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Abstract

An effective numerical method using
two-dimensional characteristic compatibi-
1lity relations is worked out for the com-
putations of three-dimensional supersonic
gas flows with non-equilibrium physico-
chemical processes. This method is appli-
ed to the numerical analysis of supersonic
flows of non-equilibrium dissociating
oxygen in non-axisymmetrical nozzles and
about blunt-nose direct and inverse cones
at angle of attack. Some calculated re-
sults are presented as graphs which des-
cribe the distributions of various physi-
cal parameters on the body surface and
inside the flow-field. The non-equilibri-
um effects are investigated by the compa-
rison with the corresponding data for
frozen and equilibrium streams.

1. Introduction

It 1s well known that various physico-

chemical transformations due to strong
heating, proceed in supersonic high~-tem-
perature gas flows in nozzles or for
flight of hypersonic vehicles. These pro-
cesses involve such phenomena as excita-
tion of vibrational degrees of freedom,
molecule decay and atom exchange, excita-
tion of electron levels of mclecules and
atoms, ionization. Depending on conditi-
ons the rate of these processes can be
different. In two limiting cases, when
the rate 1s zero or infinite, the frozen
or equilibrium physico-chemical transfor-
mations take place, respectively.
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In general case the rates of reac-
tions are finite and thus non-equilibrium
irreversible processes occur in a gas.
The degree of ron-equilibrium is defined
by the ratio cof relaxation time to a cha-
racteristic time of flow. Not only the
velocity, temperature and pressure of
free str2am, but also the linear size of
the body determine the properties of non-
equilibrium flows. ¥hen the linear size
or the pressure increase the flow appro-
aches the equilibrium regime; when these
parameters decrease,the fiow approaches
the frozen regime.

The relaxation time for different
reactions taking place in non-equilibrium
streams of multi - component gas mixture
may be essentially different. Besides that
the rate of an individual reaction may
vary rather widely in the flow region.
The simultaneous presense of slow and
rapld processes complicates the numerical
calculaticn of non-equilibrium gas streams.
llowever the principal difficulty is here
connected with the behaviour of relaxa-
tion equations which are the equations of
stiff type. The coafficient at the highest
derivative in these equations tends to
zero when the flow approaches the equili-
brium state. This fact can cause a nume-
rical instability for integrating the re-
laxation equations. To avoid this insta-
bility it is necessary to use implicit
difference schemes or some speclal tech-
niques.



Two-dimensional and axisymmetrical
non-equilibrium supersonic flows of gas
have been studied in detail. As to three-
dimensional non-equilibrium streams (gas
motion in non-axisymmetrical nozzles or
flow about a body at an angle of attack),
only several works are published on this
topic. The transition from numerical so-
lution of plane and axisymmetrical prob-
lem to three-dimensional one requires not
only more complicate computating algo-
rithms and larger bulk of calculations,
but essentially complicates a flow-field
structure and increases its non-uniformi-
ty; as a result, there appear serious nu-
merical difficulties.

The investigation of three-dimensio-
nal non-equilibrium supersonic gas stre-
ams, taking into account a sufficiently
accurate kinetics of physico-~chemical pro-
cesses, 1s very important. However reli-
able physical data involved in kinetics
equations are mainly available for simple
gases (oxygen, nitrogen) which by this re-
ason are considered more often to study
three-dimensional non-equilibrium flows.
In the case of the air, several tens reac-
tions between gas components may arise,
therefore here it is usually introduced a
kinetics model including only some basic
reactions (disaociation, exchange proces-
ses 1n atom-molecule collisions, associa-
tive ionization).

The papers published on three-dimen-
sional non-equilibrium supersonic gas
streams concern, chiefly, the problem of
flow about nose part of a blunted body at
an angle of attack. It has been considered
the air (1), the oxygen (2’, the oxygen,
nitrogen and air (3,4 . The numerical ana-
lysis of purely supersonic flows of non-

equilibrium oxygen was carried out for non-
and for blunt-

axisymmetrical nozzles 5,6)

nose inverted cones at angle of attack

A small portion of shock layer, disposed

behind the sonic surface, was also calcu-
lated in the work ). Supersonic region

of three-dimensional non-equilibrium air

flow about a body of sphere segment shape

was computed in the paper (8); however
here the full equations of kinetics were
taken only in the symmetry plane of flow.
The combustion in three-dimensional super-
sonic streams has been studied in the work
9 where a model exothermal reaction 1is

used.

2. The governing system of equations

The system of partial differential
equations for steady flows of inviscid
non-heatconducting gas consists of the
well-known continuity, momentum and energy
equations

vpV=o,

f('-\j'v)v+ vp=0, (1)

pVuh -Vup=o,

were if ’ P » P h - the velocity vector,
pressure, density and enthalpy of gas,res-
pectively.

Physico-chemical processes in a gas
are assumed to be described by M determi-
nating parameters C; (i=1,2,...,m),
The role of such parameters is played by
energies of internal degrees of freedom,
mass concentrations of components of gas
mixture, etc. We choose as two thermody-
namic parameters the pressure P and the
temperature T . Then the relaxation equa-
tion for each process may be taken in such
a general form

Rils .
= G ALY, (2)
L=1’2,..-,m 3

The thermal and calorical equations
of state will be represented by the expres-
sions

«P=P(P;T:C1""’Cfﬂ) ’
h =h ( P,'r, Cy yee23Cm) .

(3
(4)



The actual form of equations (2)-(4) 1is
given by the physical and chemical kine-
tics. In the general case, when the change
of the parameters C, depends on K pro-
cesses, the right-hand parts of relaxation
equations (2) have the following struc-
ture

X

FL ﬁ;t‘?;“ (P!TJ Cyseres cm)'fik(P:‘T' Coreen C,,.) : (5)

The function q’ik is proportional to the
rate of the k-th physico-chemical process.
For flows with frozen reactions ¢; =0 ,
while for flows with equilibrium reactions
;> and fik® O . In the equilibrium
case there appear the relations C;=C.~,(P,T)
and thus here only the pressure and the
temperature remain as the determining pa-
rameters.

The governing system (1)-(4) allows
to calculate non-equilibrium gas streams.
As known, this system is elliptic at sub-
sonic velocities, while it is hyperbolic
at supersonic velocities. It 1s possible
to compute supersonic region starting from
the initial data obtained on a space-like
surface, i.e. on such a surface where the
normal velocity at any point is much than

frozen sound velocity a 1,
=72
ap

=20, 22 (2h)7(4 -
= ap AT/ \ P
The boundary condition on the body

surface for the system (1)-(4) is the con-
dition of vanishing normal velocity. On

the shock assumed as a discontinuity front
of zero thickness, the Rankine-Hugoniot re-
lations hold, no vibrational degrees of
freedom are excited, and concentrations of
all the chemical components are frozen.

3. The numerical method of solution

The numerical method using two-dimen-
sional characteristic compatibility rela-
tions was worked out (5,6,10) for three-
dimensional non-equilibrium supersonic gas
flows.

The original system of equations (1)-
(4) is taken in the cylindrical coordina-
tes oC , I , ¥ connected with the body.

The axis X is directed along the body
axis. For simplicity, we confine ourselves
to smooth bodies with a symmetry plane pa-
rallel to uniform free stream; thus 0€ W<
£ 180°, A flow region is supposed to be
bounded along two sides by some surfaces
r=rg(x,y) and f‘=l"$(x,‘{’) . In the
case of external flow about a body, the
first surface 1s the bedy surface and the
second one is the shock wave. The norma-
lized variable F’("""a)/( ry-rg) 1s
introduced instead of | .

The derivatives with respect to
are eliminated from the governirg system
rewritten in the variables - B,V
0dd, { , and even, § + functions in y
are approximated by trigonometrical poli-
nomials

bl b=
f th‘ Cnt ft SLnn'Y
- =4
£ & ~ (?)
;=Z > d.nefecos ny .
n=90 =0

Here, we take as interpolation nodes L+1
equally spaced meridional semi—planes
W=y, =tr/L (8=0,1,..., L),
subscript [ denotes the value of a func-
tion in the corresponding meridional semi-
plane, C ¢ and d,g are the numerical
coefficients.

As & result, the original three-dimen-
sional system is reduced to the approxima-
ting system of differential equations in
two independent variables XX and s but
for the values of basic functions in all
[ +1 semi-planes V=Y, -

Now we introduce some designations

o



where W , U , W are the velocity compo-
nents along the directions OC , ¥
respectively; (L 1s the frozen sound velo-
city (6).

The approximating system is hyperbo-
lic in a supersonic region, where the
quantity ﬁ is real., In the each meridio-
nal semi-plane of interpolation, this sys-
tem possesses two families of wave charac-
teristics and one family of analogoues of
stream lines, which are describing by the
equations

df 1 W'tap
otx"?ri()” _uf-—al—)’

()
df L
dx 'r,-r.()“ft)'

The following compatibility relations hold
along the wave characteristiocs

1 [§ ua'(§tp) i

*& 1l
dM
mil ]oLx

dt -——idPi'

W xa’s
3 Mo 3 (9)

u?.

The compatibility relations along the ana-
logoues of stream lines have such a view

mdv- dur+-4d-(l“§_,- §,,)d:x =0,
du+’;d-tf+}f—aolp+ (10)

2 (3,+8d,)dx=0.

In addition, the energy equation from (1)
and the equations (4) must be considered
along the last lines, namely

dT-(% - aP) )dp .%obc =0,

(1)
de; + %1_ dx=o0 .

All the compatibility relations taken
in each semi-plane of interpolation are
interconnected, since the quantities ‘1’
include the derlvatives with respect to

§ » which are defired by the approxima-
tions (7) in terms of the values of basic
functions in all the semi-planes Y=y, .

The numerical method using two-dimen-
sional characteristic compatibility rela-
tions is based on the finite-difference
representation of the differentiel equa-
tions (8)-(11). Here, it is constructed a
implicit numerical scheme of the second or-
der of accuracy. The solution is calcula-
ted on successive planes X =const at no-
dal points with fixed values of = const,
which are identical for all the interpola-
tion semi-planes \Y=const. The characte-
rictic lines are issued from the nodal po-
int under calculation towards the previous
earlier computed plane X=const where the
values of functions at the corresponding
points of intersection are defined by
quadratic interpolation. The finite-dif-
ference equations are solved by iterations
carried out simultaneously at all the no-
dal points with identical value of F and
different values of ql « The concrete com-
?uting algorithms are given in the works

» 6, 10 « A speclal difference Sscheme
of the second order of acocuracy is deve-
loped for stable and effective integrati-
on of the relaxation equations near the
equilibrium. In this scheme,the functions
ka_ from (5) are not calculated expliocit-
ly at the point with equilibrium state,
but are represented by two-term expansion
in that parameter C; , which tends to
the equilibrium value.



The given numerical scheme has a spe-
ciel construction. The application eof tri-
gonometrical approximations, taking into
account the behaviour of gas cross motion
in three-dimensional flows about smooth
bodies, allows to approximate the deriva-
tives using simultaneously all the nodal
points in this direction. As a result,
sufficlently accurate solution is obtained
for small number (five-nine) of interpola-
tion semi-planes. The actual reduction of
three-dimensional problem to two-dimensio-
nal one makes the scheme really simple.
Here it is used a fixed network which may
be easily refined in narrow local zones
with large transverse gradients, arisen in
non-equilibrium flows. In this scheme, it
is convenlient to integrate the relaxation
equations hold along stream line. The im-
plicit type and the second order of accu-
racy ensure numerical stability and econo-
mical realization of the scheme.

4, The discussion of numerical results

The developed method has been applied
to the numerical analysis of three-dimen-
sional supersonic streams of non-equilib-
rium dissociating oxygen in non-axisymmet-
rical nozzles and about blunted cones at
angle of attack.

Concerning the kinetics it is suppo-
sed the equilibrium excitation of internal
degrees of freedom, the absence of elect-
rone level excitation and of ionization.
In such a case,there exists the single non-
equilibrium parameter C —the dissociation
degree, that is the mass concentration of
atomic oxygen. The kinetics equations are
assumed to be the same as those in the
work (11).

The thermal and calorical equations
of state (3) and (4) for a diatomic gas
are taken as follows

F£= 1%;' ( . L i

CJCP(‘eh/h?'
1-exp(-6,/T)

F+3cC

h= =

T +6,C+1-0)6,

5

The function ¢ and § from the expression
(5) are

AP [2C+l—<-’-'l (1-C)]:

g =

T (1+c¢) Kt
f=A (a- VT [1- exp(- 2e)]
cexal- 8- 5

Here, O , Oy X » AN, & are cer-
tain dimensionless physical parameters,k’l1
and Kg, are the constants of recombination
rate for triple collision; their values
are presented in the work 11).

The basic functions in the above
equations and everywhere below will be
considered as dimensionless, assuming as
reference quantities the certain length,
the free stream density f_ and velocity
V., the gas constant of oxygenQR.

At first, we shall analyse a non-
equilibrium flow in non-axisymmetrical
nozzle being a tube of elliptic cross-sec-
tion (with semi-axes ratio a/b = 1.5,

a = 0.5m ) with a profiled inner body.
The contours of the nozzle in two symmet-
ry planes Y= 0° and \y=90° are shown in
Fig.1. At the nozzle entrance ( XX=0) the
cross-section of the inner body is also
a similar ellipse with focal semi- length
equal to 0.362 m (this quantity is taken
as the reference length).

We shall discuss some numerical re-
sults for the case when the oxygen stream
at nozzle entrance has Mach number M 21.2,
temperature TQ- 5,000°K and pressure Pco=
1 atm. Here we present the distributions
of physical parameters along the outer
tube of nozzle for Y= 0° and Y= 900. All
the non-equilibrium data will be plotted
by solid lines. It is interesting to com-
pare the non-equilibrium flow with the
equilibrium and frozen flows in nozzle for
the same entrance values of velocity, tem-
perature and pressure. The results for
two these limiting cases will be drawn by
dashed-dotted and dashed lines, respeoti-




vely.

The change of dissociation degree C
is given in Fig.2. Naturally, this quanti-
ty in frozen flow is constant. Since the
temperature drops in accelerating non-
equilibrium stream in nozzle, the recom-
bination of oxygen atoms proceeds and the-
refore the dissociation degree decreases
along the nozzle. The non-equilibrium cur-
ves of dissociation degree are initially
close to equilibrium dependences. Subse-
quently the flow deflects from equilibri-
um state and rather rapidly becomes fro-
zen owing to intensive expansion. Then
the dissociation degree remains practi-
cally constant, but different along diffe-
ferent generators of nozzle.

The behaviour of temperature is con-
sidered in Fig.3. The recombination accom-
panied by a heat release causes a tempera-
ture rise in comparison with the case of
frozen reactions. Non-equilibrium curves
essentially differ from equilibrium ones
and pass between equilibrium and frozen
dependences corresponding to two limiting
reaction rates.

The variation of Mach number is 1llu-
strated in Fig.4. For frozen reaction a
strong drop of temperature diminishes so-
und velocities and increases Mach numbers.
In non-equilibrium (as well as in frozen)
and in equilibrium streams, Mach number
is defined through frozen and equilibrium
sound velocity, respectively. As a result,
the total difference between Mach number
distributions in two these cases reduces,
though the Mach number of equilibrium free-
stream at the same velocity \L” rises to
M°= 1.316.

Now we shall study how the non-equi-
librium dissociation affects a flow-field
and aerodynamic properties of blunted co-
nes at an angle of attack of . We shall
consider, mainly, inverted elliptic cones
with semi-apex angles (W< 0 and also di-
rect cones ( W >0 ). At first we present
someé numerical results for bodies having
an-ellipsoid bluntness with the semi-axes
ratio B/ @& =1.5 and the axis b = 1 m

set in the symmetry plane of flow. This
size b 1is taken as the reference length.
We direct the axis IC along the body axis
from its front point and assume that Y= o
relates to the windward side and q/=48©°
to the leeward side. The free stream of
non-dissociated oxygen has the following
parameters: Moo=10, o = 10°,T¢,=300°K,
F%d= 0.001 atm. Ve have computed the super-
sonic flow region starting from initial
data at X=0.5, obtained by numerical me-
thods @ and (12)[3130 see (qB)]for the
flow about nose part of the body.

The shape of shock wave in the sym-
metry plane for the inverted cone UJ=—30°
is shown in Fig.5. The solid line relates
to non-equilibrium dissociating oxygen
and the dashed line to frozen (diatomic
perfect) gas. The dissociation of oxygen
molecules behind the shock wave, going
with heat absorption, causes significant
drop of temperaturz and rise of density
in shock layer.This effect changes the
geometry of flow-field pattern. The shock
wave detachment in real gas 1s shortened,
being in non-equilibrium case somewhat
larger than in equilibrium one. The dimi-
nution of sound velocity, due to dissoci-
ation, decreases the total size of subso-
nic zone 1in shock layer. The stagnation
point on the body removes some more to-
wards the position of maximum body cross-
section.

The pressure distributions along sur-
face of blunted bodies (inverted cones, a
direct cone W=10° and & cylinder wso")
are presented in Filg.6, where the data
are plotted for the windward generator
@=0° (solid line) and for the leeward
generator = 180° (dashed line). This cur-
ves have two portions related to the ellip-
soid bluntness ard to conical surface.

The flow behaves itself differently along
the windward and leeward sides of inverted
cones. The cross-flow and retardation of
gas sharply increase the pressure on the
leeward side near the aft body point. Here
a secondary shock wave and a local subso-
nic zone arise, thus it is not possible



to carry out the calculations by the me-~
thod of characteristics upto the aft point.
For comparison, the appropriate data in a
perfect diatomic gas for an inverted cone
a)=-30° are indicated by crosses in this
graph. As seen, the non-equilibrium disso-~
clation a 1little influences the pressure
distribution.

The similar graph for temperature dis-
tribution is presented in Fig.7. The com-
parison with results for frozen flow about
an inverted cone UJ=-30° (ocrosses) demon~
strates how the relaxation process decre-
ases the gas temperature.

Figure & gives the change of Mach num-
ber along several generators on an inver-
ted cone(¢):-30° in non-equilibrium (solid
lines) and frozen (dashed 1ines)streams.
The dissociaticn process deminishes Mach
numbers on the body, but it still more
diminishes total velocity (approximately
by 25-30 per cent on the conical portion
of body). The relaxation effect for Mach
number 1s weakened because of a reduction
of sound velocity. It is interesting that
Mach number varies non-monotonically near
the aft pointy in fact, the values of M
for Y= 180° are less than for Y= 90° or
W = 135°.

The last circumstance is due to a be-
haviour of peripheral velocity W charac-
terizing a three-dimensional feature of
flow. The body distributions of function W
on versus \y at various fixed distances
X 1is shown in Fig.9. The peripheral ve-

locity in non-equilibrium case (solid lines)

is less than in frozen one (dashed lines).
Approaching the aft body point, the peri-
pheral velocity rapidly rises and the posi-
tion of its maximum removes towards the
leeward side.

Now we shall analyse a change of some
physical functions across shock layer on

an inverted coneLU=-30°. Appropriate graphs

versus the normalized variable f ( =0
relates to the body surface, ; =1 to the
shock wave) are plotted in Fig. 10-14 at a
number of 3C in a certain semi-plane Y=
const.

The dissociation degree distribution
across shock layer (Y= 180°) 1s given
in Fi1g.10 not only in supersonic region,
but also along the axis X (r=0) and the
limiting characteristic bounding the mi-
nimal domain of influence (dashed-dotted
line). Transverse gradients of dissocia-
tion degree within the shock layer are
fairly large, while its longitudinal gra-
dients on the body surface are very small.

The temperature profiles (Fig.11, Y=
O°) are non-monotonic, reaching a maximum
between body and shock wave. The non-equi-
librium dissoclation most intensively de-
creases the body surface temperature.

The density (Fig.12, Y= 1800) rises
from body to shock wave. The density pro-
files become very steep at large distances
% and consequently the most part of gas
is concentrated near shock wave. This
graph also illustrates how a shock layer
becomes more dense owing to dissociation.
It should be noted that pressure also
rises from body to shock wave.

The behaviour of peripheral velocity
at y= 90° 1s shown in Fig.13. This func-
tion weakly varies near shock wave, but
it rapidly increases near body surface at
large XC . The radial velocity (Fig.14,
W= 0% is positive at =0 and negative
at Fs'l. Hence, the gas moves to body sur-
face in one part of shock layer and to
shock wave in other part. The axial velo-
city somewhat rises from body to shock
wave, while the Mach number changes non-
monotonically, having a minimum inside
shock layer.

The non-symmetry of stream at angle
of attack &£=10° appreciably influences a
flow-fleld. Concerning an effect produced
by angle of attack, it i3 possible to
Judge by Fig.15 where the pressure distri-
butions are plotted along the windward
(s0lid lines) and the leaward (dashed 1i-
nes) generators of a inverted cone (WDz-20°
in non-equilibrium dissociating oxygen
stream at various angles of attack o= 0°,
5°, and 10°. When angle of attack increa-
ses, a stiff rise of pressure (and also




temperature) occurs on the leeward side
near the aft body point.

Now let us consider aerodynamic coef-
ficients for total forces acting upon a
body. We shall present some results for
several inverted cones with spherical
bluntness of radius b=z1m 1in a non-equ-
11ibrium dissociating oxygen stream with
the following parameters:M,=10, p,_= 0.001
atm, T, = 288°K. The graphs will be given
for angles of attack t=10° (solid lines)
and of = 15° (dashed lines). The appropri-
ate data for a diatomic perfect gas will
be indicated by circles and triangles.

The aerodynamic coefficients are referred
to the free-stream dynamic head and the
maximal cross-section area of body.

The coefficient of normal force C,‘
and the coefficient of longitudinal moment
C o (with respect to the axis passing
through the front body point) are plotted
in Fig.16 as functions of body length X .
The similar graph for the ratio of normal

and tangential force coefficients,}(=C;/C;

is given in Fig.17. Here additionally,
some curves for the position of centre of
pressure, X = Cm/cn are depicted for
non-equilibrium stream at of = 10°. It
should be remarked that X, - curves for

ol =’15° and for perfect gas don't prac-
tically differ from the presented curves
for L= 10°. An investigation proves that
for considered inverted cones, the coeffi-
clents Cn and Cm are linear functions
of angle of attack up to fairly large va-
lues of of 4 the dependence K=K (o) 1s
also close to linear. A non-equilibrium
dissociation very slightly affects the
aerodynamic coefficients, since this re-
laxation process weakly influences the bo-
dy pressure distribution.

The numerical analys=is carried out
has allowed to study non-equilibrium dis-
soclation effects for three-dimensional
supersonic flow-fields. It has been found
that a finite rate of process results in
both quantitive, and qualitive changes of
flow properties.
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