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Abstract

In this paper quasi homogeneous approximations
are constructed for the flow around delta like
supersonic wings with curved subsonic leading
edges. If the leading edges are given by
algebrafc curves and the boundary conditions
are of polynomial form, the boundary value
problems are reduced to completely algebra¥c
problems. The solutions can be expressed in
terms of known simple functions.

The parameters defining the leading edges
appear in the same way as those defining the
boundary conditions. The results may be useful
to acquire a qualitative insight in the possi-
bilities of a large class of planforms.

I. Introduction
1.1 Preliminary considerations

From the view-point of the designer of
supersonic aircraft it is essential to
acquire a qualitative insight into the
aerodynamic properties of wings which
corresponds to the requirements to be
satisfied. Conversely these requirements
should be formulated in such a way that

the design problem will be "well posed"

in the mathematical sense and will permit

a unique solution. Moreover the require-
ments should permit a solution that can

be realized physically. During the design
process, the linearized form of potential
theory for supersonic wings is a powerful
tool. Due to the linearity of the equations,
the superposition principle applies and a
systematic approach is possible,

In the last phases of the design process,
numerical techniques may be useful for the
study of complicated geometries through the
use of high-speed digital computers. In the
earlier phases of the design however one is
less interested in numerical values. One
needs a qualitative insight which may take
the form of a parameter study. Obviously,
the planform of the wing deserves a high
priority. Because of the theoretical diffi-
culties, one must generally assume that the
planform is fixed and one studies the
effects of variations in the boundary condi-
tions at the wing surface.

This situation is not very satisfactory. In the
approximations proposed in this paper the para-
meters defining the planform and those defining
the boundary conditions at the wing surface
appear in the same way and can be given the
same priority. In fact, planforms with curved,
subsonic leading edges of algebra¥c form and
boundary conditions at the wing surface of
polynomial form permit a reduction of the
boundary value problems to purely algebrafc
problems. The number of algebralc problems,
which finally result, is related to the order
of approximation desired.

1.2 The governing equation

In linearized steady supersonic wing theory
the perturbation potential must be a solu-

tion of 1

e P Vg for=® )
with .H.I,H.E (a is the velocity of
sound). =

The trirectangular system (x,4,2.) is
fixed to a convenient time averaged position
of the wing and moves with a constant speed
U in the negative X-direction with respect
to the atmosphere.




The assumptions that lead to equation (1.1) are

discussed in many textbooks and are not repea-

ted here,

If the (2,3,1) system has its origin at the

apex of the wing the envelope of the distur-

bances is given by the Mach cone, [,

x%- B*(y+2Y) = o ¢.2)

The equation (1.1) is second order linear
partial differential equation of hyperbolic
type with constant coefficients. This
equation occurs in mathematical physics and
has been studied extensively. If one inter-
prets x as a time variable one establishes
the analogy with the two dimensional wave
equation. On the other hand by putting
xﬁ:%ﬁg one establishes a formal analogy
with the three dimensional Laplace equation
(E":-—i).
The initial value and boundary value

problems however are specific for supersonic

wing theory.

1.3 The boundary conditions

The boundary condition at the wing surface
follows from the requirement that the flow
must be tangential to the wing surface. The

angle between the normal to the wing-surface

and the z-axis is small. Near round leading
edges this assumption is violated but the

region in which this happens will, in gene-
ral, be relatively small. Moreover, if the
perturbation velocity is small with respect
to u, the boundary condition can be put in

the form
W= %_z - Ud(*.l '#’)t 0'3}
d(&,y}being the local angle of incidence.
If the wing surface is given by %= %(2,3)
one has
%= — *(xy) .4)

The plane Z=0Ocan be taken close to the wing
surface so that the boundary condition can
be applied at the projection,j?, of the
wing planform,

fig. 2

At the envelope of the disturbances, generated
by the wing, ,the boundary condition is ?r Q.

1.4 The four types of problems
The pressure distribition is related to the
perturbation velocity potential by the
linearized Bernoulli equation:

p=-pUg., .3
fo being the density of the air.
Equations (1.3) and (1.5) suggest two types
of problems. If the wing geometry is given
one knows?&at the wing surface. The problem
of finding the corresponding pressure dis-
tribution on the wing is called the direct
problem, If the pressure distribution is
prescribed and one is asked to find the
geometry of the wing generating this pressu-
re distribution, one calls it the inverse
problem. The perturbation potential qgﬂx;y,z}
of a flow around a planar wing which lies
near the plane ZX=0can be considered as the
sum of an even and an odd part:

71N ?0(” (l.6a)

+ Sﬂw(z,y‘t,n]-_- tf”(k,#,—ﬂ (.64)
fo) ¥

- lf‘”(mgﬂ“’ ¥ (x,y,-2)

The first is even in z and is associated

with obstacles symmetric with respect to Z;

it is referred to as the thickness case.

The second is odd in Z and is associated

with wings without thickness; it is re-

ferred to as the lifting case.

It follows that there are four types of

problems:

(i) The direct thickness problem (D.T.P.).

(ii) The direct lifting problem (D.L.P.).

(iii) The inverse thickness problem(I.T.P.).

(iv) The inverse lifting problem (I.L.P.).

with

1.5 Outline

If the leading edges are straight and form
the same angle with the x -axis, the homo-
geneous flow theory of P.Germain and

M. Fenain leads to a systematic treatment
for a very large class of problems. It is
possible to handle the solutions efficiently
and therefore they are very useful for the
aircraft designer. It is clearly attractive
to exploit the possibilities of homogeneous
flow theory to the utmost.

If the planform of the wing is delta like
and the leading edges are only slightly
curved the solutions will differ little
form the homogeneous flow solutions. It will
be shown that for quasi-conical planforms
it is possible to construct quasi-homo-
geneous approximations which can be calcu-
lated analytically in a workable scheme.
This approach seems to be the most natural
one for a large class of wing planforms of
practical interest, say of the Concorde
type. Before proceeding to the description
of this method it is necessary to explain
some important features of homogeneous flow
tHeory.



II An outline of homogeneous flow theory.

P. Germain [1) generalized Busemann's conical
flow theory into the theory of homogeneous flows.
The problem is reduced to the construction of
analytic functions. Especially M. Fenain carried
out many calculations which were synthesised in
(2} in a very elegant form. The solutions can be
expressed in terms of functions that can be de-
termined once and for all and in terms of coeffi-
cients that are uniquely related to the boundary
conditions at the wing surface. The problem is
thus reduced to a purely algebralc one.

2.1 Definition of homogeneous flows.

Germain defined a homogeneous flow of order m

as a flow in which the perturbation potential
o (X,,2%;,%5.) is a homogeneous function of
egree M in the variables X, X,,x, This

potential satisfies the equation

J Az, ey A=A (2,2 2). (2)

fig. 3.

Differentiating (2.1) with respect toA and
puttingh= 1 one obtains Euler's relation:

* fk.+ Xy {k:.+ X3 iﬂ.’a= - ! (2-1)
Equations (2.1) and (2.2) are equivalent, they

can be deduced from each other.

2.2 The n}kderivatives.

For natural numbers m, it follows that all M
derivatives with respect to X, X, and X, are
homogeneous functions of order zero. They are
constants on straight lines through the origin,
1f (Ph_is a solution of

7
£ %z.o.,‘ ﬁx.xt" %"‘3"_12 a;.° (23)

the 7 derivatives

‘P“ o S.P-i.’ " ..
b PRI P dnd

are also solutions of (2.3).

(2.4)
@QP"",L( n)

The boundary conditons are specified at x=0
and one is primarily interested in the solu-
tions at the wing surface. The most important
P devirodives oma |
- W=t
T I
2 Ta bx"”“ﬂ-r) 2

_(/.-n-s: D) a“"w-,,
'hs ryr 'eks )
with e 2P ana w, = ;?55‘ %
",

2,3 Reduction to the construct:lon of analytic
functions.

(2.5)

It is usual to introduce the coordinates %, X
and & by

X, = .'-z) x >0,
X,="tcos B - ©LKTT. @.¢
Jy= N Din O,

In this way a one-one relationship is esta-
blished between a pair of values of X, © and
a straight line through the origin. The Mach
cone [*, corresponds to x =1. Only the interior
of ', X>/, is considered. The M deriva-
tives (2.4) depend on X and € only and satis-

fy 2
('X-—/)-fu+1£ +fea=o_ @p
With X= cosh'yf one obtains
1 vt fee e (2-8)

and the problem is reduced to the construction
of harmonic functions. Analytic functions can
be introduced. Two conformal mappings are of

special interest: =] =)
(1) FmfiiYaue Y =fe. (29)
TheZplane can be used with advantage for the

construction of the form of the solutiona.
(11) T= X+0§ = 2Z2(1+2%)"' Q@.1o0)
The % plane is more profitable for practical
calculations,

&.(&t
(Loadiue, sdges 12,(-72,)

fig. 4




2.4 The boundary conditions,
(m-p-3.p2)
@ -

(i) On I" one has
pecially U, =0, W .= 0.

(ii) At the wingsurface, all Wy, are known in
a D.P. In an I.P, all W,, will be known.
(iii) Outside of the wing %x_,-o) one has in
aL.P.2 u”’.: 0 and in a T.P, LJ” 0.

The D.T.P. and the I.L.P. are relatively simple
because the boundary conditions are known
for the same functions at all points of the
boundary. The D,L.P, and the I,T.P, are more
difficult; they are of mixed type. In order to
solve these problems the compatibility condi-
tions are needed.

= 0, and es-

2,5 The compatibility relations.

The m™ derivatives (h-p-2,p;2) are harmonic
functions which can be consider?d as the real
parts of analytic functions r-2.p.%)

say of Z or ¥ . A1l @M LPAire derivatives of
the same(ﬂand are therefore not independent. In
fact, one can prove the equivalence of the
axpressions

d gsa..qo) » ; Jr+s. ( ’ 7 écu P- g.,r,,'_: .00

which implies that knmring one of the . deri-
vatives, all the other derivatives follow with

(2.11).
With { g = R.P U,‘ ,
W = RZ U;,, one may write
@ _1)’-.11(‘_ e s+r( ) V!s (2.12)
which relates the pressure distribut.ion to the
up washfield .

2.6 Euler's relation.

From n{ = X, G, kl%z + 2_‘%2 , one
easily deduces:

e, =(x2 + ;ax+x.u) @,

Uaﬂ.ﬂ) C°;'°J (0,0,1),1
“"f EXETE N }' y (2.13)
with the notation

{,_Pcf,o.e)}!.{ Cn,l.o)} {(ﬂ.(o,o,r)} (_fc‘i'-:"-‘:}

{,, can be obtained from the h * gerivatives
without carrying out any integrations.
For X;= 0, the relations (2.13) simplify and
by comparison with (2.5) one obtains:

n—t h-i-¢ 2
Z x, Xe
yeo(n-r-g)g ! "%

u,=

(2.14)

-r o N8
.l..o (ﬁ —1-5)] Ji

2,7 Elementary flows.

Homogeneous flows are called "elementary' if
the first derivatives of (f, for which the
boundary conditions are specified at the wing
surface, are homogeneous polynomials, of de-
gree (n-1), in X, and X,. This implies that

for elementary flows:

(i) in a D.P. the W are constants on the
wing.

(ii) in an I.P. the u."_are constants on the
wing.

Problems with boundary conditions that are odd
in Xx;only make sense in cases without thick-
ness. They are referred to as D.T.P.

The coefficients introduced into the boundary
conditions are easily related to the uuor the

Whye.
For instance, in a D.L.P. with
M-t
h-/=5 "
W = e” x xe
" ée M-r-s,5 ! ,t[ ) . (Z.ffﬂ)

one obtains upon comparison with (2.14):

(n-r-5) 5/ |2y 15 4%
w=tppialioer . gy

There are ncoefficients c .
H-i-5%,8

2.8 The form of the solutions

From the compatibility relations it is elear
that in order to determine the form of the
solutions it is sufficient to operate on one
y* derivative of ), only, sayw‘

In a D.L.P. for instance one obtains the re-

sult(with 2./2)
JM 2 f"-l Jéa
Lhs ( ,) fé) \I Z & &‘)F . (2./6a)

There are M real coefficients A"P that can be
used to satisfy the boundary conditions (2.15).
The strongest singularity ( p=h ) that is
admitted at the leading edge is a square root
singularity in the first derivatives of 50,,
A1l W, are imaginary on /7. With the compati-
bility relations (2.12) one verifies that all
U, are zero outside of the wing (9:-0 ).

For an I.T.P. one obtains:

“{f:"s. 2"T( f)g )\/‘" 2(—3-1)1- @16k
[N

In the D.T.P. and the I.L.P. one admits loga-
rithmic singularities in the first derivatives
of (J,, and obtains

Lp-/
(D.T.P.) ulTJ..,_zu( ,) (ﬂ) Z i‘ f“), (2.16c)

(1.L.P.) du.., .u*c(_g) Z _'L%_Tj, (2.06 o)

One can adJoirv

2p+t
(D.T.P.) dWps_ _ *ac”
ol

%(fi) \/E Z Eoar @./ée)

The relations between the coei’ficients intro-
duced in the boundary conditions and those in
(2,16) can now be determined:

In the D.T.P. and the I.L.P. the relations can
be given explicitly (see section 2.1D).

In a D,L.P, and an I.L.P., the problems of
mixed type, the situation is more complicated.
One must solve n equations with nunknown
coefficients in the D.L.P,,and (n+1) equations
with (h+1) unknowns in the I,T.P.



2.9 The expression of the solutions.

The coefficients, introduced in the preceding

section uniquely determine the solutions. In

the D.P. for instance, the d U are found
T

from the compatibility relations. The functions
can be determined by integration from [

to a point ¥ . Evaluation of all u involves

the calculation of m® integrals which is very

laborious.

In a D.L.P., for instance,this difficulty can

be circumvented by the introduction of

n-i 12
¥ 1’ U:h & %
Q=2 L sy (3)- am
At the image of the wing one has
Q (X).

u =..‘cx

From (2.19) one obtains

it.g" - = = IL" 2 ’i:-g r e (2-’30-)
dz T ame(m-3)lq!A”

and by successive differentiations:

47" *cp"“ d 7 T\T
From the compatibility relations one obtains

dU 0 4 Ay
S =2 (ﬁ Fﬂ—(fm'%- (2.19)

From (2.18b) and (2.19) one obtains

+h Lp-
4"Q, 25 AN Y

da—;. Trr-‘-l %—-'h ,_( —.._ )P*ﬁ' (210&)
By putting
"
‘2"_9_ Z ,\ Q" (2.204)
dxt ax®
one finds that Q (szust satisfy
i A
d Qup L e w3 (21)
dx" gy
The solution at the wing surface then becomes
-
u:= L ’Z_ /\ Q 3‘)- (2-17-“)
m P-‘
"
R P = (%).(2.228
s (P»u=_-; 5 fé’ Akr ('me,r: )G )

The terms in the solutions have thus been
arranged with respect to the coefficients
which are connected to the boundary conditions.

From equation (2.21) one can de-
duce a number of recurrence relations so that
only three simple integrations need to be
carried out, Thus the problem is reduced to a
completely algebra¥c one. The same can be
shown for all other elementary problems by
arguments analogous to those used in this
section, Moreover, Penain showed in (2} that
the results can be unified by the introduc-
tion of the function h‘c‘ 5it) with

y-.,-}uq, which satisfies the
equation:

4 - - K
Qn_ -y JU“'J"—_——[(:’) ddl;!.o_@_;gf)

Wi s E) Mt -h
Ko® ev™ "y
= = 3
S R o LA 9 o)
To avoid cunfusion of the functions to be used
in the different problems, the following nota-
tions are used:

DI Q= Fup (4= 1
I. /z,o

D.L.P. sz T (?) = k“f‘
oo~  (2.14)
) 4% s ’S"P H* (?J )=-kh1_

/210
LT.P. S, = "P(?) =—K,W$; .
Sl y 12,
vIr. Q= Fio(§)

Equation (2.23) makes it possible to deduce a
number of recurrence relations which allows
the evaluation of all the required functions
once and for all up to any desired degree of
homogenefty, Only a small number of integra-
tions has to be carried out to provide a
starting point.

(2.23)

zo/g

2,10 Summary of the results,

D.T.P. Boundary conditions

h-1=5 ) a,)F
r.Jh'": g“c"_’_ss I l{ (2.150.)
Solution:
u,=~1F "’P.Z' A 7:,= . (a25d)
(..u (p-:),(«+2£' 2)1
WALL “éﬁ w155 £ @Ers /o -ENE- ezl
(2.25¢)
D.L.P. Boundary conditions: "
Wet= S g
= s = Gt
Solution:
+ ﬂ't =t
Tiogee b Z A,q_ o (2264

The coafficients /\ follow from

oy -1 5§ %
Senwl A .
oy r “f h-r-5,8§
. F (oLs<n-1) (2.26c)
D.L.P, This problem is formally equivalent to
the D.L.P. i:f one replaces C“ =58

a:-I—S,S‘ 4‘3’)‘* :\F“"‘a‘r* Gancl
5(;1&3, GL-::I.

I.T.P. Boundary conditions:
[

=(n-r-sisleX

& [
x
fo=-T2 Ao (BT @
Solution:
w-gk“ ‘,’Z,l “ Gz?‘g)
The coefficients i“f‘ follow from
W+ p=t e l
PZ,( ) £ d.P =~{(n-€)! E!o(h_t_’t_@.l?c)
(e<e<m)



I.L.P. Boundary conditions:

* h—r-3 | 2,2
w --‘cZ " z, =% (218
" g=o h-r-9,q ‘T‘ ( o)
Solution:
L] LTy b »* *
whz..’_r ‘kr %’ » hpe Hh'. ’ @.28.‘)
with r
- E,G.* r) G"' )’&H-if 2)1
e = geo M-1-9.,9 am; Xp-ONE-nlat-2)/
(2.280)

o5 -
The coefficients dp and of are given in[.'l_j

P
III Wings with curved subsonic leading edges

3.1 Introductory remarks

If the leading edges of the wing are curved, as

in the case of gothic and ogee planforms, the flow
cannot in general be represented as a superposi-
tion of homogeneous flows. In the previous out-
line of homogeneous flow theory it was seen that
discontinufties and singularities occur at the
leading edges. It is impossible therefore, to 2
write the solution in a form C,ﬂ-f-C (qu-O@" /(Jt‘,'“k)
with ¢ as the solution for a delta wing with &
straight leading edges, in some way "close'" to the
actual leading edges, and € as a small parameter
representing a measure for the "deviation from
straight". A solution of that type would posses
singularities and discontinufties not on but only
near the leading edges. A possibility to circum-
vent these difficulties is the introduction of a
transformation shifting all points of the curved
leading edges to straight lines through the origin.
Moreover it will be required that the Mach cone
through the origing remains a straight circular
cone, The boundaries where boundary conditions can
be imposed are then of precisely the same conical
nature as those occurring in homogeneous flow
theory. In the next sections it will be shown that
the transformed differential equation and the
transformed boundary conditions can be satisfied
in terms of functions which are solutions of
homogeneous flow problems,

3.2 Straightening the leading edges

The wing planforms considered will be symmetric
with respect to the x-axis and the subsonic
leading edges are given by

T(-:t»l‘jrl)-'o: c'Js:OJ; (3.’)

1:being a rational function.
In[5]transformations in the form of general
three dimensional power series are introduced as
follows:

—L
X, =+ 2 2 Suén
CvJ-&-&-—Z J& }
L
X, - ‘3"’“{'&, -lugtgcb},’k . @2)
¢ Ae
Xswit+ L ‘!ciuktlf”- .
Cojrde =l

In [6) these transformations are discussed syste-
matically. The leading edges can be transformed
into straight lines in the (2c,x,X,)space

i':l:,‘lz T %, ,(ky=0), without deforming the Mach
cone

Flxly=o

The fact that the transformations (3.2) are of
polynomial form is important since boundary condi-
tions at the wing surface, which are of polynomial
form in the (X, 3?) cobrdinates lead to boundary
conditions of polynomial form in the Jc,, %,
coordinates. In this case one may hope to construct
solutions that can be related to elementary homo-
geneous flow solutions.

The requirements concerning the straightening of
the leading edges, without deforming the Mach cone,
reduce the number of arbitrary coefficients in
(3.2) but do not uniquely determine any one of
them.

The requirement to retain, in some, degree the
symmetry of the flow field reduces the number

of arbitrary coefficients still further but not
sufficientlyto determine them uniquely. In [6] it
is shown, that, in fact it is sufficient to
stretch thexcdordinate only. An example is the
transformation:

o x 2EA A E)
B T[z_{s’j“czq-#k)?ij

ktga,, x;rz.

.4

—



The formulae (3.4) straighten leading edges of the
form

}}I=‘Ca-_+ f(z), (2=0)

(3.4) can be written in the

With ﬂ’z};Zlq,l 2
(x

form £.2) .
@_{s"t‘JxS[s {2 {2c s ff
Other possibilities and relations between the

leading edges and the transformations are dis-
cussed in [¢].

@.4%

3.3 The transformed equation

If the x-coordinate alone is stretched the trans-
formed differential equation becomes :
l( az,

')ox,x,'{f"’ 3—‘tr Bz,)} qja*:. C&J".s

_2~ '3_94:-_. e D !.a ~° ?
(&-xgz}' 268 %%y 32’ %r {f-" a:: ;‘;' ::‘,} =0,
(25)

3.4 Solutions of the transformed equation ({)

This equation admits solutions involving sums of
solutions of

2
p cafﬁ, - (Ptl.*z— %.!"): =S

2 2 T
multiplied by power series in x, andfb@:f-hk:)-{d(:

@.¢)

§-= = B—ﬁ'&‘(s Y Zd:,:*gﬂ[’)& G3)

M p=o 22S L+

in which @, is a solution of (3.6).
Substitution of (3.7) into (3.5) permits a D)
unique determination of the coefficients OL‘_ z‘
and the homogeneous flow solutions (f(%,x;x3)
can be used to satisfy the boundary conditions at
the wing surface. The procedure is rather labo-
rious, but the coefficients can be determined
once and for all. The solution involves the so-
lution of systems of equations which beyond
(+2(+p=4 become too complicated for analy-
tical treatment., In the case of hyperbolic
leading edges, however,only coefficients o(® :}’

L.l
arise and these can be determined analytically for
arbitrary values of m, { and j.

In this case the leading edges are given by

t1 |yl L X
(/.', + & ) (%L V=0, (2=0),
4 oo ) ( o ) ’
The corresponding transformation is:

{Jc,z Jc.+a~}2:"—[-‘>"['}'

-_—'3' )t;zl.

The solution is:

(H 2 7)d

¢=294 b4 a(r gp ”,
Lfﬂdo
Ma{f‘:';df

J (2 u+2t+‘u - Nouring)!

- e—m E ;)*@ ! },Ck+wzd_,)/a..4¢+z_l+01

The boundary value problems for (f, are formally
identical to the problems of homogeneous flow
theory.

3.5 Solutions of the transformed equation ({¢)

Another approach to construct solutions of the
transformed differential equation (3.5) consists
of the following argument:

Consider a function ’y{(z g,,:() , homogeneous of
degree M in x , g, and 4 Y, which is a solution

The new coordinates (Jc,,Xx,,Xxs) can be introduced
by an inverse transformation of the form

X = -t;'l"(k,?'—/!)?z)g.(*nﬂ?’!)n
{ Yo X2 2e Xy \ j
G=Z %y f“f)

Without actually calculating the transformed diffe-
rential equation one obtains solutions of the
transformed equation by introducing &,, %, and Jcg

into Y, (%y,2) . ,
Expanding %(&,3,1) in terms of the new coor-
dinates gives:

Vo) =Y {2t A 0G o 22
-’lﬂ.(:'c,,x,,xsj.;.@c‘/_; )(3,(*/;(3(-')%* .
Z(x, (ﬁ(o)f(}(z,ré 31-" ® %+ R,

(=0
(3.10)

%?—%2180 (.33)

G

BecauseV, (%42 )is a solution of (3.8), 'V” (x,x, ,x3)
is a soluti.g’n of

/Wu,
22"

"zt*‘-_%a_.‘xsuo (J. H}

The derivatives are also solutions of
CEN

(3.11). The solutions (3.10) can be shown to be

equivalent to (3.7).

If the transformation (3.9) straightens a class of

leading edges, the solutions (3.10) can be used to

solve the transformed problem. If a homogeneous

function [, (%%, 2y) admits a singularity

in a point ( x,,%¢,,2,) then the same type of sin-

gularity occurs for all points (Ax, Ax, Ax,).

Thus the solutions (3.10) can be used to locate

the singularities in the solutions at the trans-

formed leading edges.



It is easily verified that the inverse transforma-
tion (3.9) straightens leading edges of the form:

| t e / te
x - O (B S0)G 1L, B -

e & e G.IZQ)
The expression (3,12) can be put in the form

e L3R}

lysl _ ,_ By (-A<Y) 140 %) ,0 8

- - G g s
With 13 Lt

/-" (r— t) CI | ""J<<”
il g % (k4

the''deviation from straight" can be considered
to be small.
On the other hand, the expansion (3,10) suggests

that for rapid convergence ., 1 L% T2
4 X, = %/@\ L (.S f
*

should not become too large with respect to

unity. Near the leading edges the second criterium
coIncides with the first,

Theése criteria can be formulated in dimensionless
form but it seems to be sufficient, in practical
applications, to truncate the solutions at Xx=1,
say, and take the coefficients ?/‘-’;- sufficient-
ly small, 4
If these coefficients are taken small of 0’(6}
one may put:

o e A1 e
Y=Y, (x,%,,%,)+, —/3(' /q(:t,,/&(o Y+ &Yy
r(3.13)
If the leading edges are only slightly curved,
(3.13) will be sufficient. The expression (3.10)
makes it possible however to calculate higher
order terms.

3.6 The boundary conditions

If, in a D.P. one has in the physical space at
the wing surface (.J:(:t,lj,) , the transformed
boundary condition becomes

kr':'- "QI +(2'J 1“F%J%CQNP1*:) f] 12_? -

2°w,*

T [ 7 1 £_n"_ .
-‘:é:(xrt-[slzl) _fC}(:\-,, k.)f’ ) }x"-

Thus the solution (3.10) satisfies the transformed
boundary conditions at the wing surface if (f,
satisfies the boundary condition,

+

E €2, )= W (%),
One simply replaces the variables x and y in the
boundary conditions in the physical space by the
variables x, and X, to obtain the boundary condi-
tions for (f, (%,,x,, 2y) at the transformed wing
surface. e same is true for inverse problems.
A difficulty in the solutions (3,10) is the
occurrance of too strong singularities, The
problems that arise for the functions (J, (%,,X;,X3)

differ from the ones in homo-

geneous flow theory only by the fact that the too
strong singularities must be compensated for.

@14)

The too strong singularitiés can be partly removed
as follows:

If 'lyh is a solution of (3.11), homogeneous of
degree n in X, % >, ,a solution of (3.11),
homogeneous of degree (n+1),is obtained by

_— LIAR]
Vo = s D2 Y5 40~ 820Y,  (303)
The singularity in 'l}l“” is stronger than in Y

if there is one. (3.15) is a recurrence relation
and can be used to generate solutions that can be
substituted into (3.10). They can be multiplied
by constants, chosen in such a way that the
strongest singularities are removed. In general,
however, too strong singularities remain present
and must be removed by another technique, based
one a detailed study of the behaviour of the
functions JrvS¢ near the leading edges,
defined in equhtion (2.23).

The boundary conditions at the Mach cone present
no difficulties and are automatically satisfied
if the Y, (_k,,k“za) are homogeneous flow solu-
tions (the %M derivatives being zero on /7).

3.7 Concluding remarks

In the preceding sections it was seen that the
transformed equation admits solutions in which
the homogeneous flow solutions occur in a simple
way. Orders of approximation can be associated
with the number of terms included.

The terms in the solutions can be arranged with
respect to ascending degrees of homogenelty
and solved successively by the same techniques
as those applied in Penain's theory. Up to a
certain order of approximation, the problem can
be reduced to a completely algebralc one. In
these problems the parameters defining the
leading edges can be made to occur in the same
way as those defining the boundary conditions.

IV_Applications

4.1 Slightly curved leading edges

Leading edges of the form
lyl=tx+ € £(x),(2=0), &0

with {Q;):Z a;x’ are straightened by the
(wl

transformation

1t 4%

T [xptexrefoos]l’
Xe=y) dymd,

|Xa]= T, (2,=0).

:k",- X+ &

(4,2)

into (t,‘”
For ©€x < | , with fixed coefficients Q;, the
leading edges will be slightly curved for suffi-
ciently small &.

The inverse of (4.2) is, including terms of 0’@‘):

ftlt- !/dz} (*f) 2
X =2 - —Lj_

£ ‘C:t,:CI-{S"'L”J + 0&Y,
Y=2x,, 2= 2

4.4



The solution of the transformed problem can be put
in the form: Lﬂ ("!(f (” (
4.5)

As an example, consider a D.L. P
The boundary conditions can be put in the form
-1

J -1-5
W, = ok t x
J I?ﬁ d-1-5,8 | } (4 )
and the leading edges in the form:
y1= Tx+Eara ('f ¥)

(P will be homogeneous of degree j and we write 55

Y0 will be homogeneous of degree (C+j~/) and
we write ()
(fl:-rd'-r

FOI‘()(P- one has to solve the system
& -
Fen' a.; _q—f-s)fsfcd L
=/
" Gesgi-1)

The solution can be expressed as

(o) @
(9, m - auri AT o p - (9)

The part Ofm%,-_, generated by (3.10) can be con-
sidered as a particular solution of the terms of
(@) in the transformed equation ( Xy=o0 ),

d W) < [
(J%ﬂ._' = ia,, Gt P “%f)x, - iﬁ/\ T&P (4.10)

The behaviour#:c near the leading edges is domi-
nated by
Q‘l‘-r).‘f,/?-.. o — -
} i e

’I‘o compensate for this too strong singularity
(roa‘-"““’ must include a term with a square root
Lt )= [

Gn)

singularity of opposite stremght at the leading
edges, This is accomplished by taking

@, (o) g, oH wd(/).#'
(Iod-r-j-r =T 7 Cey=1, P "J v’

_@J/\*

T )

r:f
(2c+ 2_]'—;)!!

A T@g-0j

with W, x

C=1,C4 ) dé
0 fRow)

Now A
Leg=!

(C+j-1) equations for the « +j=1)

coefficients ) *
LtJ ‘H P

< &3

can be determined by solving the

L*J ' -f{uAat s _
ZC—U CHj=1,p P
(‘”l\i" (-1L+J.J-’) / (".

=t
(+J S )
WAL T T

The solution is given by

Pe—ix 2 icw 4::’*

P=t .
-3 4
i.a.‘,C.:t,_/S:tf)k, +J @\ *
e it ;>_—_, ik dr
1~5 Cof=1 JCJ
-& %, },{ ' -1, _FHJ p (415

The total solution can be obtained by summing over

i and j.
If one wants to transform back to the physical

coordinates one has:

UthZt xl=\Hrare (c)j'“-g“f’* ‘5&) _‘{5_‘3)

It is to be noticed that the singularities are
located at the leading edges in the physical
space.

+0E")
G&. %) ?

The flat plate solution.

For the flat plate solution, or the incidence
dependent part of the solution, one finds:

e —4E ) Tl e I S

A D) n
"'”(o * ¥
2‘;:

Wings at ideal angle of attack

Solutions without square root singularities in

the velocity field can be obtained for J',)Z 5

by taking :’ -0 in (4.8). From (4.13) one

has (hy* = 0, By analogy with
L-rJ -1 t.dd

(4.13) one must put:

Wy Oy (,zugg—:,)..
Crj=1,l45-0 AJ'-ui-' R JCYEYLL Cars)

The solutions that can be constructed in this way
may be interesting for the design of wings under
cruising conditions.

For all other types of boundary value problems
similar expressions can be derived [6 7.




4.2 Comparison with other results.

4.2.1 Consider a flat plate solution with lea-
di .

= e Yl= Tx+ Ea,x? (4.19)
The solution can be expressed as follows{ W, --.uo()

lf(a:nj,o J=c \sz-#&q& o P 2{ / +£Q:!{6Pk+%)}

& 2a)
2E' (£3-24)+ K3k -43 )

with 4.2
(&~1)E' f1-283)E"+ £ K'} ( g

p=

with k:[b‘c .

E' and K' have modulus Jl—-&" . The factor p has
been plotted and compared with other results:

0s

—»k 10

not so slender body theory
first reflection integral
present theory

carafoli’s result

PEOG on

In the limit k -1, the leading edges are nearly
sonic., The factor p{ya)approaches the correspon-
ding factor extracted from the first reflexion
integral,as it should. The slender body theory
predicts p=0 in the limit k-»0. The not-so-
slemder body theory predicts values close to pi),
for small values of k. Carafoli's result is valid
for k=0 only.

4.2.2 Wing af ideal angle of attack.
The formulaederived for the D.L.P. can be used to
construct wings which sustain an interesting form
of pressure distribution. In these cases the in-
tegral representation of the upwashfield permits
an easy numerical evaluation. ( B=/)
Wings with a planform {y)$ 0,8 x —04x% 0 xg 1)
are considered. The pressure distribution is pres-
cribed in the form 3 .

A -(1),,-»]),,):)\//061 ouxY =4« (412
The corresponding (fz is calculated in the form

ﬁ’: A!x* A‘:H"“" A_;l-i- /\q--"'-'}g»'-f- Ass,-f--—(‘(-t-’)

10

The analy tic expressions for the coefficients
have been calculated including those associated
with the third and fourth degree terms.

For Jc= O.% ;J:=O.£-;X-O_6’;Jc=!;%is plotted

€D,,=1,D,
C""‘:)DQQ: ’ » D,o—_-—}.

.-.-Ol

for two cases
{ (4.24)

The deviation of straight is not small and so for
X 70.6... requirement (3. is not satisfied.
Solutions in the form (3.7) are used.

-y
lyl=Fix) =08x-04x?
9, =\Fi(x)-y?

B =10

Machline /
L

0]
Q. Aa3x e, y2
() Agxd 4+ hg xy2017|y[3

‘|l~12|y1

@ + hgx + g x2yZ 4 yb
O numerical approximation

2 §

Machline
|y|=Fh(l:08!-_ULl2

N =1-x) FA x)-y2?
B =10

F1.-*. 8

o o1 03 04
—y

0] l. x + Aalyl

® 3:‘ ‘AL y?

) 0153(30?\5)()! «Aglyl?

@ kg xt e hgx2y? 4 dgyt

®  numerical approximation



In this case the deviation of straight is not small.
Near y=0 there is good convergence. Near the tips
in case (i), more terms are required, In case (ii)
the comvergence is very rapid. This may be due to
the fact that there is little loading of the wing
near the tips. The accuracy of the numerical
approximation was found to be good,except near the
leading edges,by comparison with exact homogeneous
flow solutions. The accuracy and the speed of
convergence does not only depend on the leading
edges but also on the boundary conditions.

4.3. Another possibility which should be
mentioned is the following. In (3.10) one may
take into account only two coefficients, say g,
and g4, and calculate the solutionsincluding
terms of say O(E!) . This leads to a workable
scheme for a large class of planforms [6] . It
can be expected to be sufficiently accurate to
obtain some qualitative insight. The calculation
of the terms of (&) can be carried out along
the same lines that led to the terms of O&).
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