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Abstract

The digitized output of a surveillance radar
for air traffic control consists of position inform-
ation of aircraft at intermittent intervals. In
track-while-scan systems real time processing of
these data is performed to calculate the track of
the aircraft. Two computational methods i.e. the
classical a, P tracking method and a KALMAN filter-
ing method, are analysed. The former method will
be used in the new terminal area control system at
Schiphol. The digital input data required for a
fast-time simulation of the tracking process have
been generated by means of a model of the new
terminal area radar at Schiphol. The results obtain-
ed with both methods are compared and their relative
merits are discussed.

I. Introduction

The recent developments in Air Traffic Control
(ATC) automation are mainly based on the intro-
duction of radar data processing by means of a
digital computer and suitable interface. At the
present stage it is possible to feed the computer
during each radar-antenna revolution with aircraft
position information. This means that the computer
has the same basic information about the actual
traffic situation as the controller on his radar
screen. The availability of such information to
the computer implies the possibility for further
automation of the ATC-process. This digital radar
data processing is one of the important aspects of
the new ATC-system to be installed at Amsterdam
Airport. In the first phase of this SARP (Signaal
Automatic Radar Processing)-system, which will
become operational in 1974, the digital radar data
of one terminal area radar are fed into the compu-
ter system where tracking will be performed for
terminal area control. This tracking process will
associate radar blips (plots) with existing tracks,
and will correlate these tracks with the flight
plans belonging to the relevant aircraft. The first
objective of this tracking process is to provide
the air traffic controller with labels on his radar
scope. These computer generated labels will be
attached to each aircraft blip for which tracking
is carried out, and can contain relevant inform-
ation about these aircraft, like call sign, flight
level, speed, etc.

Tracking of an aircraft is the process of
smoothing and predicting the path of that aircraft,
from positional input data at discrete moments;
these data are updated with a time interval equal
to the revolution time of the radar antenna. These
input date can also contain identification
information if the aircraft is equipped with a
transponder. Smoothing is necessary because the
aircraft plot positions as provided by the radar
and its digitizing equipment contain certain
errors. The result of smoothing is a so-called

track, i.e. the calculated path and velocity of
the aircraft. Extrapolation of the calculated
track by means of prediction techniques permits
the comparison of estimated and measured aircraft
positions.

In this way a kind of memory is introduced into
the system, without storing past plots. In the
SARP-system the so-called a-f filtering process
(1)(2)(3) is used, which is characterized by the
smoothing or filtering parameters a and B for
position and velocity respectively.

The NLR has carried out fast-time simulations
of the tracking process as it will be incorporated
in the SARP-system to determine the optimal para-
meter (@,B) values to be used for the filter. The
results of these simulations have been reported
in (4)(5)(6). These optimal values of the para-
meters (a,B) will be used in this paper, in which
two filtering methods, the above a-f method and
a KALMAN method (7)(8)(9)(10) are discussed. This
filter can be applied to both continuous and
discrete time series and it is extremely suitable
for implementation on a digital computer. The
method can be seen as a "popular' means of
estimating the "state” of an aircraft from noisy
measurements of its range and azimuth. The filter
for discrete time series as developed for the
track-vhile-scan systems is composed of a group
of matrix recursion relations.

It is the concern of this paper to investigate as
to how far the KALMAN filter would be superior to
the a-P filter for the SARP-system.

II. Equations of motion for straight flights and
problem statement.

The undisturbed target motion is a straight
flight with constant velocity in a two dimensional
cartesian co-ordinate system. _
At discrete time intervals ty the state vector xj
is described by a linear vector difference
equation:

LK SRR (2.1
The L-dimensional state vector ;k consists of the
position X and Y and the velocity components X and
Y
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The transition matrix § has for straight flight
with constant velocity tﬁe following simple form
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vhere T is the antenna revolution time.

The vector qy is a random L-dimensional sequence
vector which deteriorates the state at each time
ty and has known statistics. Its mean is zero and
g is uncorrelated with Ej for j # k.
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where 6k' is the Kronecker symbol and Qy is
consider#d to represent speed deviations due to

air turbulance. The direct perturbation of the
position components is taken zero, while the
distribution of the deviations of the velocity
components are modeled as white noise having a
Gaussian distribution. The standard deviation of
?Egk and qh’k 1scrv. Hence the covariance matrix Qk

(2.2)

9 = 2

0 0 G "0

0 0 0 G
In the simulation programme the values of 93 j and
Q) 8t t, have been generated with a random’
gederator from a distribution withG =1 kt . The
2-dimensional measurement vector Zy at tj consists
of range and azimuth components:

The (nonlinear) relation between the measured
variables and the state variables is given by:

X =r sin @ (2.3)
Y=1r cos @

From (2.3) by linearization the following relation
is obtained between small variations in the state
and the corresponding deviations in the measured
variables:

ﬁ‘z'k = H Aik (2.4)

The matrix Hk is the 2xli-dimensional observation
matrix and has the following form

sin Ok cos °k 0 0
l{k =
cos Ok - 8in Ok 0 0
Tk Tk

The error 8z, in the measurement vector is assumed
to have the §ollowins known statistical properties:

(2.5)

= - 0
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G 0
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G_and G, are the 1-Gvalues of the errors in the
meéasured range and azimuth. These errors are
assumed to be Gaussian distributed and to be un-
correlated.

The problem statement for the filtering process
can now be formulated as follows:

Given the preceding model, determine an estimate

of the state vector ik at each ty from the measured
vector Zy and the state vector Xx_i, in such a way
that the position and velocity errors are minimized.

III. The filter processes

A The KALMAN filter.

The principle of the KALMAN filter is to
minimize the sum of the diagonal elements of the

covariance matrix Pk of the state vector.

= - -~ - T = e T
P, = E{(xk-E(xk)) (%, -E(%, ) }- E{ %, %, } (3.1)
Mathematically this means that

~T g2 3

E {bxk 6xk} minimum
In this sense the KALMAN filter is the optimal and
most sophisticated smoothing process. The time-
discrete KALMAN filter is composed of a group of
matrix recursion relations. The simplicity of these
relations makes the filter extremely suitable for
implementation on a digital computer. The filter
equations are derived in various papers (7)(8)(9)
(10). Therefore only the algorithms for the
particular process of radar tracking are briefly
summarized below.
Starting at t, a predicted state is calculated
according to eq. (2.1):

X {’k-l X

From equations (2.3) and (3.3) the estimated
measurement vector Z, at t is determined. The
actual measurement vectgr at ty is given by Zy.
The difference between Z, and Z, is caused by
measuring errors as well as by errors in the
estimate of the state. The KALMAN filter now
calculates on the basis of (3.2) an optimal
weighting or gain matrix Ky such, that the new
estimate ik is optimal:

%o -?ik + K [Ek - %k] (3.4)

Ky is a (Lx2) dimensional matrix and is given by

(3.2)

(3.3)

s =T ~ ad =4
K =P H |H P H +M (3.5)

vhere Hk is the formerly mentioned observation



matrix eq. (2.4), is the govnriance matrix of
the measurements-eq. (2.5), P, is the,covariance
matrix of the predicted state vector X,.

Hence

B T
Py “fkq Pn-1‘i’k-1 +Q (3.6)

The covariance matrix P, of the new estimate ;k is
given by:

~ ~
R="h-K5 P

Equations (3.3), (3.4), (3.5), (3.6) and (3.7)
constitute the KALMAN filter for the model described
in section 2.

The influencg of Q, increases directly the covari-
ance matrix P,. The gain matrix K, is indirectly
influenced by Qg via relation (3.5) and (3.5).

If Q¢ = 0 the matrices Py and K approach to zero.
Hence Qy gives an upper limit to the state accuracy
which is physically evident.

A further interesting aspect is the fact that the
state as calculated by (3.L4) has no direct
influence on the calculation of the covariance
matrix Py and the gain matrix K,. In practice this
can mean that the calculated covariance matrix
converges while the state vector does not; this
can be the case when the initial estimates X, and
P, are poor.

At k=2, i.e. the target has been observed for two
consecutive antenne revolutions (ry, @; and

rp, O5) the filter process is initiated. The
initial state at k=2 is taken as follows:

(3.7)

r2 sin 02
r, cos 02

(3.8)

|
1

(r2 sin 0, - r, sin 01)

ri|=

(rz cos 9, - r, cos 01)_‘

From this initial state the initial covariance
matrix P2 is calculated as follows:

, = E{8%, b'izT}
= E {B 5% 5‘:“‘}3

=B E{ai aiT}BT

LI=TI™

P

i (3.9)
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Since all the errors are uncorrelated one obtains,

2
G, 0 o0 o
2
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= =T
E {bz bz }- 2 (3.10)
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The relation matrix B can be derived from (3.8):

sin 02 r, cos 92 0 0
cos 02 r, sin 02 0 0
B 1 1 1
8in 02 frz cos 02 -75in 91 'Trlco‘ 01

1 1 5 1 1 s
Ecos 02 T sin 02 -Tcos 01 Tr8in 01J
The equations (3.8), (3.9) and (3.10) yield the
elements of the initial covariance matrix P,:

P(1.1) = CTrE sin 202 + rzacrg2 cos 202

P(2.2) = Cfrz cos 202 + raacroz sin 202

P(1.2) = P(2.1) = sin @, cos 0, (Grz-raa(_,—ga)
P(1.3) = P(3.1) = 2 P(1.1)

P(2.3) = P(3.2) -% P(1.2)

P(2.4) = P(4.2) = 3 P(2.2)

P(3.3) = # (6,2 sin %0, + G,% sin %, +
+r22092 cos 202 + r‘E_G'OE cos 201) %i-z* P(1.1)

P(h.h)ﬁs—a—z— P(2.2)
T

P(1.4) = P(L.1) -%P(LE)

P(3.4) = P(L.3) me—e P(1.2)
T

An alternative form of factoring the covariance
matrix will be discussed in section 6.

B The a-P filter

The performance of the KALMAN filter will be

?o?p?r?d with that of an a-f filter method (1)

2) (3).
The @-PB method considered here is the same as will
be implemented in the SARP-system at the Amsterdam
ATC-centre. The tracking equations will be briefly
summarized below. a
Again the predicted state X, at ty is obtained
from eq. (2.1):

% =8%, (3.11)

From the measurement vector Z, at each time t, the
position vector ¥, is obtaineh using eq. (2.3*

y(1) = z(1) sin 2(2)
y(2) = z(1) cos z(2)

(3.12)

The new estimated state at ty is now formed by



x(1), = ?(1)k +e (y(1), - Q(ilk)

x(2), = ';2(2)k +a, (y(2), - ?(a)k)

= 1 . (3.13)
x(3)k = 1(3)k *3 Bk(y(1)k - x(i)k}
x(h), = R(b), + 7B, (y(2), -R(2))
These equations can be rewritten as
% =% +a (3.14)

k- Tk TR 8%

where A, is a (Lx2) dimensional Weighting matrix

k
= - .
a 0 y(l)k - x(1)k
and Aik = ~
0 L y(2)k - x(2)k
A = iy
Tk ©
1
o TBkJ

The method used here is quasi-adaptive during the
first 6 scans after iniation i.e. 6 values of the
matrix have been stored. For the following scans
the final values of a,f are used. Optimal values
of and B, have been determined through
simulations reported in ref. (L) (5) and (6).

The six sets of @ and B used during the first
six steps of the tracking process are:

~ 0.76; 0.59; 0.48; 0.40; 0.34; 0.34
(3.15)
Bk = 0.47; 0.25; 0.16; 0.11; 0.06; 0.045

The equations (3.11), (3.12) and (3.13) charaterize
a second order linear prediction filter, wherein
damp1ng is introduced by means of a and B

improve the perrormance of the system in tﬁe
presence of noise. This demping, however, degrades
the transient response. This means that always a
compromise has to be made between good smoothing of
noise errors and a good transient response.

In deriving the optimal sets of ay, B most
qnphssxl was laid upon minimizing the r.m.s. errors
in the magnitude of the velocity vector and in

the distance between the true and filtered
positions.

The a-f filter is a very simple filter and
requires little memory space and computer time.
It is an essential property of the filter that
the values of the matrix A, i.e. a, and B, are
not calculated during the ¥11tar process 1tself
as is the case with the gain matrix Ky in the
KALMAN filter.

After two consecutive antenna revolutions the
tracking is initiated. The initial state vector

Xy at k=2 is the same as in the KALMAN process,

see eq. (3.8) which means that at initiation a= 1
and f=1 are selected.

IV. Comparison of the filter accuracies for
straight flights.

In order to evaluate the two filter pro-
cesses, simular simulations have been performed
with both. The generation of the errors in the
simulated radar data were based on a Gaussian
distribution in range as well as in azimuth.
Flights of many different orientations relative
to the radar site were analysed. The results of
one representative flight will be discussed in
this paper since the results appeared hardly to
depend on the orientation of the flight. The
characteristics of this flight are summarized in
the following table:

Table 1

Initial true state: xo =28 NM ; Yo = T NM

X, = T5.5 kts; io = 238.8 kts

lAntenna revolution
time: : T =L gec.

Standard deviation: Range (Ir =50 m

Azimuthcr'g = 0.08 degrees

To determine which number of runs is sufficient
(Monte Carlo trials), the results based on 25,50
and 100 trials were compared. The difference in
the results from 25 runs and 50 runs was more than
20 %. The difference between 50 and 100 runs was
less than 5 %. A number of 100 runs was therefore
considered to be sufficient.
The covariance matrix Pk of the state vector in
the KALMAN filter has been calculated automatically
each scan. The diagonal elements of this matrix
are the variances of the errors in the state
components; these variances have also been
calculated from the 100 runs.
It appeared that the standard deviations from the
covariance matrices were some 5 % larger than the
actual r.m.s. values, vhich may be expected. The
parameters on the basis of which the performance
of both filters will be discussed are:
- the difference 0s between true position and
smoothed track position; As = |r Trrack |
- the difference Av between true ground upeed and
the smoothed track speed; &v = |¥ir 0| - |Vtrack|
- the difference AH betwuen true und smoothed
heading; AH = Hy
At each scan the value or Eu, ﬂv and AH has been
calculated. The mean and the r.m.s. error at each
scan have been calculated from the 100 runs.
Although the mean values of AX and AY appeared to
be zero, it is clear that the mean of aAs, which
is always positive, cannot be zero.
Figure 1 shows the mean and the standard deviation
of the error As at successive scans.
At initiation the values for "g-p" and "KALMAN" are
exactly the same, which is evident since the same
initial state vector has been used.
It can be seen from the figure, that for the
following scans, although the KALMAN filter gives
superior results, the difference between the two
filtering processes is so small (some 5 %) that
the o-B filter is quite acceptable.
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If the error distribution of As would be Gaussian,
then for about 17 % of the cases the error As will
be larger than the mean plus 1C. Then from figure 1
it follows that after about 8 scans (32 secs after
initiation) the error As will - for about 83 % of
the cases - be smaller than some 70 m.

Deviation in the order of this magnitude will not
be perceptable on the display screen of the air
traffic controller.

Figure 2 and 3 show the picture of the standard
deviation of the velocity error and the heading

The mean values of the errors appeared to be zero

error respectively.
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Velocity standard deviation.

in general, however, at initiation a bias can

arise due to the limited number of 100 runs.

At initiation the velocity standard deviation is
for both filters 30 kts.

From figure 2 it can be seen that during the

scans nr. L-10 "KALMAN" is slightly superior to
"o-f". The difference,however,does not exceed 10 %.
The 8th scan e.g. shows a velocity standard
deviation of 3.4 kts for "a-B" and 3.1 kts for
"KALMAN".

The difference is due to the fact that the a,f
values of the "a-B" filter during the Lth, S5th

and 6th scans after initiation are not optimal
from the point of view of the standard deviation
of the velocity; when these values would be taken
slightly smaller (5-10 %) no significant difference
would remain.

The picture of the heading error is about the same.
The accuracy of both filters is very good. The
1Gvalue of the heading error is within 8 scans
(32 secs) reduced to about 1 degree from 10 degrees
at initiation.

For both filters the velocity standard deviation
approaches to about 2.5 kts. The magnitude of this
limit for the a-p filter depends on the selected
a, f values and the standard deviationG,
representing the air turbulance effects.

ForG_ = O the error would converge further to
zero 1n cese of the KALMAN filter. To illustrate
this effect, figure L shows the velocity standard
deviation for the same flight but withG, = 0.
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without air turbulance.

In this case it can be seen that the KALMAN

filter further approaches to zero whereas the a-§
filter approaches to about 1.7 kts which value
depends on the selected values of g and §. However,
if the quasi-adaptive character of the a-g filter
would be extended to scan numbers above 6 better
results would be obtained.

Though the radar errors used in these
simulations are based on the radar specifications,
it may turn out that the actual errors are higher.
Further it should be kept in mind that the blip
to scan ratio has been assumed to be 1 in the
simulations, while in practice some plots will be
missed.

V. Some aspects of tracking manoeuvring flights.

Although the tracking process for manoeuvring
flights will not extensively be discussed in this
paper, some attention will be paid to slowly
accelerating straight flights. To test the
performance of both filters, two flights have been
simulated in which the aircraft accelerated at a
rate of L.5 kts/min and 9 kts/min respectively.
The initial conditions were the same as given in
table 1, while for the a-f filter as well as for
the KALMAN filter the model used is the same as
described in section III.

To illustrate the results of this simulation
figure 5 shows the mean of the velocity error.
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Figure 5 Velocity bias (mean error) for
straight accelerated flights.

The performance for both filters is within 10 %

the same. Within a some 10 scans the mean approaches
to a constant value of about 1.9 kts for an
acceleration of 4.5 kts/min (3.8 kts for 9 kts/min).
The results indicate that both filters have the

same capability in responding to the navigational
corrections of the pilot and/or inadvertant changes
in aircraft speed. However, when the acceleration
becomes larger or turns are executed, an unacceptable
mean will result in the velocity and track position
errors if the filters are unaltered.

To track such flights the a-f filter has to be
extended with a manoeuvre detection logic. The
KALMAN filter can be extended by adding acceleration
terms to the dynamical equations (3.1). This aspect
has been investigated in a number of papers (11) (12).
The problem, however, is that the type of the
manoeuvre is not known, i.e. the acceleration in the
cartesian co-ordinates is not a constant for a turn.
The problem can be attacked by developing special
models for the manoeuvre equations in such a way
that at each scan it is assumed with a certain
probability that a manoeuvre is executed. It

depends on the actual consecutive measurements which
manoeuvre is detected by this model. The author has
some feeling that by such models results are obtain-
ed which are not significantly better than for an
a-f filter with a manoeuvre detection logic.

In the SARP a-p system the discrepancy between

plot and predicted position at each scan is used

as a means to decide whether the target is executing
a manoceuvre. If such a manceuvre is detected then
the a, f values are adapted.

VI. Computational aspects.

An important aspect of the KALMAN filter is
the calculation of the gain matrix Ky at each scan.
The gain matrix is merely dependent upon the
statistics described by Py, M, and Q. At each scan



the state covariance matrix Pk and the measurement
covariance matrix My must be determined. To
initiate the proces initial values of P, and M,
must be derived. The matrix M, is easily calculated
from eq. (2.5). The matrix P,, as derived in
section 3, however, requires an extensive set of
calculations. The performance of the KALMAN filter
process depends on the initial covariance matrix.
To illustrate this influence of P, some runs have
been made with P, = N I vhere I is the identity
matrix and N is a large number. Actually this means
that almost no statistical information on the
initial state is available.

For the calculation of the gain matrix and the
covariance matrix at the first scan the following
relations must be used now (9)

T, -1 ) T, -1

1 H) i K =P H M, (6.1)
Figure 6 illustrates the results of the velocity
standard deviation for this initiation process.
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Figure 6 Velocity standard deviation for a

a large initial covariance matrix P

To compare the results the same results for "a-p"
from fig. 2 are plotted as well. The "KALMAN"
results show an error of about 30 kts during the
first 3 antenna scans. During the later scans the
performance of the filter improves as rapidly as
in the case of the optimal initiation matrix. Such
a non-optimal initiation apparently causes a delay
of 12 secs (3 scans).

The KALMAN filter requires more memory space since
= besiggs the flight plan information, the vectors
xy and Xy - also the covariance matrix Py has to
be stored for each aircraft each antenna revolution.
Compared to the a-pf method in the SARP-system it
is estimated that the KALMAN will require about

25 % more memory space. The total computation

time seems also to be considerably higher than for
the a-p filter.

Although this time depends on the type of the
computer used, a rough indication is given by
comparing required computer time for both filters
on the NLR CDC 3300 computer. It appeared that in
general the "KALMAN" takes about 200 % more
computer time than the "a-B" method.

VII. Conclusions

On the basis of a model of the characteristics
of the new terminal surveillance radar at Amsterdam
airport simulations have been carried out in order
to evaluate the accuracy aspects of two filtering
methods ("Kalman" and "o-f") for use in the process
of aircraft tracking.

It appeared that for straight flights the
Kalman filter gives somewhat superior results
(5-10 % smaller errors). The order of magnitude of
the r.m.s.-value of the error in the calculated
velocity is about 6 kts (after L radar scans),
vhich decreases to 3 kts after some 8 scans; at
this moment an accuracy in the calculated heading
of about 1° has been reached.

Although the performance of the filters was
not extensively analyzed for the case of manoeuvring
flights the results obtained indicate that the
difference in performance of the two filters is of
the same order of magnitude (some 10 %).

The tracking process as carried out by means
of the Kalman filter, however, requires about 25 %
more computer memory and - at least for the NLR
computer used for the investigation - about three
times as much computer time as in the case of the
much simpler "a-f" filter.

It is therefore concluded that for the
terminal system at Schiphol the "a-f" filter is
quite acceptable for aircraft tracking purposes.

List of symbols

a acceleration in kts/min.

q random sequence vector deteriorating the
k i
dynamical system at tk

measured range at tk

k

r radius vector in polar co-ordinates

tk time at kth antenna revolution
L =0, Yy 2 wwiesi)

;k the linear estimate of the state ik at
tk using the data Z

k

;k the predicted linear estimate of the state
ik at tk before Z, is used

ik position vector directly calculated from
zk

ik measurement vector at t,

z the predicted estimate of z_ from x, at

k k k
t
k
H difference between true and smoothed heading

As difference between true position and
smoothed track position

Ay difference between true ground speed and
smoothed track speed

a position smoothing parameter in the "a-g"

filtering method
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velocity smoothing parameter in the
filtering method

a-p

measured azimuth at tk

standard deviation

standard deviation of the speed perturbations

due to air turbulance

standard deviation of the error in the
measured range

standard deviation of the error in the
measured azimuth

weighting matrix in the "a-g" filtering
method.

relation matrix between errors in the
initial state and errors in the initial
measurements

heading

observation matrix at tk

identity matrix

optimal gain matrix for the KAIMAN filter
at t

k
covariance matrix of the measurement data
x
covariance matrix of the state vector x
at t

k
covariagce matrix of the predicted state
vector X,

k

covariance matrix of Ek
antenna revolution time (4 secs)
the state transition matrix at tk

the matrix transpose of A

A the matrix inverse of A
E { } the expected value of { }
( )k the quantity ( ) at the time ty
akj the Kronecker symbol
1 iftk=j
6k. =

J 0 ifk#j
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