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Abstract

An effecti.venumerical method using

two-dimensional characteristic compatibi-

lity relations is worked out for the com-

putations of three-dimensional supersonic

gas flows with non-equilibrium physioo-

chemical processes. This method is appli-

ed to the numerical analysis of supersonic

flows of non-equilibrium dissociating

oxygen in non-axisymmetrical nozzles and

about blunt-nose direct and inverse cones

at angle of attack. Some calculated re-

sults are,presented as graphs which des-

cribe the distributions of various physi-

cal parameters on the body surface and

inside the flow-field. The non-equilibri-

um effects are investigated by the compa-

rison with the corresponding data for

frozen and equilibrium streams.

1. Introduction

It is well known that various physico-

chemical transformations due to strong

heating, proceed in supersonic high-tem-

perature gas flows in nozzles or for

flight of hypersonic vehicles. These pro-

cesses involve such phenomena as excita-

tion of vibrational degrees of freedom,

molecule decay and atom exchange, excita-

tion of electron levels of molecules and

atoms, ionization. Depending on conditi-

ons the rate of these processes can be

different. In two limiting cases, when

the rate is zero or infinite, the frozen

or equilibrium physico-chemical transfor-

mations take place, respectively.

In general case the rates of reac-

tions are finite and thus non-equilibrium

irreversible processes occur in a gas.

The degree of non-equilibrium is defined

by the ratio of relaxation time to a cha-

racteristic time of flow. Not only the

velocity, temperature and pressure of

free stream, but also the linear size of

the body determine the properties of non-

equilibrium flows. When the linear size

or the pressure increase,the flow appro-

aches the equilibrium regime; when theme

parameters decrease,the flow approaches

the frozen regime.

The relaxation time for different

reactions taking place in non-equilibrium

streams of multi -component gas mixture

may be essentially different. Besides that

the rate of an individual reaction may

vary rather widely in the flow region.

The simultaneous presense of slow and

rapid processes complicates the numerical

calculation of non-equilibrium gas streams.

However the principal difficulty is here

connected with the behaviour of relaxa-

tion equations which are the equations of

stiff type. The coefficient at the highest

derivative in these equations tends to

zero when the flow approaches the equili-

brium state. This fact can cause a nume-

rical instability for integiating the re-

laxation equations. To avoid this insta-

bility it is necessary to use implicit

difference sohemes or some special tech-

niques.



Two-dimensional and axisymmetrical

non-equilibrium supersonic flows of gas

have been studied in detail. As to three-

dimensional non-equilibrium streams (gas

motion in non-axisymmetrical nozzles or

flow about a body at an angle of attack),

only several works are published on this

topio. The transition from numerical so-

lution of plane and axisymmetrical prob-

lem to three-dimensional one requires not

only more complicate computating algo-

rithms and larger bulk of calculations,

but essentially complicates a flow-field

structure and increases its non-uniformi-

ty; as a result, there appear serious nu-

merical difficulties.

The investigation of three-dimensio-

nal non-equilibrium supersonic gas stre-

ams, taking into account a sufficiently

accurate kinetics of physico-chemical pro-

cesses, is very important. However reli-

able physical data involved in kinetics

equations are mainly available for simple

gases (oxygen, nitrogen) which by this re-

ason are considered more often to study

three-dimensional non-equilibrium flows.
In the case of the air, several tens reac-

tions between gas components may arise,

therefore here it is usually introduced a

kinetics model including only some basic

reactions (dissociation, exchange proces-

ses in atom-molecule collisions, associa-

tive ionization).

The papers published on three-dimen-

sional non-equilibrium supersonic gas

streams concern, chiefly, the problem of

flow about nose part of a blunted body at

an angle of attack. It has been considered
(11,

 theair the oxygen (2), the oxygen,

nitrogen and air (3'4). The numerical ana-

lysis of purely supersonic flows of non-

equilibrium oxygen was carried out for non-

axisymmetrical nozzles (5,6) and for blunt-
(7)nose inverted cones at angle of attack

A small portion of shock layer, disposed

behind the sonic surface, was also calcu-
(3)lated in the work . oupersonic region

Of three-dimensional non-equilibrium air

flow about a body of sphere segment shape

was computed in the paper (8); however

here the full equatiop of kinetics were

taken only in the symmetry plane of flow.

The combustion in three-dimensional super-

sonic streams has been studied in the work
(9) where a model exothermal reaction is

used.

2. The governing system of equations

The system of partial differential

equations for steady flows of inviscid

non-heatconducting gas consists of the

well-known oontinuity, momentum and energy

equations

v _p"Sr'= 0,

1(-‘7v)ii+ vp=o, (1)

pV vh - Vp 0,

were V , p ,9 , h - the velooity vector,

pressure, density and enthalpy of gas,res-
pectively.

Physico-chemical processes in a gas

are assumed to be described by n1 determi-

nating parameters C ( ...,

The role of such parameters is played by

energies of internal degrees of freedom,

mass concentrations of components of gas

mixture, etc. we choose as two thermody-

namic parameters the pressure p and the

temperature lr . Then the relaxation equa-

tion for each process may be taken in such

a general form

etc- —F (p T
( 2)

The thermal and oalorical equations

of state will be represented by the expres-

sions

, (3)

h =h ( P,T, . (1)
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The actual form of equations (2)-(4) is

given by the physical and chemical kine-

tics. In the general case, when the change

of the parameters Ci depends on i( pro-

cesses, the right-hand parts of relaxation

equations (2) have the following struc-

ture
K.

(gT,c1, ..., Cm)fik( Cm) . (5)
kri

The function dPik is proportional to the

rate of the k-th physico-chemical process.

For flows with frozen reactions CPik= 0
,

while for flows with equilibrium reactions

lac. CO and fik:s 0 . In the equilibrium

case there appear the relations C =cz.(p,T)
and thus here only the pressure and the

temperature remain as the determining pa-

rameters.

The governing system (1)-(4) allows

to calculate non-equilibrium gas streams.

As known, this system is elliptic at sub-

sonic velocities, while it is hyperbolic

at supersonic velocities. It is possible

to compute supersonic region starting from

the initial data obtained on a space-like

surface, i.e. on such a surface where the

normal velocity at any point is much than

frozen sound velocity

The boundary condition on the body

surface for the system (1)-(4) is the con-

dition of vanishing normal velocity. On

the shock assumed as a discontinuity front

of zero thickness, the Rankine-Hugoniot re-

lations hold, no vibrational degrees of

freedom are excited, and concentrations of

all the chemical components are frozen.

3. The numerical method of solution

The numerical method using two-dimen-

sional characteristic compatibility rela-

tions was worked out (5,6,10) for three-

dimensional non-equilibrium supersonic gas

flows.

The original system of equations (1)-

(4) is taken in the cylindrical coordina-

tes x , r , y oonnected with the body.

The axis X is directed along the body

axis. For simplicity, we oonfine ourselves

to smooth bodies with a symmetry plane pa-

rallel to uniform free streams thus n4)..

180°. A flow region is supposed to be

bounded along two sides by some surfaces

r r6(1:, 4)) and r=rs(x, 4)) . In the

cane of external flow about a body, the

first surface is the body surface and the

second one is the shock wave. The norma-

lized variable V .(r-re)/( ri- rig) is

introduced instead of r .

The derivatives with respect to y

are eliminated from the governing system

rewritten in the variables 3

Odd, 5 , and even, 5 , functions in y

are approximated by trigonometrical poli-

nomials

L-1L-1

E cra SLft rt-41 y
m=1 t=i

L L

	

f = E cLnefecos .
T..otr-0

Here, we take as interpolation nodes L+.1.
equally spaced meridional semi-planes

	

----- = n/L (e.0,1,..., L) , the

subscript t denotes the value of a func-

tion in the corresponding meridional semi-

plane, Crit and &rte.are the numerical

coefficients.

As a result, the original three-dimen-

sional system is reduced to the approxima-

ting system of differential equations in

two independent variables OC and , but


for the values of basic functions in all

L+1. semi-planes 4)=ye .

Now we introduce some designations

_ a rg _ are
k -ax

_ ri_prs are), argi
r— r LF.k a4) a9)/ axi

= Lap (11-,W(.13--12,0i-v2(6)

(v)



In addition, the energyequationfrom (1)
and the equatione(4) must be considered

along the last lines,namely

ah Vah
Lk acirr -4.

0,

(11)

Lf rtt4/-

/ (.12-
4 + rt2) - 1) 9a

C 4 	
LL

where U. ,if , LI/are the velocity compo-
nents along the directionsJC r tie9
respeotively,a is the frozen sound velo-

city (6).

The approximatingsystem is hyperbo-
lic in a supersonicregion,where the

quantityj3 is real. In the each meridio-
nal semi-planeof interpolation,this sys-
tem possessestwe familiesof wave charac-

teristicsand one familyof analogouesof
stream lines, which are describingby the

equations

2,x u_ (12.13_
-rs t - a2 ) ;

04
(3 )

x rs- rg

The followingcompatibilityrelationshold

along the wave charaoteristios

r O.
22

“- j3)

	

LL _a -

x LC2k ejs
2 2-- 2 4' 9 P3 4 rt (9)

- LA.tr '444 cix = o .
a 7C

The compatibilityrelationsalong the ana-
logouesof stream lines have such a view

- &LT+ -(12:04 / 3 - Cdcix 0 ,

cLik + chr + ctp + (lo)
914

+

All the compatibilityrelationstaken

in each semi-planeof interpolationare

interconnected,since the quantities

include the derivativeswith respect to
yv which are definedby the approxima-




tions (7) in terms of the values of basic

funotionsin all the semi-planes1/40--krt .

The numericalmethodusing two-dimen-
sional characteristiccompatibilityrela-
tions is based on the finite-difference

representationof the differentialequa-
tions (8)-(11).Here, it is constructeda

implicitnumertcalschemeof the second or-
der of accuracy.The solutionis calcula-

ted on successiveplanes Xx.- const at no-
dal points with fixedvalues of y.const,
which are identicalfor all the interpola-

tion semi-planes yr= const. The characte-

rictic lines are issuedfrom the nodal po-

int under calculationtowards the previous

earlier oomputedplane Xcconst where the
values of functionsat the corresponding
points of intersectionare defined by

quadraticinterpolation.The finite-dif-
ference equationsare solved by iterations
carried out simultaneouslyat all the no-

dal points with identicalvalue of and

differentvalues of y The conoreteoom-

puting algorithmsare given in the works
(5, 6, 10) . A specialdifferenoesoheme
of the second order of accuracy is deve-
loped for stable and effectiveintegrati-

on of the relaxationequationsnear the
equilibrium.In this scheme,thefunctions

from (5) are not oalculatedexplioit-
ly at the point with equilibriumstate,

but are representedby two-termexpansion

in that parameter C.,, which tends to

the equilibriumvalue.

4



The given numerical scheme has a spe-

cial construction. The application of tri-

gonometrical approximations, taking into

account the behaviour of gas cross motion

in three-dimensional flows about smooth

bodies, allows to approximate the deriva-

tives using simultaneously all the nodal

points in this direction. As a result,

sufficiently accurate solution is obtained

for small number (five-nine) of interpola-

tion semi-planes. The actual reduction of

three-dimensional problem to two-dimensio-

nal one makes the scheme really simple.

Here it is used a fixed network which may

be easily refined in narrow local zones

with large transverse gradients, arisen in

non-equilibrium flows. In this scheme, it

is convenient to integrate the relaxation

equations hold along stream line. The im-

plicit type and the second order of accu-

racy ensure numerical stability and econo-

mical realization of the scheme.

4• The discussion of numerical results

The developed method has been applied

to the numerical analysis of three-dimen-

sional supersonic streams of non-equilib-

rium dissociating oxygen in non-axisymmet-

rical nozzles and about blunted cones at

angle of attack.

Concerning the kinetics it is suppo-

sed the equilibrium excitation of internal

degrees of freedom, the absence of elect-

rone level excitation and of ionization.

In such a case,there exists the single non-

equilibrium parameter C --the dissociation

degree, that is the mass concentration of

atomic oxygen. The kinetics equations are

assumed to be the same as those in the
(work11)

The thermal and calorical equations

of state (3) and (4) for a diatomic gas

are taken as follows

Th—(14 c)

k , "4+3c „ exp (-et, /T)
T +Drpc-f(i-c)Ov.

2 i-exp(-0,r/T) 


The function 1.10and 5 from the expression

(5) are

T (1c) kR1

( 1-• c2) exp(- -94r-)] x

2x exp(- ;12) — PTC .

Here, (937, X 9 A S are cer-

tain dimensionless physical parameters,k"

and i<R2are the constants of recombination

rate for triple collision; their values

are presented in the work

The basic functions in the above

equations and everywhere below will be

considered as dimensionleas, assuming as

reference quantities the certain length,

the free stream density ywand velocity

, the gas constant of oxygenR.

At first, we shall analyse a non-

equilibrium flow in non-axisymmetrical

nozzle being a tube of elliptic cross-sec-

tion (with semi-axes ratio a/b = 1.5,

a = 0.5 nn) with a profiled inner body.

The contours of the nozzle in two symmet-

ry planes 4/= 0o and W=900 are shown in

Fig.1. At the nozzle entrance (X-40) the

cross-section of the inner body is also

a similar ellipse with focal semi- length

equal to 0.362 nn (this quantity is taken

as the reference length).

We shall discuss some numerical re-

sults for the case when the oxygen stream

at nozzle entrance has Mach number m=1.2,co
temperature Tcow 5,000°K and pressure

1 atm. Here we present the distributions

of physical parameters along the outer

tube of nozzle for kV= 0° and 4; = 900. All

the non-equilibrium data will be plotted

by solid lines. It is interesting to com-

pare the non-equilibrium flow with the

equilibrium and frozen flows in nozzle for

the same entrance values of velocity, tem-

perature and pressure. The results for

two these limiting cases will be drawn by

dashed-dotted and dashed lines, respeoti-

P.,



vely.

The change of dissociation degree C

is given in Fig.2. Naturally, this quanti-

ty in frozen flow is constant. Since the

temperature drops in accelerating non-

equilibrium stream in nozzle, the recom-

bination of oxygen atoms proceeds and the-

refore the dissociation degree decreases

along the nozzle. The non-equilibrium cur-

ves of dissociation degree are initially

close to equilibrium dependences. Subse-

quently the flow deflects from equilibri-

um state and rather rapidly becomes fro-

zen owing to intensive expansion. Then

the dissociation degree remains practi-

cally constant, but different along diffe-

ferent generators of nozzle.

The behaviour of temperature is con-

sidered in Fig.3. The recombination accom-

panied by a heat release causes a tempera-

ture rise in comparison with the case of

frozen reactions. Non-equilibrium curves

essentially differ from equilibrium ones

and pass between equilibrium and frozen

dependences corresponding to two limiting

reaction rates.

The variation of Mach number is illu-

strated in Fig.4. For frozen reaction a

strong drop of temperature diminishes so-

und velocities and increases Mach numbers.

In non-equilibrium (as well as in frozen)

and in equilibrium streams, Mach number

is defined through frozen and equilibrium

sound velocity, respectively. As a result,

the total difference between Mach number

distributions in two these cases reduces,

though the Mach number of equilibrium free-

stream at the same velocity Voo rises to

Moo=1.316.
Now we shall study how the non-equi-

librium dissociation affeots a flow-field

and aerodynamic properties of blunted co-

nes at an angle of attack OC . We shall

consider, mainly, inverted elliptic cones

with semi-apex angles (A)< 0 and also di-

rect cones ( (.4)>0 ). At first we present

some numerical results for bodies having

an ellipsoid bluntness with the semi-axes

ratio b/a= 1.5 and the axis b I vin

set in the symmetry plane of flow. This

size b is taken as the reference length.

We direct the axis 3: along the body axis

from its front point and assume that kr=0°

relates to the windward side and 4i=1800

to the leeward side. The free stream of

non-dissociated oxygen has the following

parameters: Mco= 10, d = 10°,7'02=300oK,

poo= 0.001 atm. Te have computed the super-

sonic flow region starting from initial

data at 3C=0.5, obtained by numerical me-

thods (2) and (12)[also see (13)]for the

flow about nose part of the body.

The shape of shock wave in the sym-

metry plane for the inverted cone (4)=-300

is shown in Fig.5. The solid line relates

to non-equilibrium dissociating oxygen

and the dashed line to frozen (diatomic

perfect) gas. The dissociation of oxygen

molecules behind the shock wave, going

with heat absorption, causes significant

drop of temperature and rise of density

in shock layer.This effect changes the

geometry of flow-field pattern. The shock

wave detachment in real gas is shortened,

being in non-equilibrium case somewhat

larger than in equilibrium one. The dimi-

nution of sound velocity, due to dissoci-

ation, decreases the total size of subso-

nic zone in shock layer. The stagnation

point on the body removes some more to-

wards the position of maximum body cross-

section.

The pressure distributions along sur-

face of blunted bodies (inverted cones, a

direct cone W=10° and a cylinder W=0°)

are presented in Fig.6, where the data

are plotted for the windward generator

40=00 (solid line) ard for the leeward

generstory= 180° (dashed line). This cur-

ves have two portions related to the ellip-

soid bluntness ard to conical surfaoe.

The flow behaves itself differently along

the windward and leeward sides of inverted

cunes. The cross-flow and retardation of

gas sharply increase the pressure on the

leeward side near the aft body point. Here

a secondary shock wave and a local subso-

nic zone arise, thus it is not possible



to carry out the calculationsby the me-
thod of characteristicsupto the aft point.
For comparison,the appropriatedata in a
perfectdiatomic gas for an invertedcone
(47-300 are indicatedby crosses in this
graph.As seen, the non-equilibriumdisso-
ciationa little influencesthe pressure
distribution.

The dissociationdegree distribution
across shock layer (41= 1800) is given
in Fig.10 not only in supersonicregion,
but also along the axis OC (rw0) and the
limitingcharacteristicbounding the mi-
nimal domain of influence(dashed-dotted
line). Transversegradientsof dissocia-
tion degree within the shock layer are

The similar graph for temperaturedis- fairly large, while its longitudinalgra-
tributionis presentedin Fig.7. The com- dients on the body surfaceare very small.
parison With results for frozen flow about The temperatureprofiles (Fig.11,4v=
an invertedcone (A)=-300(crosses)demon- 00) are non-monotonic,reaching a maximum
strateshow the relaxationprocessdecre- between body and shock wave. The non-equi-
ases the gas temperature. libriumdissociationmost intensivelyde-

Figure b gives the change of Mach num- creases the body surfacetemperature.
The density (Fig.12,yr..-180°) rises

from body to shook wave. The density pro-
files become very steep at large distances
lc and consequentlythe most part of gas
is concentratednear shock wave. This
graph also illustrateshow a shock layer
becomes more dense owing to dissociation.
It should be noted that pressure also
rises from body to shock wave.

The behaviour of peripheralvelocity
at yr. 90° is shown in Fig.13. This func-
tion weakly varies near shock wave, but
it rapidly increasesnear body surface at
large X • The radial velocity (Fig.14,

The last circumstanceis due to a be- q0= 0°) is positiveat =.$;)and negative
haviour of peripheralvelocityUf charac- at 1. Hence, the gas moves to body sur-
terizinga three-dimensionalfeature of face in one part of shock layer and to

flow. The body distributionsof functionUl shock wave in other part. The axial velo-
on versus y at various fixed distances city somewhat rises from body to shock
X is shown in Fig.9. The peripheralve- wave, while the Mach number changes non-
locity in non-equilibriumcase (solid lines) monotonically,having a minimum inside
is less than in frozen one (dashed lines), shock layer.
Approachingthe aft body point, the peri- The non-symmetryof stream at angle
pheral velocity rapidly rises and the posi- of attack dC=10° appreciablyinfluencesa
tion of its maximum removes towards the flow-field.Concerningan effect produced
leewardside. by angle of attack, it 13 possible to

	

Now we shall analysea change of some judge by Fig.15 where the pressure distri-
physicalfunctions across shock layer on buttons are plotted along the windward
an invertedcone(4)=-30°.Appropriategraphs (solid lines) and the leeward (dashed li-
versus the normalizedvariable ( 0 nes) generators of a invertedcone(A)z-20°
relates to the body surface, 1 to the in non-equilibriumdissociatingoxygen
shock wave) are plotted in Fig. 10-14 at a stream at various angles of attack oiC=00,

	

number of X in a certain semi-plane •= 50, and 10°. When angle of attack increa-
const. ses, a stiff rise of pressure (and also

ber along several generatorson an inver-
ted cone(A)=-30°in non-equilibrium(solid
lines) and frozen (dashed lines)streams.
The dissociaticnprocessdeminishesMach
numbers on the body, but it still more
diminishestotal velocity (approximately
by 25-30 per cent on the conicalportion
of body). The relaxationeffect for Mach
number is weakened because of a reduction
of sound velocity. It is interestingthat
Mach number variesnon-monotonicallynear
the aft point; in fact, the values of ri
for 4/=-.1800 are less than for t.e=900 or

135o.



temperature)occurs on the leeward side

near the aft body point.

Now let us consideraerodynamiccoef-

ficientsfor total forcesacting upon a

body. We shall presentsome results for

several invertedcones with spherical

bluntnessof radius 1,7.1p,.in a non-equ-

ilibriumdissociatingoxygen stream with

the following parameters:Mwrz10,pc.=0.001

atm,11.0=288°1C.The graphswill be given

for angles of attack00:10° (solid lines)

andcC= 15° (dashed lines).The appropri-

ate data for a diatomicperfect gas will

be indicatedby circlesand triangles.

The aerodynamiccoefficientsare referred

to the free-streamdynamichead and the

maximal cross-sectionarea of body.

The coefficientof normal force Cips.

and the coefficientof longitudinalmoment

Cm (with respect to the axis passing
throughthe front body point) are plotted

in Fig.16 as functionsof body length 3C .

The similar graph for the ratio of normal

and tangentialforce coefficients,X=CA

is given in Fig.17. Here additionally,

some curves for the positionof centre of

pressure,1:c=Cm/C, are depicted for

non-equilibriumstreamat 6(= 10°. It

should be remarked that )Cc- curves for

04 =15° and for perfectgas don't prac-

ticallydiffer from the presentedcurves

for 01C=10°. An investigationproves that

for consideredinvertedcones, the coeffi-

cients C., and Cm are linear functions

of angle of attack up to fairly large va-

lues of y the dependence11:=1((oljis

also close to linear. A non-equilibrium

dissociationvery slightlyaffects the

aerodynamiccoefficients,since this re-

laxationprocess weakly influencesthe bo-

dy pressuredistribution.

The numerical analysiscarried out

has allowed to study non-equilibriumdis-

sociationeffects for three-dimensional

supersonicflow-fields.It has been found

that a finite rate of process results in

both quantitive,and qualitivechanges of

flo* properties.
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