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Abstract

The digitizedoutput of a surveillanceradar
for air traffic control consistsof position inform-
ation of aircraft at intermittentintervals.In
track-while-scansystems real time processingof
these data is performed to calculatethe track of
the aircraft.Tvo computationalmethods i.e. the
classical a,0 tracking method and a KALMAN filter-
ing method, are analysed.The formermethod will
be used in the new terminal area control system at
Schiphol.The digital input data required for a
fast-timesimulation of the trackingprocess have
been generatedby means of a model of the new
terminal area radar at Schiphol.The results obtain-
ed with both methods are comparedand their relative
merits are discussed.

I. Introduction

The recent developmentsin Air Traffic Control
(ATC) automationare mainly based on the intro-
duction of radar data processingby means of a
digital computer and suitable interface.At the
present stage it is possible to feed the computer
during each radar-antennarevolutionwith aircraft
position information.This means that the computer
has the same basic informationabout the actual
traffic situation as the controlleron his radar
screen. The availabilityof such informationto
the computer implies the possibilityfor further
automationof the ATC-process.This digital radar
data processing is one of the importantaspects of
the new ATC-systemto be installedat Amsterdam
Airport. In the first phase of this SARP (Signaal
AutomaticRadar Processing)-system,which will
become operational in 1974, the digital radar data
of one terminal area radar are fed into the compu-
ter systemwhere tracking will be performed for
terminal area control. This trackingprocess will
associateradar blips (plots)with existing tracks,
and will correlate these tracks with the flight
plans belonging to the relevant aircraft.The first
objectiveof this tracking process is to provide
the air traffic controllerwith labels on his radar
scope. These computer generated labels vill be
attached to each aircraft blip for which tracking
is carried out, and can contain relevant inform-
ation about these aircraft, like call sign, flight
level, speed, etc.

Tracking of an aircraft is the process of
smoothingand predicting the path of that aircraft,
from positional input data at discretemoments;
these data are updated vith a time intervalequal
to the revolutiontime of the radar antenna. These
input data can also contain identification
informationif the aircraft is equippedwith a
transponder.Smoothing is necessarybecause the
aircraftplot positions as providedby the radar
and its digitizingequipment contain certain
errors. The result of smoothing is a so-called


track, i.e. the calculatedpath and velocity of
the aircraft. Extrapolationof the calculated
track by means of predictiontechniquespermits
the comparison of estimatedand measured aircraft
positions.
In this way a kind of memory is introducedinto
the system, without storingpast plots. In the
SARP-system the so-calleda-0 filtering process
(1)(2)(3) is used, vhich is characterizedby the
smoothing or filteringparametersa and 0 for
position and velocity respectively.

The NLR has carried out fast-time simulations
of the tracking process as it will be incorporated
in the SARP-systemto determine the optimal para-
meter (a,0) values to be used for the filter. The
results of these simulationshave been reported
in (4)(5)(6).These optimal values of the para-
meters (a,B) will be used in this paper, in vhich
two filteringmethods, the above m-0 method and
a KALMAN method (7)(8)(9)(10)are discussed.This
filter can be applied to both continuous and
discrete time series and it is extremely suitable
for implementationon a digital computer.The
method can be seen as a "popular"means of
estimating the "state" of an aircraft from noisy
measurementsof its range and azimuth. The filter
for discrete time series as developed for the
track-while-scansystems is composed of a group
of matrix recursion relations.
It is the concern of this paper to investigateas
to how far the KALMAN filter would be superior to
the a-0 filter for the SARP-system.

II. Equations of motion for straight flights and
problem statement.


The undisturbedtarget motion is a straight
flight with constant velocity in a two dimensional
cartesian co-ordinate system.
At discrete time intervalstk the state vector ik
is described by a linear vector difference
equation:

ik 1k-1 ik-1

The 4-dimensionalstate vector ik consists of the
position X and Y and the velocity componentsk and
Y.
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The transition matrix i), has for.straightflight
vith constant velocity tfiefollowingsimple form

(2.1)
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where T is the antenna revolutiontime.
The vector qkis a random 4-dimensionalsequence
vector which deterioratesthe state at each time
tk

qk

and has known statistics.Its mean is zero and
is uncorrelatedwith for j g k.

E = 0; E lqk qj = (1/4
r- - T1 (2 .2)

where 6 . is the Kronecker symbol and Qk is
kJ

consideredto represent speed deviationsdue to
air turbulence.The direct perturbationof the
position components is taken zero, while the
distributionof the deviationsof the velocity
componentsare modeled as white noise having a
Gaussian distribution.The standarddeviation of
q3,k and (14,kisCrv. Hence the covariancematrix Qk
is:

0 0 0

0 0 0

0 0'v20

0 0v2

In the simulationprogramnethe values of q3 k and
k at tk have been generatedwith a random'

gelleratorfrom a distributionwith(7,=1kt . The
2-dimensionalmeasurementvector ik at tk consists
of range and azimuth components:

zk =
[roki

The (nonlinear)relation between the measured
variables and the state variablesis given by:

X = r sin
(2.3)

Y = r cos

From (2.3) by linearizationthe followingrelation
is obtained between small variationsin the state
and the correspondingdeviations in the measured
variables:

6ik Hk ak (2.4)

The matrix Hk is the 2x4-dimensionalobservation
matrix and has the followingform

sink cos Ok 0 0

cosk - sin Ok 0 0
rk rk

The error 61 in the measurementvector is assumed
to have the ?ollowing known statisticalproperties:

in which

Mk

G and
mgasured

F i6Y
k= 0;

G r2 0

2
0 ag

Gg are the
range and

E loik 6ijT1 = Mk 6kj

1-0-valuesof the errors in

azimuth.These errors are

(2. 5)

the

assumed to be Gaussiandistributedand to be un-
correlated.
The problem statementfor the filteringprocess
can now be formulatedas follows:

Given the precedingmodel, determine an estimate
of the state vectorakat each tk fromthemeasured
vectorik and the state vector in sucha way

thatthe positionandvelocityerrorsareminimized.

III. The filter processes

A The KALMAN filter.


The principle of the KALMAN filter is to
minimize the sum of the diagonal elements of the
covariancematrix Pk of the state vector.

P  kE
k

-E( k1 (akk ))T}. Ek 6ikT (3.1)
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Mathematicallythis means that

E 167A 6421j=minimum (3.2)

In this sense the KALMAN filter is the optimal and
most sophisticatedsmoothingprocess. The time-
discrete KALMAN filter is composed of a group of
matrix recursionrelations.The simplicityof these
relationsmakes the filterextremely suitablefor
implementationon a digital computer.The filter
equations are derived in various papers (7)(8)(9)
(10). Therefore only the algorithmsfor the
particularprocess of radar tracking are briefly
summarizedbelow.
Starting at tk a predictedstate is calculated
according to eq. (2.1):

A

7kk-1 31(-1 (3•3)

From equations (2.3)and (3.3) the estimated
measurement vector Ek at tk is determined.The
actual measurementvect2r at tk is given by ik•
The differencebetween /k and lk is caused by

measuring errors as yell as by errors in the
estimate of the state. The KALMAN filter now
calculates on the basis of (3.2) an optimal
weighting or gain matrix Kk such, that the new
estimate ik is optimal:

1k = 51k Kk iki (3.4)

Kk is a (4x2) dimensionalmatrix and is given by
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where Hk is the formerlymentioned observation

4 k

Qk
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(3.6)
B

matrix eq. (2.4), Mk is the govariancematrix of
the measurementseq. (2.5), Pk is the6covariance
matrix of the predicted state vector xk.
Hence

+ Qk-1(Ik-1Pk-1(ik-1T

The covariancematrix Pk of the new estimate is
given by:

The relation matrix B can be derived from (3.8):

r2 cossin Q22 0 0

cos
2

r2 sin 02 0 00

1 . 1 1 . 1
Tsin 02 Tr2

cos 02 --sin 01 --r1cos 01

	

T T 


1 1 1 1
P = - K. H 2 2
k k xkk (3.7)

-cos oa --r sin 0 --cos G1 T=r1sin 0
T 2 T 1

Equations (3.3), (3.4), (3.5), (3.6) and (3.7)
constitutethe KALMAN filter for the model described
in section 2.
The influenclof Qk increasesdirectlythe covari-
ance matrix Pk. The gain matrix Kk is indirectly
influencedby Qk via relation (3.7) and (3.5).
If Qk = 0 the matrices Pk and Kk approachto zero.
Hence Qk gives an upper limit to the state accuracy
which is physicallyevident.
A further interestingaspect is the fact that the
state as calculatedby (3.4) has no direct
influenceon the calculationof the covariance
matrix Pk and the gain matrix Kk. In practice this
can mean that the calculatedcovariancematrix
convergeswhile the state vector does not; this
can be the case when the initialestimates and

Pk are poor.
At k.2, i.e. the target has been observed for two
consecutiveantenna revolutions (ri, 01 and
r2, 02) the filter process is initiated.The
initial state at k.2 is taken as follows:

The equations (3.8), (3.9) and (3.10) yield the
elements of the initial covariancematrix P •2*

P(1.1)r
,- 2

sin
202

+ r22C702 cos
202

2
P(2.2) • CTr2 cos

202
+

2 2 .
 r2 Cr0 sin 02

P(1.2) = P(2.1) = sin g2 cos 0
2 r 2 Q

1
P(1.3) = P(3.1)

•

P(1.1)

1
P(2.3) = P(3.2) =

•

P(1.2)

1
P(2.4) . P(4.2) =

•

P(2.2)

12 2 2
(G- sin

202 r
+ a sin 01 +

r

+r22(-IQ2cos
202 + r12Cig2

cos
2

	

, 2

r2 sin 02
P(2.2)

r2 cos 02

P(I.4) = P(4.1) = P(1.2)
7(2=(3.8)

(r2 sin 02 - r1 sin GI)
p(3.4) = P(4.3)

•

P(1.2)

(r2 cos 02 - r1 cos 01)

An alternative form of factoringthe covariance
From this initial state the initialcovariance matrix will be discussed in section 6.
matrix P2 is calculated as follows:

P2 = E 116-c21552T

E fB di 6iTIBT

B Eidi 6.ZT BT

in which [bIT= or2 602 Or1 601:I

Since all the errors are uncorrelatedone obtains,

B The m-0filter

The performanceof the KALMAN filter will be
compared with that of an a-0 filter method (I)
(2) (3).
The 5-0 method consideredhere is the same as will
be implementedin the SAPP-systemat the Amsterdam
ATC-centre. The trackingequations vill be briefly
summarizedbelow.
Again the predicted state xk at tk is obtained
from eq. (2.1):

(3.11)

From the measurement vector 1, at each time tk the
position vector 34,is obtaineausing eq. (2.37

(3.10)

Cir2 0 0 0

0 0-02 0 0

0 0 G 0

20 0 0 C
9

= z(1) sin z(2)
(3.12)

= z(1) cos z(2)

The new estimated state at tk is nov formed by

E 16i 61/1.
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x(1)k 2(1)k + ak(y(1)k - 2(1)k) IV. Comparison of the filter accuraciesfor
straight flights.


x(2)k= 2(2)k+ ak(y(2)k- 2(2)k)

(3.13)
x(3)k 2(3) + 1 0

Tk (y(1)k - 2(1)k)k 


x(4)k + 8k(y(2)k -

These equations can be rewrittenas

k
+ Ak ARk (3.14)

where Ak is a (4x2) dimensional4eightingmatrix

y

-

(1)k - S1(1)k

y(2)k - 2(2)k

Ak

The method used here is quasi-adaptiveduring the 
first 6 scans after iniationi.e. 6 values of the
matrix have been stored. For the followingscans
the final values of a,0 are used. Optimal values
of a and 0 have been determinedthroughk k
simulationsreported in ref. (4) (5) and (6).

The six sets of a and aused during the first
six steps of the tracking process are:

ak 0.76; 0.59; 0.48; 0.40; 0.34; 0.34

(3.15)
k

0.47; 0.25; 0.16; 0.11; 0.06; 0.045

The equations (3.11), (3.12)and (3.13) charaterize
a second order linear predictionfilter, wherein
damping is introducedby means of ak and 0, to
improve the performance of the system in te
presence of noise. This demping, however, degrades
the transient response. This means that always a
compromisehas to be made between good smoothingof
noise errors and a good transientresponse.
In deriving the optimal sets of ak, Ok most
emphasis vas laid upon minimizingthe r.m.s. errors
in the magnitude of the velocityvector and in
the distance between the true and filtered
positions.

The filter is a very simple filter and
requires little memory space and computer time.
It is an essential property of the filter that
the values of the matrix A, i.e. ak and 0t are
not calculatedduring the ?ilter process itself
as is the case with the gain matrix Kk in the
KALMAN filter.
After two consecutive antenna revolutionsthe
tracking is initiated.The initialstate vector
22 at k.2 is the same as in the KALMAN process,
see eq. (3.8) which means that at initiationa. 1
and 0.1 are selected.

In order to evaluate the two filter pro-
cesses, simular simulationshave been performed
with both. The generationof the errors in the
simulated radar data were based on a Gaussian
distribution in range as well as in azimuth.
Flights of many differentorientationsrelative
to the radar site were analysed.The results of
one representativeflight will be discussed in
this paper since the results appeared hardly to
depend on the orientationof the flight.The
characteristicsof this flight are summarizedin
the following table:

Table 1


Initial true state: X0 . 28 NM ; Yo . 7 NM

o=
75.5 kts;o = 238.8 kts

Antenna revolution
time: : T = 4 sec.

Standard deviation:Range GI,= 50 m

AzimuthG- = 0.08 degrees

To determine which number of runs is sufficient
(Monte Carlo trials), the results based on 25,50
and 100 trials were compared.The differencein
the results from 25 runs and 50 runs was more than
20 %. The differencebetween 50 and 100 runs was
less than 5 %. A number of 100 runs vas therefore
consideredto be sufficient.
The covariancematrix Pk of the state vector in
the KALMAN filter has been calculatedautomatically
each scan. The diagonalelements of this matrix
are the variances of the errors in the state
components;these varianceshave also been
calculated from the 100 runs.
It appeared that the standarddeviationsfrom the
covariancematrices vere some 5 % larger than the

Ptrue

actual r.m.s. values, which may be expected.The
parameters on the basis of which the performance
of both filters vill be discussed are:
the differenceAs between true position and
smoothed track position;As

-1:trackthe differenceAv between true ground speed and
the smoothed track speed; Av 17itruel 1.17trackl
the difference AH between true and smoothed
heading; 611 Htrue Htrack'

At each scan the value of As, Av and AH has been
calculated.The mean and the r.m.s. error at each
scan have been calculatedfrom the 100 runs.
Although the mean values of AX and AY appearedto
be zero, it is clear that the mean of As, which
is always positive,cannot be zero.
Figure 1 shows the mean and the standarddeviation
of the error As at successivescans.
At initiationthe values for "a-0" and "KALMAN"are
exactly the same, which is evident since the same
initial state vector has been used.
It can be seen from the figure, that for the
following scans, althoughthe KALMAN filter gives
superior results, the differencebetween the two
filteringprocesses is so small (some 5 %) that
the a-0 filter is quite acceptable.

and ARk =

14
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If the error distributionof As would be Gaussian,
then for about 17 % of the cases the error As will
be larger than the mean plus 1C7.Then from figure 1
it follows that after about 8 scans (32 secs after
initiation)the error As will - for about 83 % of
the cases - be smaller than some 70 m.
Deviationin the order of this magnitudewill not
be perceptableon the display screen of the air
traffic controller.
Figure 2 and 3 show the picture of the standard
deviationof the velocity error and the heading
error respectively.
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Figure2 Velocity standarddeviation.
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Figure 3 Heading standard deviation.

The mean values of the errors appeared to be zero
in general, however, at initiationa bias can
arise due to the limited number of 100 runs.
At initiation the velocity standarddeviation is
for both filters 30 kts.
From figure 2 it can be seen that during the
scans nr. 4-10 "KALMAN" is slightly superiorto
"a-0". The difference,however,doesnot exceed 10 %.
The 8th scan e.g. shows a velocity standard
deviation of 3.4 kts for "a-0" and 3.1 kts for
"KALMAN".
The difference is due to the fact that the a,0
values of the "a-0" filter during the 4th, 5th
and 6th scans after initiationare not optimal
from the point of view of the standarddeviation
of the velocity; when these values would be taken
slightly smaller (5-10 %) no significantdifference
would remain.
The picture of the heading error is about the same.
The accuracy of both filters is very good. The
lcrvalueof the heading error is within 8 scans
(32 secs) reduced to about 1 degree from 10 degrees
at initiation.
For both filters the velocity standard deviation
approaches to about 2.5 kts. The magnitude of this
limit for the a-0 filter depends on the selected
11,0 values and the standarddeviation(iw
representingthe air turbulanceeffects.
ForTv 0 the error would converge further to
zero in case of the KALMAN filter.To illustrate
this effect, figure 4 shows the velocity standard
deviation for the same flight but with(Tw 0.

20

240 4 8 12 16 20

SCAN NUMBER

Figure 1 Mean and standarddeviationof the
position error Ls.
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Figure 5 Velocitybias (mean error) for
straightacceleratedflights.
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Figure 4 Velocity standarddeviation
without air turbulance.

In this case it can be seen that the KALMAN
filter further approachesto zero whereas the a-0
filter approaches to about 1.7 kts which value
depends on the selectedvalues of a and 3. However,
if the quasi-adaptivecharacterof the a-H filter
would be extended to scan numbers above 6 better
results would be obtained.

Though the radar errors used in these
simulationsare based on the radar specifications,
it may turn out that the actualerrors are higher.
Further it should be kept in mind that the blip
to scan ratio has been assumed to be 1 in the
simulations,while in practice some plots will be
missed.

V. Some aspects of trackingmanoeuvringflights.


Although the tracking process for manoeuvring
flights will not extensivelybe discussed in this
paper, some attention will be paid to slowly
acceleratingstraight flights.To test the
performanceof both filters,tvo flights have been
simulated in which the aircraftacceleratedat a
rate of 4.5 kts/min and 9 kts/min respectively.
The initial conditions were the same as given in
table 1, while for the a-0 filter as well as for
the KALMAN filter the model used is the same as
described in section III.
To illustratethe results of this simulation
figure 5 shows the mean of the velocity error.

The performance for both filters is within 10 %
the same. Within a some 10 scans the mean approaches
to a constant value of about 1.9 kts for an
accelerationof 4.5 kts/min (3.8kts for 9 kts/min).
The results indicatethat both filters have the
same capability in respondingto the navigational
correctionsof the pilot and/or inadvertantchanges
in aircraft speed. However,when the acceleration
becomes larger or turns are executed, an unacceptable
mean will result in the velocity and track position
errors if the filters are unaltered.
To track such flightsthe a-P filter has to be
extended with a manoeuvredetection logic. The
KALMAN filter can be extended by adding acceleration
terms to the dynamicalequations (3.1).This aspect
has been investigatedin a number of papers (11) (12).
The problem, however, is that the type of the
manoeuvre is not known, i.e. the accelerationin the
cartesian co-ordinatesis not a constant for a turn.
The problem can be attackedby developingspecial
models for the manoeuvreequations in such a way
that at each scan it is assumed with a certain
probabilitythat a manoeuvre is executed. It
depends on the actual consecutivemeasurementswhich
manoeuvre is detected by this model. The author has
some feeling that by such models results are obtain-
ed which are not significantlybetter than for an
a-13filter with a manoeuvredetection logic.
In the SARP a-0 system the discrepancybetween
plot and predictedpositionat each scan is used
as a means to decide vhether the target is executing
a manoeuvre. If such a manoeuvre is detectedthen
the a,13values are adapted.

VI. Computationalaspects.


An importantaspect of the KALMAN filter is
the calculationof the gain matrix Kk at each scan.
The gain matrix is merely dependentupon the
statisticsdescribedby Pk, Mk and Qk. At each scan

6



the state covariancematrix Pk and the measurement
covariancematrix Mk must be determined.To
initiatethe proces initial values of Po and Mo
must be derived.The matrix Mo is easily calculated
from eq. (2.5).The matrix Po, as derived in
section 3, however, requires an extensiveset of
calculations.The performanceof the KALMAR filter
process depends on the initial covariancematrix.
To illustratethis influenceof Po some runs have
been made with Po N I where I is the identity
matrix and N is a large number. Actually this means
that almost no statisticalinformationon the
initial state is available.
For the calculationof the gain matrix and the
covariancematrix at the first scan the following
relationsmust be used now (9)

; K1 . P1 H1T M1-1 (6.1)

Figure 6 illustratesthe results of the velocity
standard deviation for this initiationprocess.
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Figure 6 Velocity standarddeviation for a
a large initial covariance matrix P.

To compare the results the same results for "a-0"
from fig. 2 are plotted as well. The "KALMAN"
results show an error of about 30 kts during the
first 3 antenna scans. During the later scans the
performanceof the filter improvesas rapidly as
in the case of the optimal initiationmatrix. Such
a non-optimalinitiationapparentlycauses a delay
of 12 secs (3 scans).
The KALMAN filter requires more memory space since
besides the flight plan information,the vectors

ik and xk - also the covariancematrix Pk has to
be stored for each aircraft each antenna revolution.
Compared to the s-0 method in the SARP-systemit
is estimated that the KALMAN will require about
25 % more memory space. The total computation
time seems also to be considerablyhigher than for
the a-0 filter.
Although this time depends on the type of the
computer used, a rough indicationis given by
comparingrequired computer time for both filters
on the NLR CDC 3300 computer. It appearedthat in
general the "KALMAN" takes about 200 % more
computer time than the "a-0" method.

VII. Conclusions


On the basis of a model of the characteristics
of the new terminal surveillanceradar at Amsterdam
airport simulationshave been carried out in order
to evaluate the accuracy aspects of two filtering
methods ("Kalman" and "a-0") for use in the process
of aircraft tracking.

It appeared that for straight flights the
Kalman filter gives somewhatsuperior results
(5-10 % smaller errors). The order of magnitude of
the r.m.s.-valueof the error in the calculated
velocity is about 6 kts (after 4 radar scans),
which decreases to 3 kts after some 8 scans; at
this moment an accuracy in the calculated heading
of about 10 has been reached.

Although the performanceof the filters vas
not extensively analyzed for the case of manoeuvring
flights the results obtained indicate that the
difference in performanceof the two filters is of
the same order of magnitude (some 10 %).

The tracking process as carried out by means
of the Kalman filter, however,requires about 25 %
more computer memory and - at least for the NLR
computer used for the investigation- about three
times as much computer time as in the case of the
much simpler "a-0" filter.

It is therefore concludedthat for the

terminal system at Schipholthe "a-0" filter is

quite acceptable for aircraft tracking purposes.

List of symbols


a

rk

tk

x-
k

xk the predicted linear estimate of the state

k
at tk before zk is used

3;k
position vector directlycalculated from

k

ik measurement vector at tk

the predicted estimate of ik from ik atzk
tk

difference between true and smoothed heading

difference between true position andAs
smoothed track position

difference between true ground speed andAv
smoothed track speed

position smoothingparameter in the "a-0"a
filteringmethod

-1 , T -1
= Po +1 M1 H1)

-1
1

acceleration in kts/min.

random sequencevector deterioratingthe
dynamical system at tk

measured range at tk

radius vector in polar co-ordinates

time at kth antenna revolution
(k 0, 1, 2 	

the linear estimate of the state ik at
tk using the data Ek
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CT standard deviation

0 velocity smoothingparameter in the "a-0"
filteringmethod

k measured azimuth at tk

2 Deffontaines,E. "Predictiond'une trajectoire
a partir de mesures anterieu-
res bruitees et echantillon-
nees"
Thesis i la facultedes
sciencesde l'universitede

standard deviation of the speed perturbations
due to air turbulence

standard deviationof the error in thear
measured range

Cig standard deviationof the error in the
measured azimuth

Ak weighting matrix in the "a-0" filtering
method.

relation matrix betweenerrors in the
initial state and errors in the initial
measurements

heading

Hk observationmatrix at tk

identitymatrix

Kk optimal gain matrix for the KALMAN filter
at tk

Mk covariancematrix of the measurementdata

k

Pk covariancematrix of the state vector ik
at tk

Pk covariancematrix of the predicted state
vector kk

Qk covariance matrix ofk

antenna revolutiontime (4 secs)

ik the state transitionmatrix at tk

AT the matrix transposeof A

A-1 the matrix inverse of A

3 Benedict, T.R.

Paris. IprimerieNational
Paris1966.

"Syntheticsof an optimal
setting radar track-while-scan
smoothingequations"
IRE Transactionson Automatic
Control.July 1962.
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