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Abstract

In this paper quasi homogeneous approximations
are constructed for the flow around delta like
supersonic wings with curved subsonic leading
edges. If the leading edges are given by
algebraTc curves and the boundary conditions
are of polynomial form, the boundary value
problems are reduced to completely algebraTc
problems. The solutions can be expressed in
terms of known simple functions.
The parameters defining the leading edges
appear in the same way as those defining the
boundary conditions. The results may be useful
to acquire a qualitative insight in the possi-
bilities of a large class of planforms.

I. Introduction 

1.1 Preliminary considerations

From the view-point of the designer of
supersonic aircraft it is essential to
acquire a qualitative insight into the
aerodynamic properties of wings which
corresponds to the requirements to be
satisfied. Conversely these requirements
should be formulated in such a way that
the design problem will be "well posed"
in the mathematical sense and will permit
a.unique solution. Moreover the require-
ments should permit a solution that can
be realized physically. During the design
process, the linearized form of potential
theory for supersonic wings is a powerful
tool. Due to the linearity of the equations,
the superposition principle applies and a
systematic approach is possible.
In the last phases of the design process,
numerical techniques may be useful for the
study of complicated geometries through the
use of high-speed digital computers. In the
earlier phases of the design however one is
less interested in numerical values. One
needs a qualitative insight which may take
the form of a parameter study. Obviously,
the planform of the wing deserves a high
priority. Because of the theoretical diffi-
culties, one must generally assume that the
planform is fixed and one studies the
effects of variations in the boundary condi-
tions at the wing surface.

This situation is not very satisfactory. In the
approximations proposed in this paper the para-
meters defining the planform and those defining
the boundary conditions at the wing surface
appear in the same way and can be given the
same priority. In fact, planforms with curved,
subsonic leading edges of algebraTc form and
boundary conditions at the wing surface of
polynomial form permit a reduction of the
boundary value problems to purely algebran
problems. The number of algebrafc problems,
which finally result, is related to the order
of approximation desired.

1.2 The governing equation

In linearized steady supersonic wing theory
the perturbation potential must be a solu-
tion of

4 0 	 54y—6=-41 (")

with (3sii—i.tf.t..tfo.(a is the velocity of
'sound).

The trirectangular system (X4Jtt. ) is
fixed to a convenient time averaged position
of the wing and moves with a constant speed
U in the negativea-direction with respect
to the atmosphere.

fig. 1
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The assumptions that lead to equation (1.1) are

r
discussed in many textbooks and are not repea-
ted hee.

heIf t (1,Z) system has its origin at the
apex of the wing the envelope of the distur-
bances is given by the Mach cone,P,

412) o (1.2)
The equation (1.1) is a second order linear
partial differential equation of hyperbolic

ant coefficientstype with const. This

in mathematicequation occurs al physics and
t r

a

has been sudied extensively. If one inte-
prets x as time variable one establishes
the analogy with the two dimensional wave
equation. On the other hand by putting

one establishes a formal analogy
with he three dimensional Laplace equation

(II-- I).
The initial value and boundary value
problems however are specific for supersonic
wing theory.

1.3The boundary conditions

The boundary condition at the wing surface

ent tfollows from the requiremhat the flow
must be tangential to the wing surface. The
angle between the normal to the wing-surface

axis is smaand the z-ll. Near round leading
edges this assumption is violated but the

pens will,region in which this hap in gene-
ral, be relatively small. Moreover, if the
perturbation velocity is small with respect
toll, the boundary condition can be put in
the form

kr= A. — trethr, T), 0.3)
angle of incidence.ci.(X,y)being the local

If the wing surface is given by It=1.(A4)
one has

fig. 2


At theenvelope of the disturbances, generated

by the wing, ,the boundary condition is r =c.

1.4 The four types of problems

The pressure distribition is related to the
perturbation velocity potential by the
linearized Bernoulli equation:

(1.5)
/IDbeing the density of the air.
'Equations (1.3) and (1.5) suggest two types
of problems. If the wing geometry is given
one knowsA at the wing surface. The problem

	

o e
the d

of finding the crresponding prssure dis-
tribution on the wing is called irect

ure diproblem. If the pressstribution is
prescribed and one is asked to find the

a
ri

geometry of the wing generting this pressu-
re distbution, one calls it the inverse
problem. The perturbation potential 9E-4,i)

w und a plof a flo aroanar wing which lies
near the plane...l.Ocan be considered as the
sum of an even and an odd part:

 

?1e)(,V,)= ((e)()


to)

	

te)(x (to oc,i--t,)
The first is even in z and is associated
with obstacles symmetric with respect to Z;
it is referred to as the thickness case.ed

ut thick
The second is odd in Z and is associat
with wings withoness; it is re-
ferred to as the lifting case.
It follows that there are four types of
problems:

The direct thickness problem (D.T.P.).

The direct lifting problem (D.L.P.).

knThe inverse thicess problem(I.T.P.).

The inverse lifting problem (I.L.P.).

Jc

1.5 Outline

If the leading edges are straight and form

anthe same gle with the-axis, the homo-
geneous flow theory of P.Germain and

lM. Fenain eads to a systematic treatment
for a very large class of problems. It is
possible to handle the solutions efficiently
and therefore they are very useful for the
aircraft designer. It is clearly attractive
to exploit the possibilities of homogeneouso
flow theory to the utmst.
If the planform of the wing is delta like
and the leading edges are only slightly
curved the solutions will differ little

gform the homoeneous flow solutions. It will
ical planforms

u an be calcu-s approximat

be shown that for quasi-con
it is possible to construct quasi-homo-
geneoions which c
lated analytically in a workable scheme.
This approach seems to be the most natural
one for a large class of wing planforms of
practical interest, say of the Concorde
type. Before proceeding to the description
of this method it is necessary to explain
some important features of homogeneous flow
theory.

(1-4)

The plane%wOcan be taken close to the wing

undary consurface so that the bodition can
be applied at the projection,a, of the
wing planform.

with
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II An outline of  homogeneousflow theory.

P. Germain (1) generalized Busemann's conical
flow theory into the theory of homogeneous flows.
The problem is reduced to the construction of
analytic functions. Especially M. Fenain carried
out many calculations which were synthesised in
[2] in a very elegant form. The solutions can be
expressed in terms of functions that can be de-
termined once and for all and in terms of coeffi-
cients that are uniquely related to the boundary
conditions at the wing surface. The problem is
thus reduced to a purely algebrarc one.

2.1 Definition of homogeneousflows.
Germain defined a homogeneous flow of order "tt
as a flow in which the perturbation potential

is a homogeneous function of
?egree 11 in the variables This

potential satisfies the equation

IC
A h„ 62,0

fig. 3.

Differentiating (2.1) with respect to),and
puttingA= 1 one obtains Euler's relation:

2.2/.*3.-f- tA•3 = 11./I. (2.2.)

Equations (2.1) and (2.2) are equivalent, they
can be deduced from each other.

2.2 The lm derivatives. 4,
For natural numbers -Pi,it follows that all
derivatives with respect to7t,,271 and ..1r3are
homogeneous functions of order zero. They are
constants on straight lines through the origin.
If y is a solution of

1

	

/3
R‘ 5.11

ot,
2g3 24:3 3

(13)

the liK'derivatives 


The boundary conditons are specified at o
and one is primarily interested in the solu-

tions at the wing surface. The most Important
1%* civuLtrarkuebaxitA

1,) 0) ok-141.
h. 


(2.5)
U.T

with it= 4. and GY =)S0
2c3

2.3 Reduction to the constructionof analytic
functions.

It is usual to introduce the coordinates t,X
and8 by

I_Z, > ,

t.co-5 0, —Tr G
(.4)

In this way a one-one relationship is esta-
blished between a pair of values of 'X,E) and
a straight line through the origin. The Mach
cone r,corresponds to =1. Only the interior
of r, > I , is considered. The 71  deriva-
tives (2.4) depend on and e only and satis-
fy

(1 2-1)1 1—xR e109=
(2.,)

With-X= cosh y one obtains

„ry fee 0, (2 . 8)

and the problem is reduced to the construction
of harmonic functions. Analytic functions can
be introduced. Two conformal mappings are of
special interest:

(1).„2:..)(q-LY= e e . (21)
TheL_plane can be used with Advantage for the
construction of the form of the solutions.
(ii )T= = 2204.z2x-' (Z.,o)
The 22.-plane is more profitable for practical
calculations.

4-4(

-k.fr

(--ttozWir &dim )2c11-2-,)

fig. 4

(2. )

are also solutions of (2.3).
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for elementary flows:
(0 in a D.P. the Wiis are constants on the
wing.
(ii) in an I.P. the ttare constants on the

in wing.
Problems with boundary conditions that are odd
in XIonly make sense in cases without thick-
ness. They are referred to as D:r.p.
The coefficients introduced into the boundary
conditions are easily related to the U Nt or the
lArhs.

For instance, in a D.L.P. with

k-/-S
LT4‘=

S=0 C.:- /-S,3
xi

one obtains upon comparison with (2.14):

01-/-s)15/1:,./set(.4) _ s 2
There arericoefficients c

2.4 The boundary conditions.

On r one has pa,`"--1'" ) 0, and es-
pecially Ua2. 0, Cis= O.

At the wingsurface, all (aJasare known

D.P. In an I.P. all LAke will be known.
Outside of the wing TX.,..0) one has in

a L.P.: Uhe 0 and in a T.P.: (4);5= O.

The D.T.P. and the I.L.P. are relatively simple

because the boundary conditions are known

for the same functions at all points of the
boundary. The D.L.P. and the I.T.P. are more
difficult; they are of mixed type. In order to
solve these problems the compatibility condi-
tions are needed.

2.5 The compatibility relations.
The h ihderivatives 50,P"/°-,V are harmonic

parts of analytic functions
say of Z or 5: . All (e-r -t/Pl'ar: derivatives of

functions which can be considerFd as the real

the same(e,and are therefore not independent. In
fact, one can prove the equivalence of the
expressions,

,x0,o,o) it , A Ch-r-x,P,5.)
-k

(2.U)

	

) 	 t)i- r
A

which implies
Ithat knowing one of the 11. deri-

vatives, all the other derivatives follow with
(2.11).
With R.1)11"hy. • )1 )

f = "WhS one may write

r_ u„,j.= I ks4/ _ ale.41 (132)

13 t pi (47--VII
which relates the pressure distribution to the
upwashfield.

2.6 Euler's relation.
From h (ph= X, 50. a, + A at + kJ A x3 , one
easily deduces:

	

b2, 0-cs.

= Yg. kr/. •X3

	

„,„LI,o,o) „„ (0,o, /),
(2 13)

with the notation

	

(ip,‘(1,o,o).}%{ 1(4(0,0,01S.

jy
A, can be obtained from the 11 derivatives

without carrying out any integrations.
For Xj= 0, the relations (2.13) simplify and
by comparison with (2.5) one obtains:

2.7 Elementary flows.
Homogeneous flows are called "elementary" if
the first derivatives of (A, for which the

boundary conditions are specified at the wing
surface, are homogeneous polynomials, of de-
gree (n - 1), in X, and A-1 . This implies that

41- - S •

2.8 The  form of the solutions 

From the compatibility relations it is clear
that in order to determine the form of the
solutions it is sufficient to operate on one

derivative of yhonly, sayIAL.
In a D.L.P. for instance one obtains the re-
sult( tack&2 .I2)

A
* ,e<te

aril-14s Isi!_711 (2,/6,1)

There are 11 real coefficients 4 that can be
used to satisfy the boundary conditions (2.15).
The strongest singularity ( p=rt ) that is
admitted at the leading edge is a square root
singularity in the first derivatives of
All 145are imaginary on r. With the compati-
bility relations (2.12) one verifies that all
Ualare zero outside of the wing ( ).

For an I.T.P. one obtains:
tp.-2

cL

= 11( ) t P.
Tr

.7Tii )
"r( / (2.I6

In the D.T.P. and the I.L.P. one admits loga-
rithmic singularities in the first derivatives
of y,,and obtains

-1 " A 41"
(D.T.P. aTA = FP) —LPP-- (1./6c)


( I . L. P. )
JA— Tr p. I C5 ikt

One can adjoin:

z(2 ./4 e)

The relations between the coefficients intro-
duced in the boundary conditions and those in

(2.16) can now be determined:
In the D.T.P. and the I.L.P. the relations can
be given explicitly (see section 2.10).
In a D.L.P. and an I.L.P., the problems of
mixed type, the situation is more complicated.
One must solve n equations with nunknown
coefficients in the D.L.P.,and (n+1) equations
with (h+1) unknowns in the I.T.P.

11-/

Z 	 

%-. 0,-/- 1 )! ! 111-

A, x ,
--/-s)! s!

=

11--/ .s

1.0

(2 14)
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2.9 The expression of the solutions.

The coefficients, introduced in the preceding
section uniquely determine the solutions. In

 the D.P. for instance, the

oklr, are found
Tr"-

from the compatibility relations. The functions
can be determined by integration from r

 to a point

3: . Evaluation of all involves
the calculation of 112 integrals which is very
laborious.
In a D.L.P., for instance,this difficulty can
be circumvented by the introduction of

4
011

3..0 (v1-1- %)!3.! 73

At the image of the wing one has

U:= -

From (2.19) one obtains

4„xk
'Is: 01 )1 72(3

and by successive differentiations:

u

	

ce'Q„ _
f - / tit

01. rk/ /

From the compatibility relations one obtains

	

L(h. 2 (/3 -/ l'(-(1/../4,43
di 7T p -/

From (2.11:1) and (2.19) one obtains

ce'Q(-1)p+n-c"-lA*= hp

Z2) P
By putting

	

l'(:Rin A ct
d. ,

	

3-:k -Tr r
one finds that 9 Cijmust satisfy

hP /-
ce'Q (- 4)1** - ecP.p.=

The solution at the wing surface then becomes


111„ - —2't

77- t--

A
o ;

It A.

ihr (2.2.20.)

A
7T krr -

The terms in the solutions have thus been
arranged with respect to the coefficients
which are connected to the boundary conditions.

From equation (2.21) one can de-
duce a number of recurrence relations so that
only three simple integrations need to be
carried out. Thus the problem is reduced to a
completely algebrarc one. The same can be
shown for all other elementary problems by
arguments analogous to those used in this
section. Moreover, Fenain showed in (2) that
the results can be unified by the introduc-
tion of the function ki4:-"," withlip

, which satisfies the
equation:4(


at r% l) 


To avoid cunfusion of the functions to be used
in the different problems, the following nota-
tions are used:

2,0,gkr = kr 	 yi

1/,, 0,r = -v4(

0,0,- "2= 


0 - qt,0
= —

/ //1,09 K
kr

Equation (2.23) makes it possible to deduce a
number of recurrence relations which allows
the evaluation of all the required functions
once and for all up to any desired degree of
homogenerty. Only a small number of integra-
tions has to be carried out to provide a
starting point.

2.10 Summary of the results.

D.T.P. Boundary conditions:

1.,7÷=
xarS
T I (2.15a)

Solution:

2 Z_ . (2 25 4)
7r p=f

-/ p-

	

hie s 0 0 r- s Tie - )!(6--/)!(2 t )1
CI c)

D.L.P. Boundary conditions:


= Z s C

	

••‘-t - _21S

-r 


Solution:

1- "c2 A (2 2.6= - 7-7 e 'kr •

The coefficients A follow from
1". le-I s

f) al A —ck s-
CoKs,“4-i) (t,t6c)

D.L.P. This problem is formally equivalent to
the D.L.P. if one replaces -4,.4t

s ocs#

P p '

I.T.P. Boundary conditions:
A-6 'CI

h.°

	

Solution: 4^

11-/ CE -1 k

	

7r r' '4j Al..
p.:

The coefficients .1 follow from

at c=.64-e)/e/c4
kp p

(o < (It)

4),,m= (2 .17)


(2. /8a)

(2 23)

rD.T.P.

(2W

With
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I.L.P. Boundary conditions:

h-' -9.!  
1.0

Solution:

--t
The coefficientsc( and c{ are given in[1]

III Wings with curved subsonic leading edges

3.1 Introductoryremarks

If the leading edges of the wing are curved, as
in the case of gothic and ogee planforms, the flow
cannot in general be representedas a superposi-
tion of homogeneous flows. In the previous out-
line of homogeneous flow theory it was seen that
discontinultiesand singularitiesoccur at the
leading edges. It is impossibletherefle, to ,
write the solution in a form 99=7e4.-Cy4,c-1)
with cp as the solution for a delta wing with
straight leading edges, in some way "close" to the
actual leading edges, and a as a small parameter
representinga measure for the "deviationfrom
straight".A solution of that type would posses
singularitiesand discontinultiesnot on but only
near the leading edges.A possibilityto circum-
vent these difficultiesis the introductionof a
transformationshifting all points of the curved
leading edges to straightlines through the origin.
Moreover it will be requiredthat the Mach cone
through the origing remains a straight circular
cone. The boundarieswhere boundary conditionscan
be imposed are then of preciselythe same conical
nature as those occurring in homogeneousflow
theory. In the next sections it will be shown that
the transformeddifferentialequation and the
transformedboundary conditionscan be satisfied
in terms of functionswhich are solutionsof
homogeneous flow problems.

3.2 Straightening the leadingedges

The wing planforms consideredwill be symmetric
with respect to the x-axis and the subsonic
leading edges are given by

	

Iif = , = 0) ,

Tbeing a rational function.
In[Sitransformationsin the form of general
three dimensional power series are introducedas
follows:

ii ,

i
AZ

o c..j4 4.1 d

e c
d • I.,.De . 


In [6] these transformationsare discussed syste-
matically.The leadingedges can be transformed
into straight lines in the (At,x0.73)space
jXzi=tAr,,6k3=r0),without deforming the Mach
cone!"

fig.

The fact that the transformations(3.2) are of
polynomial form is importantsince boundary condi-
tions at the wing surface,which are of polynomial
form in the (ic,44..)cobrdinateslead to boundary
conditionsof polynomialform in the
coordinates.In this case one may hope to construct
solutions that can be related to elementaryhomo-
geneous flow solutions.
The requirementsconcerningthe straighteningof
the leading edges, without deforming the Mach cone,
reduce the number of arbitrarycoefficientsin
(3.2) but do not uniquelydetermine any one of
them.
The requirementto retain, in some, degree the
symmetry of the flow field reduces the number
of arbitrary coefficientsstill further but not
sufficientItitodetermine them uniquely. In (67 it
is shown, that, in fact it is sufficient to
stretch thexcaordinateonly. An example is the
transformation:

0)
(3.

with

"-/ P h-e
41-

•

5-6-0 (P-0.61+2E-2)1

Ct
h t:(2 4 )4._e)k.--olat

»* -  /-1*
ir kr hi. , (!,281)

r



The formulae (3.4) straighten leadingedges of the
form

= ?Cat),(1..0)

Withiti)=.2(1z7c, (3.4) can be written in the
.2

form0.1)

(.3.,/*)

Other possibilitiesand relationsbetween the
leading edges and the transformationsare dis-
cussed in [6].

3.3 The transformed equation

If the x-coordinatealone is stretched the trans-
formed differentialequation becomes:

2 B X 2 ax z(i(31( tt_,)- —9 4-1 ) - 99 -

	

ax 3 2- *ILIci

	

- 2.C.p 6 * ' r^ .I .._'a f _ b.2-1 C- 0

3.4 Solutions of the transformed equation (1)

	

.,.. ....

	

, _ 2 90 -_ y..„ r

A,,Yryal —Ili- '
,L


0 0,$)

This equation admits solutions involvingsums of
solutionsof

The solution is:

(7= Z (4, c4(3,j ?e,
4, C,

A2.1

e-D,) 3, +0 (2 k4.2i..+46.4(1.,.+i)./;
. .

The boundary value problems for (fore formally
identical to the problemsof homogeneous flow
theory.

3.5 Solutions of the transformedequation ((Z)

Another approach to constructsolutions of the
trwlesformeddifferentialequation (3.5) consists
of the following argument:
Consider a function y4C/r,,a) , homogeneousof
degree t in lc , y and 1 '1,which is a solution
of

pz ,6 Tik
= 0. (3. 8)

The new coordinates (ic,,X.,xs)can be introduced
by an inverse transformationof the form

i3TikocL99 — @.4)
(3.9)

xz '

multipliedby power series in x,

(1)„,t ct r0")
(9—z 	 (x,_/50 ) 2_ at ,t (.3,7)

in which q)„ is a solution of (3.6).
Substitutionof (3.7) into (3.5) permits a
unique determinationof the coefficients 04..(,zi

and the homogeneousflow solutions
can be used to satisfy the boundaryconditionsat
the wing surface. The procedure is rather labo-
rious, but the coefficientscan be determined
once and for all. The solution involves the so-
lution of systems of equationswhich beyond

1:7=•4 become too complicatedfor analy-




tical treatment.In the case of hyperbolic
leading edges, however,onlycoefficients ce")

L,24

arise and these can be determinedanalyticallyfor
arbitraryvalues oflq, e and i.
In this case the leading edges are given by

(py,,_ ) )— 0, (1_0),c,at

The correspondingtransformationis:

0. 1 xt
(se

T

I.-.c 	 2c = .


Without actually calculatingthe transformeddiffe-
rential equation one obtains solutions of the
transformedequation by introducing.k„%kland
into
Expanding 1662c1,0..) in terms of the new coor-
dinates gives:

2),

= (x,dcz)3)441cia-73t(1)5(A/P(31()%.„4/

=,z...ps,x/74,7.(73V.6
+ 7N. I

(3./0)

Because1(c,3.A)isa solution of (3.8),11y0c,,l-trky)
is a soluti6n of

Ath,
7m)c.f.xf-1/<At,c3.--971-43A-3

The derivatives  are also solutions of

(3.11).The solutions (3.10) can be shown to be
equivalent to (3.7).
If the transformation(3.9) straightens a class of
leading edges, the solutions (3.10) can be used to
solve the transformedproblem. If a homogeneous
function v. (lc,,lrt,1C3)admits a singularity
in a point (.Z„X..t.,.3)then the same type of sin-
gularity occurs for all points
Thus the solutions (3.10) can be used to locate
the singularitiesin the solutions at the trans-
formed leading edges.

= 0 63.10
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It is easily verified that the inverse transforma-
tion (3.9) straightens leading edges of the form:1111_(4,_(5y)c_,

i3Yj,72..)Je --

The expression (3.12) can be put in the form

	

tt t t•

(y)/(12e)-(3,/2.i)

With

	

/3t (I—eV) 1,

the"deviation from straight" can be considered
to be small.
On the other hand, the expansion (3.10) suggests
that for rapid convergence _ t 2

ZeV- "(5( )
should not become too large with respect to
unity. Near the leading edges the second criterium
cofncides with the first.
These criteria can be formulated in dimensionless
form but it seems to be sufficient, in practical
applications, to truncate the solutions at Je=l,
say, and take the coefficients Q., . sufficient-

e),1ly small. ,.

If these coefficients are taken small of NE)
one may put:

.12j./9131-riqa„()X-40t)
(3./3)

If the leading edges are only slightly curved,
(3.13) will be sufficient. The expression (3.10)
makes it possible however to calculate higher
order terms.

3.6 The boundary conditions

If, in a D.P. one has in the physical space at
the wing surface 1.40t10 , the transformed
boundary condition becomes

kr ..± 1A,÷(-z,) C-C2„(5 t, c) , 2j =
S f t ZC7 A4-›zt)(-15-(a.1,(3

e=.

Thus the solution (3.10) satisfies the transformed
boundary conditions at the wing surface if (1)„
satisfies the boundary condition.

One simply replaces the variables x and y in the
boundary conditions in the physical space by the
variables x, and aci.to obtain the boundary condi-
tions for (fm( dc, ,Xi) at the transformed wing
surface. The same is true for inverse problems.
A difficulty in the solutions (3.10) is the
occurrance of too strong singularities. The
problems that arise for the functions (em

differ from the ones in homo-
geneous flow theory only by the fact that the too
strong singularities must be compensated for.

The too strong singularities can be partly removed
as follows:
If "li/his a solution of (3.11), homogeneous of
degree n in solution of (3.11),
homogeneous of degree (n+1),is obtained by

lph41 —(2,k+ f),"ifr-/-/273(")1k,
(3-15)

The singularity in 1#;,*,is stronger than in 1//,,

if there is one. (3.15) is a recurrence relation
and can be used to generate solutions that can be
substituted into (3.10). They can be multiplied
by constants, chosen in such a way that the
strongest singularities are removed. In genbral,
however, too strong singularities remain present
and must be removed by another technique, based
one a detailed study of the behaviour of the
functions firt's,t near the leading edges,

defined in eqn*tion (2.23).
The boundary conditions at the Mach cone present
no difficulties and are automatically satisfied
if the loPmCk,dc,c,)are homogeneous flow solu-
tions (the It4s, derivatives being zero on r7).

3.7 Concluding remarks

In the preceding sections it was seen that the
transformed equation admits solutions in which
the homogeneous flow solutions occur in a simple
way. Orders of approximation can be associated
with the number of terms included.
The terms in the solutions can be arranged with
respect to ascending degrees of homogeneTty
and solved successively by the same techniques
as those applied in Penain's theory. Up to a
certain order of approximation, the problem can
be reduced to a completely algebraTc one. In
these problems the parameters defining the
leading edges can be made to occur in the same
way as those defining the boundary conditions.

IV Applications

4.1 Slightly curved leading edges

Leading edges of the form

(4.1)

with ICt). 2E'a are straightened by the

transformation

f xt_(511-tz.-ep)5.2.1'
(11,0

)c3-r)...,

into 1..z.ti.._"..t,c ( 2,3.„..0).
0'5)

ForC)..c..%:‘I , with fixed coefficients Qi, the
leading edges will be slightly curved for suffi-
ciently small e.
The inverse of (4.2) is, including terms of

= 2, _ Eirt—P2/11



(.4)

.1,2.7(39-elf.1(x)
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and

4:9(e

n' y will be homogeneousof degree(14-0
we write

A_
ForGA.6. one has to solve the system

r -, s

The

The solution of the transformedproblem can be
in the form: Col

(p- +

As an example, consider a D.L.P.
The boundary conditions can be put in the form

j-1
CAT, Z C*

	

dJ- s Iz
the leading edges in the form:

t'cr-C(2,1;kL

will be homogeneousof degree j and we

L 01- A •e )1°10-1

solution can be expressedas

I--r--(1 - C . •Q_1,8)

write'%;

and

-7r

The solution is given by

li(0)A*

77-r .444

:24 2- '3*

C -cs"-cr-)

nj

A .
577 - e j.

The total solution can be obtained by summing over
i and j.
If one wants to transformback to the physical
coordinatesone has:

t i‘-i14.10 '15z 4-Nt.))*= ‘1.-C2t* E :t) ,W 60 7 

At0 -1/Si ) )

It is to be noticed that the singularitiesare
located at the leading edges in the physical
space.

The flat plate solution.

For the flat plate solution,or the incidence
dependent part of the solution, one finds:

C-2

	

(/)=. -Z - "  A

	

7r 7r(,-75'0)

	

2 e z (oA *• *
-7r ed. (4. /4.,

—E

The part of°11),...i_,generated by (3.10) can be con-
sidered as a particular solutionof the terms of
0-(6)in the transformedequation ( .)t3=o ).
(0 (emm.i.).2_ 
 0_07ro r
Thebehavioure4T.,near the leading edges is domi-

J1-nated by

 •
Uri==it. eoo

To compensatefor this too strong singularity
must include a term with a square root

trj-t

singularityof opposite strenght at the leading
edges. This is accomplishedby taking

„ 6rj

	

6p((4.0,..)t_ - (2,/,\

-
—

r .,

with (0)1,t- (0)A\* (2(424.-r)l/

	

= 	 • . ct., .
, .

0)(dtmr)
Now -r can be determinedby solving the

.C.-J-t

(jC.j - I ) equations for the (!.!+j-/)
coef fici.ents OA* .

C*j-
Z A

=Cr /) Q ' '
4.+J. S (0) )‘-er•

(4, jd `ro,j_i)
('A)


Wings at ideal angle of attack 


Solutions without square root singularitiesin
the velocity field can be obtained for
by taking "Tri in (4.8). From (4.13) one
has It

F 0. By analogy with

(4.13) one must put:

(I)A )1- ....CNA*.GI.(.14:42j-.3)11

;_„ 4:4j - J (t.J-3)!! '

The solutions that can be constructedin this way
may be interesting for the design of wings under
cruising conditions.

For all other types of boundary value problems
similar expressions can be derived [61.
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4.2 Comparison with other results.

4.2.1 Consider a flat plate solution with lea-
ding edges.

(4 19)

The solution can be expressed as follows( 1.4.);=--110()

with

,o 4).--(J; 	Ectz X92-111-i-,+&Li lait;k qe,9}

tt=ez(i__E.,
2E'(4/3-1.4)-/-tf'(34, —43) (4;10

(,t,2o)

with

E' and K' have modulus J7=7Z . The factor p has
been plotted and compared with other results:

not so slender body theory

first reflection integral

present theory

carafoli's result

In the limit k 1, the leading edges are nearly
sonic. The factor p(4.l6approachesthe correspon-
ding factor extracted from the first reflexion
integral,as it should. The slender body theory
predicts in the limit lc-A..0.The not-so-




slender body theory predicts values close to 016,
for small values of k. Carafoli's result is valid
for k=0 only.

4.2.2 Wing at ideal angle of attack. 

The formula/derived for the D.L.P. can be used to
construct wings which sustain an interesting form
of pressure distribution. In these cases the in-
tegral representation of the upwashfield permits
an easy numerical evaluation. (r5m.1)
Wings with a planform (y).iCOX --(VIJC-1,6)‘JC/4
are considered. The pressure distribution is pres-
cribed in the form I-

g;k (31. 2:0,0 VIC°,— Iftr • Qe 2)
The corresponding (A is calculated in the form

A,x4- Agly+ /\,,-kly1-1.- /15 (4.13)
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The analy tic expressions for the coefficients
have been calculated including those associated
with the third and fourth degree terms.
For

I

for two cases ) / , o,

	

, _
(4,f 4)

The deviation of straight is not small and so for
_X>Ck.6.— requirement (3.415 is not satisfied.
Solutions in the form (3.7) are used.

1) kix.x21y1
(2) • X3 x2 • X, y2

a • k5.3.k6 xy2. A, ly13
®• As )(4 • A9 x2y2 A,

numerical approximation

x I 0

0 0 1 y
0) x,..),21y1
a) 0,3 x2. X, y2

CD .A50. Noy20,71y13

xe x4 . Xgx2y2• y'
numerical approximation

x •08



In this case the deviation of straight is not small.
Near 5,.0 there is good convergence. Near the tips
in case (1), more terms are required. In case (ii)
the convergence is very rapid. This may be due to
the fact that there is little loading of the wing
near the tips. The accuracy of the numerical
approximation was found to be good,except near the
leading edges,by comparison with exact homogeneous
flow solutions. The accuracy and the speed of
convergence does not only depend on the leading
edges but also on the boundary conditions.

4.3. Another possibility which Should be
mentioned is the following. In (3.10) one may
take into account only two coefficients, say goo
and 9s. , and calculate the solutionsincluding
terms of say OW). This leads to a workable
scheme for a large class of planforma [6) . It
can be expected to be sufficiently accurate to
obtain some qualitative insight. The calculation
of the terms of 0.(e) can be carried out along
the same lines that led to the terms of (la).
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