use a
somewhat lower value for Tu, namely 0.067 and
accordingly a higher value 11.2 for Opyrp (see
section 5).

At present an experimental program is being per-
formed in cooperation between Delft University of
Technology LSL and the Lockheed Georgia Company

in which the same airfoil model (with section
Eppler 603) will be tested in the LSL low-
turbulence tunnel and as a glove around the wing
of the Caproni motor-glider owned by Lockheed
Georgia. This program should result in a value of
Oturb to be used for calculations on gliders.
Based on work by Runyan and George-Falvy(36) it
may be expected that Gtyrp = 15 is a reasonable
approximation for glider airfoils.

For the present it is advised to use the following
values for Tu and Gturb.

Facility TU. (%) Oturb
NACA LTT and similar tunnels 0.10 9.75
Advanced low turbulence tunnels )
such as at LSL 0.06 11.2
Free flight of gliders "0.014 15.0
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3.5. An empirical correction of lift for the
effects of viscosity

Due to the presence of the boundary layer the
effective shape of the airfoil changes. Moreover
the circulation is determined by the viscous flow
in the neighbourhood of the trailing—edge through
a "modified Kutta condition". The effective airfoil
shape is obtained by adding the displacement
thickness to the contour and similarly adding a
displacement tail to simulate the wake. The cor-
rected pressure distribution is then obtained from
a potential flow calculation for the modified
contour. This leads to an iterative proces. A
different method is to apply a non-zero normal
velocity on the contour and on both sides of the
dividing streamline in the wake. This second
method is favoured for panel methods because it
leaves the geometry unchanged and hence the
coefficient matrix in the resulting linear algebraic
equations is unchanged.

In the present conformal transformation method we
included a similar procedure where the normal
velocity boundary condition was applied in the
plane of the circle,

Another important effect arises from the curvature
of the streamlines in the wake (fig. 16). The
radial pressure gradient in the wake follows from

(48)

Since in the wake u is reduced with respect to the
potential flow value the pressure difference

across the wake will be reduced. This will lead to
a reduction in lift w.r.t. potential flow. Assuming
that the flow leaves the airfoil in the direction
of the bisector of the trailing-edge the total
turning angle will be a, + Yy (fig. 16) where a,. is
the angle of attack and y the direction of the-
trailing-edge bisector, both measured with respect
to the chord. Since the momentum loss in the wake
is represented by the drag coefficient cqd it may be
expected that the loss in lift due to wake
curvature effects may be expressed in terms of cg
and (0g + Y). '
In the present version of the program a simple
procedure is used to correct the potential flow
value of lift for viscous effects. Since this
correction procedure is based on a limited number
of experimental results it should be used with
caution. )

Originally it was tried to express the loss in lift
via a positive value of Ogt (see section 2.1.),
which should be determined by (0. + Y), cd and

Acqg = edy - cdg. It was thought that the latter
parameter should be taken into account because a
difference in boundary layer thickness for upper-
and lower surface (leading to a difference for the
drag coefficient due to the upper surface (edy) and
the lower surface (cdg), would be simulated by a
dividing streamline leaving the upper surface.

From the available experimental results it was
impossible to find a correlation including Acg. In
the future we plan to investigate this point
experimentally in some detail. A symmetrical airfoil
will be induced to generate some lift at oc = O by
means of an asymmetrical roughmess distribution.

In what follows we will develop the correction
procedure as it is being used at present.

It should be remembered that the 1ift curve slope
in potential flow is equal to



Jc
2) R
(——— = 81 — (49)
da pot.flow ¢

and that the viscous flow value is (1 - €) times
as large (see equations 23 through 27).

Figure 17 gives some results for symmetrical 2—
digit airfoils at a Reynolds number of 6 x 10° in
both the smooth and rough condition; the experi-
mental results have been taken from fig. 57 of
Abbott and von Doenhoff(35); the theoretical
results have been calculated using the present
program. It was found that avery good approximation
is given by (see fig. 18)

€ = 5.0 tan(s) 'cho (50)

where § is the trailing-edge angle and cd, the drag
coefficient at o = 0. Converting (50) to an ex-
pression for Og¢ we obtain:

¢} ¢ = 5.0 tan(8) o /E; (51)

s

For cambered airfoils we will expect a generali-
sation of (51) in the form:

O, = 5.0 tan(8) (a, + ) JE; (52)

s

In fig. 19 we present some results for different
cambered airfoils tested in the LSL low turbulence
tunnel.

Included are the points of fig. 18 but now conver-—
ted to Ogi values for 0. = 2.0 using equation 51.
Although the correlation is good the authors are
still a bit puzzled about the influence of Acg
they expected.As mentioned already this point will
be the subject of further research at LSL.

4. Experimental facilities for airfoil
research at LSL

Measurements on airfoils have been performed at

LSL in the low speed low turbulence tunnel. The
test section of this tunnel is 1.80 m wide and

1.25 m high; the contraction ratio is 1 : 16.

The maximum speed is about 120 m/sec; the r.m.s.
value of the streamwise turbulent velocity fluc-—
tuation ranges from 0.0257 at low speeds to 0.085%
at 100 m/sec. The value of the effective turbulence
level Tu meptioned in section 3.4. is about 0.06%.
Typical 2-D airfoil models used in this tunnel have
a chord of 0.36 m (giving a tumnel width—chord
ratio of 5) and span the 1.25 m height of the
tunnel. Due to a specially developed technique of
casting models (van Heuven(37)) it is relatively
easy to build models 'with a sufficient number of
pressure orifices to obtain detailed pressure
distributions. The drag is determined from measure-
ments in the wake following the procedure described
by Pfenninger(38). The 1ift is determined from the
pressure distribution on the airfoil or in special
cases from the pressure distribution on the side
walls of the tunnel. With these models chord
Reynolds numbers between 0.5 x 109 and 2.0 x 106
are obtained.

For measurements at lower Reynolds numbers between
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40 000 and 500 000 smaller models are used with a
chord of 0.15 m and a span of 0.75 m. One tip of
such a model is attached to the windtunnel balance
system with a reflection plate normally used for
half-model testing. At the other tip an end plate
is provided separated from the airfoil by a narrow
slot of about 0.5 mm.

The drag is again determined with the wake traverse
method; the lift is measured with the balance
system.

The techniques used to determine transition, sepa-
ration and reattachment include stethoscope measure-
ments, surface flow visualisation using the oil film
technique and flow field explorations with tufts.

A description of this test techmique has been given
by Volkers(39),

The same set—up has been used by Bruining(45) to
determine the aerodynamic characteristics of curved
plates.

5. Some comparisons between theory
and experiment

Fig. 20 shows the theoretical and experimental 1ift
and drag for the Wortmann FX66-S-196V! airfoil. The
experimental results have been obtained by Gooden
(41,42) in the low turbulence tumnel at LSL.

It was found that a good prediction of the lower
limit of the low drag bucket was obtained for

Tu = 0,06 (Oturb = !1.2). These same values will
be used for all subsequent calculations to compare
with experimental results from the LSL tunnel.

A reasonable prediction of cg and a good prediction
of cg below cgpax is obtained.

Fig. 21 shows similar results for the FX61-163 air-
foil as used in the ASW-19 sailplane. The experi-
mental results have been obtained by Selen et. al
(43) in the LSL tunmel.

Fig. 22 shows results for an airfoil which is used
in the horizontal tailplane of the Italian sail-
plane M300 "Aliante"., The airfoil was designed by
cambering the NACA 63-018 section. The tailplane
was produced through an extrusion proces which
caused appreciable surface waviness. An actual
specimen of this tailplane was tested as a two-
dimensional model in the LSL tunnel. It was found
that the surface waviness caused early transition
in a certain angle of attack range. This could be
remedied by smoothing the forward part of the
surface. The calculation, starting from measured
airfoil coordinates for both conditions, predicted
this change quite well.

Fig. 23 shows the calculated drag coefficient for
symmetrical NACA 4-digit airfoils as a function of
thickness at a chord Reynoldsnumber of 6 x 106 for
both the smooth and rough condition. The experi-
mental results indicated in the figure have been
taken from fig. 68 of (35), For the calculations
the same values for Tu (= 0.1) and Grurb (= 9.75)
have been used as were obtained in section 3.4.
(fig. 15) for NACA 0012 in the smooth condition.
To simulate the effect of the standard roughness

a non-dimensional value of the momentum loss
thickness (8% = E-Vﬁz) at 8% chord was chosen for
NACA 0012 to match the experimental value of cq.
For the other thicknesses 6% was kept equal.

Fig. 24 shows 1lift and drag for the NACA 64,-415
airfoil at Rc = 3 x 100 and 9 x 10°. The experi-
mental results follow from ; the calculations
have been performed for Tu = 0.1 and G¢ypp = 9.75.
Fig. 25 shows the experimental 1ift curves for the
FX66-S~196V] airfoil at very low Reynolds numbers
obtained by Volkers(39) in the LSL tunnel.



It should be noted that at a moderate angle of
attack, say ac = 59, bursting of the laminar
separation bubble is indicated by a sudden loss of
1ift below Re = 0.25 = 108, It should be mentioned
that this critical Reynolds number is far below
the design value for this airfoil. Finally fig. 26
shows the result of the bursting prediction for
this case using Stratfords limiting pressure

- distributions. It follows that bursting is pre-
dicted for a Reynoldsnumber of about 0.16x 100.

6. Concluding remarks

It has been shown that a reasonable prediction of
the 1Lift and drag characteristics of airfoils for
low speed applications can be made. The programs
which are now available at LSL will be used in the
near future to design improved airfoils for sail-
planes. The specificatiomns for the airfoils to be
designed will follow from the parametric sailplane
performance optxmlzatlon zrograms which have been
developed by Boermans (
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Fig. 11: Singularity distributions on circle with
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Fig. 21: Theoretical and experimental
results for FX61-163; Ro = 1.5 x 109,
experimental resultsQ from (43);
calculation s Tu = 0,063 Oryrp =
11.2; tan(8) = .2385; vy = 16.08°,
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Fig. 24: Theoretical and experimental

results for NACA 64y-415 at R, =3x 106
and 9 x 10°, Experiments O:R,=3x 106,

+ Re = 9x10° from (35); caleulations

for Tu = 0,10, Oy = 2-75; tan(§) =

L1, v = 9.56°,

Rz =a/0x10”
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Fig. 26: Prediction of bursting at ac = 5° for

(N

5
= 13240 FX66-5-196V1 using Stratfords limiting pressur=
=10 m-f distributions; = pressure distribution
. without bubble; —+— = laminar part of bubtin,
calculated for B = 17.5; —-———— = Stratford.
i [] '}
70. 20. Fig. 25: Experimental lift curves at very low Rey~-
— t(lolt)ls numbers for FX66-5-196V1 taken frcm Volkers
39),
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