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Abstract

The problem of gas expanding into va-
cuum is formulated on the basis of the
Krook's kinetic equation. The two-dimen-
sional flow is considered as an example.
The numerical scheme of solution is pro-
posed, valid for any Knudsen's number. It
consists of an iterational process combi-
ned with averaging over the lateral compo-
nent of molecular velocity. After intro-
duction of the characteristic variables
the finite-difference equations substitute
for differential ones. Initial equations
are formulated for a distribution function
but the numerical method permits to store
in the grid points only macroscopic flow
parameters. Numerical results showing va-
riation of these parameters are represen-
ted in graphical form.

1. Introduction and Formulation of
the problem

The problem of expansion of gaseous
Jets has many different aspects. Depen-
ding on the conditions of expansion itself
and on the initial state of gaseous medi-
um one could 1list several classes of jet
flows, and everyone of them needs essen-
tially different mathematical approach to
study it. There are (1) incompressible,
non-viscous jets, (2) subsonic, compres-
sible, non-viscous jets, (3) supersonic
compressible, non-viscous jets, (4) lami-
nar, viscous, incompressible jets, (5)
turbulent incompressible jets, (6) lami-
nar, viscous, compressible jets, (7) tur-
bulent compressible jets, (8) jets of ra-
refied gases.

Detailed rewievs of the methods of
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investigation of all but the last types
of flow may be found in (172), The short
rewlev of methods for so called "rarefied"
Jets exists in (3).

Let us consider the case of jet ex-
hausting into vacuum in steady flow con-
ditions. In such a case inside of jet it-
self the regions of very low density will
be inevitably created, and for the inves-
tigation it is necessary to use the me-
thods of the kinetic theory. The case of
a free molecular jet flow was considered
by Knudsenm (4’. Later there were found
some amendments to a free molecular so-
lution (5_8), but up to the present time
the full analysis of the kinetic problem
for arbitrary Knudsen number was not car-
ried out. Such an analysis 1is suggested
below for the case of two-dimensional mo-
tion. In principle, the present approach
will do for the axisymmetrical flow, too,
except of some difficulties connected
with the impossibility of excluding from
consideration the third component of mo-
lecular velocity.

Let the gas, having at infinity the
density n, and temperature T, , flow
out of the half-space bounded by a thin
wall into vacuum, through an infinitely
long slit of the width 2R (Fig.1). Assu-
ming the flow to be steady we shall use
for its description the kinetic equation
in the form of a Krook's model (9)=

5.%,':-+§;%F,=N(F-F),
MNP

h=m,/2kT, v=nkT, /M.
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Here f(%,Y,%.,8y,8:) 1s the distribution

function, ¥ = collision frequency, m -

viscosity coefficient, m - mass of the

k - Boltzmann constant, n -
-

u -

molecule,
numerical density,
macroscopic velocity of gas.

There are standard relations to spe-
cify macroscopic parameters:

ne [fdf, at [E6E,
3KT=4 [1B(E-2)F5.

In the case of maxwellian molecules,

when anu'r y the collisicn frequency is
v=An. (3)

The boundary conditions in infinity

are obvious from the formulation of
the problem:

f(eo,y,8)=

=n.u(-%£)%exp(-h.,§') for §x<0,
F(:ao.y,§:)==<9 for ¢,>0.

To specify the boundgry conditions at
the wall we assume that the wall's materi-
al is non-heat-conducting and that the mo-
lecules are reflected from the surface
diffusely with the complete thermal acco-
modation. The distribution function of
the particles emitted from the wvacuum-
faced side of the wall, is denoted by £ 5
whereas for the particles emitted from
the opposite side we shall have f' . Then
the boundary conditions at the wall are

£(+.5)=n, ( %‘-)%cxp(—h )

tor |y|>R, 3.>0,

FG5)en. (&) exp(hoy)

tor |y[>R, &, <O.

T - temperature,

(2)

(4)

(5)

In order to find the values nN: (y)
and [ (YQ which are not known in advance
one should use the conditions of conser-

yation of the flows of mass and energy at
the wall (that is, for Xx=0, [Y|>R ):

5O, §)4E = S

550
(6)
2 4 > mn,

-E[ﬁ 33 (0.y,8)dE = Vaht

J 2 f(o,y,E)dE - 27—;';; -

50

sj 28 24O 57

>0

Thus, mathematically the problem is
reduced to that o1 solution of the non-
linear integro-differential equation (1)
with the boundary conditions (4)-(6).

2. Transformation of the Fgugtions

The main equation (1) may be simplied
fied by means of integration in the velo-
city space over Z - component from -oco
to +o0 . Then, after multiplying all terms
of equation (1) by gf and making the
same integration, we shall ultimately ob-
tain two equations:

;.i“ =y(r,.-fj) Ji=t2 /

(7)
E=n%cxp(—hc'),
Fz 2jrexp(—hc°)
where C%=(F,-U,) + G,-u,)
and, by defimition,
f.6ov,8.,3,) = [fde i

fE0,50) 1148,

Macroscopic parameters are easily axpresgﬁ
in terms of functions {j y namely

n= [f,ds.ds, , u,:%—fg‘f,d_;‘d;,, 9)



=;‘,—f§,£df,df,,
Tege j(f Cr f2)dg, s, .

Thus, instead of equation (1) we have
now two integro-differential equations
(7) for the functions {3 . These equa-
tions are simpler than the initial one,
because the functions f} depend only on
two components of the molecular velocity
vector, namely, on §, and ¥, . That means
that from now on the said vector may be
treated as two-dimensional.

Further analysis would be consider-
ably simplified if we introduce dimensi-
onless variables

- X — V% V2
¥=-—§- 3 y=—R—- y h.f,)g, h fh
R=n . F-T
n=— T== (10)
n”, T’w‘
g™ h"“* > ij""T::LJv,
I 2n
feilmf. R-2Ze
After changing initial variables by means

of transformation (10), dropping the bar
over the dimensionless variables and de-
fining the new dimensionless parameter

o(-—-An.,h:'E,

we shall come to a new form of equations

(7)=-(9):
Eaf 3{ o(n(F' f) Zj=4,2/

~pen(%), enencS),

(1)

(12)

(28°F,+£,)df -3 (ui+u}),

where we still have c’:(g,-u.)'+(§,-u,)a_

The conditions at infinity may be
written in new variables in the form

-52
{'=e fo X - » $2%0,
j B e 8 Yy
f;=0 for x-=+-e0, >0,
/Jz‘| 2/

Lcon&d-ul
The boundary’at the wall are not dif-

ficult to obtain after transforming equa-
tions (5) and (6) first to new functions
f} and then to dimensionless variables.
We have now

f4!=":—_:“P('£)

* " peor lyl>4,8.20.
$ =n,exp(—1.

For abbreviation it is convenient to use
the following notatlons

Ge= f:{;@,)':f)df,
$.$0

(14)

E: (15
g SR RCRRACE L
5.8

Then it is possible to find the parameters
ne and Ts from the formulae

ng= : T Es (16)
t E;& ) + (;=

Let the mean molecular velocity be
defined as

<e> = [ 8 ) FGov bt 148,

Then at the large distances from the slit
<§>=2-"Vmh, and the Knudsen number
is

_ 1
K= Jr"‘ AnhZR '

Comparison of the last equation with equa-
tion (11) gives

o(=23'l'-v"K-. (.17\



which means that the parameter of 1is in-
versely proportional to the Knudsen num-
ber.

It 1s to be noted that different
authors introduce the Knudsen number in
somewhat different ways. All these num-
bers only slightly differ from each other
and their radio is always close to unity.
The only important thing to know 1is the
order of the Knudsen number.

3. The Method of Solution

The system of equations (12) with
the boundary conditions (13), (14) and
(16) will be solved by the method of ite-
rations. The iterational scheme is of the

type "
'r o {[" (u)( (®) . (ew

= 8

R GRS

In respect to the functions {}(k'o

equations (18) are partial differential
equations with the characteristics defined
by the relation

(X~x2)E, = (Y-Yo)3«- (19)

Along the characteristical lines we have
instead of (18) an ordinary differential
equation

(mer)
4t ), o

where the distance C is measured along
the characteristics.

In the velocity space we introduce
the polar coordinate system,

Ebeosp, B=8Sing,  (an

where (P is the angle between the charac-
teristical line and the x-axis.

The macroscopic parameters of the
(k+1)-st approximation may be calculated
now from the relations substituting those
which enter equations (12), namely

n*= [P, oy, p)dy,
u:w),._n‘.m}qQ;(z,y,cr)olf, (22)

0“0

o™ e P, )

1’&*0____153J3¢;>(} y;chhf 3I§ ““1+040ﬁj1

Here

P, = [ 2,5, |

=] T,
R3S

Instead of equations (15) in polar
coordinates we have

G: ;= :'_Afcp (%) Co54p dp,

(23

(24)

£5"=25m | O, Gup) cospf

where

(P.f@z @), (25)
@s =j§2(eja{‘(uo')+ 'f.zrnm))d‘E |

The 1limits of integration in equations
(24) are: for the surface of the wall fa-
cing vacuum -M/2 < ¢ € M2 , whereas
for the opposite surface J/2<ip €3M2.

In spite of the fact that the flow
proceeds in the unbounded space, we shall
look for the macroscopic parameters inside
the finite domain Q. Let us choose this
domain to be of rectangular form with the
center of symmetry coinciding with the
origin and the bounding lines parallel to
coordinate axes. The conditions (13)
written for the infinite distance from
the slot assume to be fulfilled at the
boundary [ of the domain @ . The part
of this boundary situated at the vacuum

| —



side will be designated by [. , and tiae
upstream part of it - by [, . Subdomains
divided by y-axis are designated by Q-
and @, , correspondingly. Of course, the
domain @ should be sufficiently large to
ensure the small influence of the stated
assumptions on the solution of the prob-
lem.

The domain @ will be divided by a
grid with equal size of cells along the
both axes. The edges of the s1it with co-
ordinates (O, % 1) must necessary coincide
with any two of the grid points. It is
assumed that in all the grid points the
moments of the k-th approximation are
kown, that 1s, N™ @ T | pue to
a symmetry in respect to x-axis we may
restrict ourselves by cornsideration of on-
ly upper half-space, the x-axis included.
It is to be noted that the wall has two
surfaces, which means that at the grid
points belonging to a wall one should
prescribe for each of these pocints two
values of the macroscopic parameters.

The important assumption is that all
the macroscopic variables are changing
between the neighbouring grid points
according to a linear law. It is easy to
see that this assumption is not very good
in the vacinity of the edges, where the
flow parameters are changing most quickly.
Moreover, for the large Knudsen numbers
these parameters lose their condinuity at
the points (0,%*1) (zee, for example, ana-
lytic formulae for the free molecular
flow, (28) and (29)). Therefore, at these
grid points three values of the flow para-
meters must be prescribed: two for both
sides of the wall and one for the limit
from inside of the s1it along the y-axis.

The essentlial features of the compu-
tational process are the following. For
the chosen angle  the characteristic
lines are drawn, covering the whole do-
main Q « Along each of these lines the
equation (20) 1s solved with the appropri-
ate initial conditions. Then, after inte-
gration over t one gets the values of
the integrals (23)' and (25) along the

characteristics; the values at the grid
points are found by means of linear inter-
poltation between the netghbouring charac-
teristics. Making such a calculations for
various values of ¢ between zero and 2%
and adding together all the ¢-tunctiona
multiplied by the coefficients, which de-
pend on the type of the integration for-
mula, one obtains the integral sums reces-
sary for getting at the grid points the
moments of the (k+1)-th approximation. Re-
peating the process we shall obtain the
(k+2)-th approximation and so on, until
the iterations converge.

By conducting the calculations it is
necessary to make a distinction for seve-
ral families of characteristics depending
on their direction and inclination. These
factors have an essential influence of
the choice of the initial conditions, as
well as on the some details of the inter-
polation process. The full description of
all the possible variants would take too
much place, we have but to draw attention
to the following fact. As it was already
mentiomﬁ the fdhow parameters are discon-
tinuous along the y-axis, and thus the
edge of the slit is the singular point.

By the calculations, the macroscopic para-
meters at this point were taken to be
equal to the half-sums of their limit val-
ues near the positive and negative sides
of the wall. It is assumed that such a
simplification will not essentially influ-
ence MM the solution as a whole, if only
the cell size h 1s less than the mean
free path of the molecules.

The integrals over the variables
were calculated by the Simpson's formulae
in which the upper 1limit was determined
by the condition ¥< U+3VT . The step
of integration was chosen to be 0.2. By
the way, the calculations showed that the
application of Gaussian formulae with the
Legendre's or Tchebysheff-Hermite's poly-
nomials is leading to diminishing of the
accuracy, especially in the region Q. .

The integration over Y was made
by the Simpson's method, too. Depending



on the variant of calculations, the step
of integration was taken between 2.5° and
1.25°,

To integrate the equation (20) along
the characteristic line we have applied
the implicit finite difference scheme of

the type

(...) (D]
 di—hues

F Fii = fio

(‘) ( (3] fl 1)

=Xhn - -',- ? (26)

where indics ( and i-1 ccrrespond to val-
ues at the two successive points of the
characteristic line, t; and EL, « The
scheme (26) is stable for any values of

P and o4

When solving the equations (20) it is

possible to write them down in integral
form (see (3)) and to calculate the re-
sults using the quadrature relations.
Such an approach might to be of higher
accuracy but demands larger computer time
due to a complex structure of integrals a
and integrands. As to the present method,
tt permits to save a great amount of the
computer time just because the calcula-
tions along the characteristics are con-
ducted simultaneously for the whole domain

Q@ . In spite of the fact that the cal-
culations are made on the level of distri-
bution function, it is possible to rest-
rict oneself by stoping in the grid points
only the moments of distribution function
of the k-th approximation and the integ-
ral sums for the (k+1)-th approximation.

4, The Numerical Results

Any iterational process leading to a
solution of the problem for the fiwed and
finite Knudsea number should take as an
initial step some solution known. It 1is
natural that for the large Knudsen numbers
such ~n initial solution would be the free
molecular flow. Taking into account that
the free molecular distribution function
is conserved along the rectilinear trajec-
tories of the particles, one could easily

obtain the azalytic expressions for the
macroscopic parameters in the upper half-
space. In the high-pressure region (X 20)
we have

n=n“( —.33_'0_.4.

am

T '
3 "C"'cfg%’? for X#0,

9-

2 | o :
é—gs:gn&-k) for x=0, .,

'&=arcig ;f—R- )
U, "3 (:;-;‘ (cos:?,-sz,_)
( (Sma' Smﬁ)

T=T,.-5':"E(u:+u,‘).

By the similar way, ir low-pressur: region

(x<0)

we obtain

33 g ‘ad
ax

N=Ne

)

-g +arctg ___y;i? for X%O0,
) T
5 -5 sign(y-R) for X=0.
7 -2 sign(v-R) (28)

&:—Mc‘f’a S'!‘é >
Ug=- 3 21rm) (0053 waﬁi)

u, = _g.:_.(:;';) (sinﬂz - sm?.),
L T-e"‘;'% (ul+uy).

In adGlition to the urual flow parame-
ters it is important to know the mass flow
rate of the gas through a slit. The local
mass flow rate is

()= [4,F 0y, §)d =,

whereas the total mass flow rate is equal
to

M=jgrh(y)°'y-

-R



The corresponding expressions for the
free molecular flow are

> Ne nuR -
o= v T consts Mo zeonst

For the Knudsen numbers K22 an
initial approximation was taken in the
free molecular form defined by equations
(27) and (28), The solution obtained for

K=2 was considered as en initial ap-
proximation for the case K=1 , whereas
the last solution was, in its turn, initi-
al for K= 0O.5. The establishment of the
profiles of macroscopic parameters was
considered as a criterion for convergency
of iterations. For the case K= 5 such a
convergency (with the accuracy of the or-
der of G.2%) was achieved after 5 itera-
tions, whereas for other values of K it
was necessary to make from 10 to 12 itera-
tions.

To chose the linear size of the cell -

the condition was set that the mean change
of the macroscopic parameters after divi-
ding that size by two should not exceed
1%. The value of h satisfying such a
ccndition was 0.25 (for K2 2) or 0.125
(for K< 2).

Lather serious difficulties were doo-
untered by the choice of the outer bounda-
ry of the domain @ . As a matter of fact,
the boundary conditions for the particles
entering this domain (see equations (13))
ought to be satisfied at the infinity,
whereas we spould set the same conditions
at the finite distance from the slit. It
might seem that the farther is the boun-~
dary r , the better accuracy will be
achieved in satisfying real boundary con-
ditions. But if the boundary [T 1s moved
too far away, then it will certainly in-
crease both the computer time and the me-
mory required. Moreover, acouracy of the
results becomes even worse due to the faot
that some of the flow parameters are very
small at the large distances, so that the
relative error 1s increased. Im the oppo-
site case of the boundary [° situated too

close to the slit, the layer where the
condition of conservation of mass is not
fulfilled, might influence the sclution
in the immediate vicinity of the slit, at
any rate from the high-pressure side.
Happily enough, ¢f the most interest
for us is the low-pressure region which
is the lenst snhjected to the influence
of the boundary's replacement. Neverthe-
less, by the calculations the mass flow
rates through several control surfaces
insid2 the domain Q were computed, and
by means of a trial-and-error method such
an cuter boundary [ was determined, for
which the accuracy of the mass conserva-
tion law fulfillment is not less than 3%.
Figures 2-4 show the changes of the
density, velocity and temperature along
the x -axis for various Knudsen numbers.
It is evident that the influence of the
Knudsen number on the density and velocity
is rather small in the higb-pressure re-
gion ( x>0 ). The temperature in this re-
gion tends to its 1limit value the faster,
the less is K. In the low=-pressure region
( Xx<O0 ) the pattern of density differs
very little from the free molecular solu-
tion, tco. However, by decreasing of K
there 1s a notable increase of the veloci-
ty and decrease of the temperature. It is
interesting to note that the same proper-
ties of the expansion into wvacuum are ob-
served by the study of source-type flow£19'13)

In the figures 5 and 6 are shown the
curves of th2 conatant density and cons-
tant temperature for the free molecular
flow ( K=0o ) and for the case K= 0.5.
The velocity fields for K=o00 , K= 5
and K=0.5 are shown in the figures 7-9,
where the arrows indicate the direction
of velocity vector. By the letter S the
sonic line 1s designated.

Finally, in the fig.10 there is shown
the change of the local mass flow rate
inside the slit, measured in the units of
the free molecular value rh.. It seems
that the calculated mass flow rates are
somewhat too low, since in all the cases



enlarging of the domain () or diminishing
of the cell size h leads to increasing*
of the flow rates., The dotted lines in
f1g2.10 correspond to the data given in
(5'6). As should be expeog%5§§§gsggn these
data and the present results is the more,
the less is Knudsen number.
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