
ICU PAPER
NO.72_36

THE STUDY OF GASEOUS JET

EXHAUSTING INTO VACUUM

by

V. P. Shidlovsky and V. V. Svettsov


Computing Center

Academy of Sciences of the USSR


Moscow, USSR

TheEighthCongress
01the

Internationalcouncilofine
Aeronauticalsciences

INTERNATIONAAL CONGRESCENTRUM RAI-AMSTERDAM, THE NETHERLANDS

AUGUST 28 TO SEPTEMBER 2, 1972

Price:3. Dfl.



á



THE STUDY OF GASEOUSJET EXHAUSTING INTO VACUUM


V.P. Shidlovsky,B.F. Limar, V.V. Svettsov

ComputingCenter,Aoademy of Sciences of the USSR, Mesoow, USSR

Abstract

The problem of gas expandinginto va-
cuum is formulatedon the basis of the
Krook's kinetic equation.The two—dimen—
sional flow is consideredas an example.
The numerical scheme of solution is pro—
posed, valid for any Knudsen'snumber. It
consists of an iterationalprocess combi—
ned with averaging over the lateral compo—
nent of molecularvelocity.After intro—
duction of the characteristicvariables
the finite—differenceequationssubstitute
for differentialones. Initial equations
are formulatedfor a distributionfunction
but the numerical method permits to store

in the grid points only macroscopicflow
parameters.Numericalresults showing va—
riation of these parametersare represen—
ted in graphical form.

1. Introductionand Formulationof
the problem

The problem of expansionof gaseous
jets has many differentaspects. Depen—

ding on the conditionsof expansionitself
and on the initial state of gaseous medi—
um one could list severalclasses of jet
flows, and everyone of them needs essen—
tially differentmathematicalapproach to
study it. There are (1) incompressible,
non—viscousjets, (2) subsonic,oompres—
sible, non—viscous jets, (3) supersonic
compressible,non—viscousjets, (4) lami—

nar, viscous, incompressiblejets, (5)
turbulentincompressiblejets, (6) lami—
nar, viscous, compressiblejets, (7) tur—

bulent compressiblejets, (8) jets of ra—
refied gases.

Detailed rewievs of the methods of


investigationof all but the last types
of flow may be found in (12). The short

rewiev of methods for so called "rarefied"
jets exists in (3)

Let us considerthe case of jet ex—
hausting into vacuum in steady flow con—
ditions. In such a case inside of jet it—
self the regions of very low density will
be inevitablycreated,and for the inves—
tigation it is necessaryto use the me—
thods of the kinetic theory. The case of
a free molecular jet flow was considered
by Knudsen (4). Later there were found

some amendments to a free molecular so—
lution (5-6), but up to the present time

the full analysis of the kinetic problem
for arbitrary Knudsennumber was not car—
ried out. Such an analysis is suggested
below for the case of two—dimensionalmo—

tion. In principle,the present approach
will do for the axisymmetricalflow, too,

except of some difficultiesconnected
with the impossibilityof excluding from
considerationthe third component of mo—

lecular velocity.

Let the gas, having at infinity the
density n. and temperature T,3 , flow
out of the half—spacebounded by a thin
wall into vacuum, throughan infinitely
long slit of the width 2R (Fig.1).Assu—
ming the flow to be steady we shall use
for its descriptionthe kinetic equation
in the form of a Krook'smodel (9):

t f 9P-

r=nCrexpE h(- al)
(1)

h=m/2kT, v=nkT/pi.



Here f(X,yA„ty,g1) is the distribution

function, y - collision frequency, p -

viscosity coefficient, ma- mass of the

molecule, k - Boltzmann constant, n -

numerical density, 1- - temperature, a -

macroscopic velocity of gas.

There are standard relations to spe-

cify macroscopic parameters:

n=ffcli ,
(2)

k-r Lr21(f-(1)2fd
In the case of maxwellian molecules,

when finr-r , the collision frequency is

	

v=An. (3)

The boundary conditions in infinity

are obvious from the formulation of

the problem:

(4 )

:--n.00i-rrexp(h.,) for

for

To specify the boundpry conditions at

the wall we assume that the wall's materi-

al is non-heat-conducting and that the mo-

lecules are reflected from the surface

diffusely with the complete thermal acco-

modation. The distribution function of

the particles emitted from the vacuum-

faced side of the wall, is denoted by f-,

whereas for the particles emitted from

the opposite side we shall have
r. . Then

the boundary conditions at the wall are

\ 1/2
(f)

,„
f+N)=ns exp(-h.,V)


for IyI>R, it>01

=n-M 1/2fYyD expEh_
for IyI>R, <O.

In order to find the values flt(y)

and Tr (y) which are not known in advance

one should use the conditions of conser-




'ration of the flows of mass and energy at

the wall (that is, for X=0,I5OR ):

f (o, Ddi=avnir+11.
1,<0




-f

	

_txf6),Y9Odf 2vnjr-h- 9
L>0

rnn_
-11-Lea),Y,01"--2.7-77-7.3.•

1.>()

Thus, mathematically the problem is

reduced to that 01 solution of the non-

linear integro-differential equation (1)

with the boundary conditions (4)-(6).

2. Transformation of the Equations_ _ _

The main equation (1) may be simplied

fled by means of integration in the velo-

city space over z - component from -oo

to +oo . Then, after multiplying al] terms

of equation (1) by Sf and making the

same integration, we shall ultimately ob-

tain two equations:




F;=n expEhc9,

21r expEhc)

where C2 UO2 uy)a

and, by definition,

fc4. , (8)

Macroscopic parameters are easily expressd

in terms of funotions fj , namely

clg„dt, , =kft,f,ds.dt (9)

(5)
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uy = -kft-y 4, cgy

3
rOds„ds,.

k n I

Thus, instead of equation (1) we have

now two integro-differential equations

(7) for the functions fj • These equa-

tions are simpler than the initial one,

because the functions fj depend only on

two components of the molecular velocity

vector, namely, on f. and gy • That means

that from now on the said vector may be

treated as two-dimensional.

Further analysis wculd be consider-

ably simplified if we introduce dimensi-

onless variables

) F.=h:2S,,,f,=h.;at, G, = --;f. a j L f, (0, y,f)clr ,

-T-= T (10)
1,0

n. 7
•

Et = (15)

	

t-7.=h.vau( , ay = 17'2uy, =TA--..f
.5,40

Then it is possible to find the parameters

nt and T1 from the formulae

G:"a Et
After changing initial variables by means (16)ni la.—"'..?/,...) T+ = r.
of transformation (10), dropping the bar ti.

over the dimensionless variables and de- Let the mean molecular velocity be

fining the new dimensionless parameter defined as

=A n h VZ R , (11) Yz>
15r. 54,1a .

we shall come to a new form of equations Y

n (F- j j =.1,2/" 9x ay
n/ car4.—TexiT- \

, Fa= ri-eXpE42)\,

n=(12)

ux=3--rn-1ft,f,JE , uy=-17,i,tyficif

Then at the large distances from the slit

and the Knudsen number

is

K 2 L	
Jr A ri.,,h;paR

Comparison of the last equation with equa-

tion (11) gives

The conditions at infinity may be

written in new variables in the form

f i?-12 for x-4.00,
(13)

= 0 for

The boUndaryvat the wall are not dif-

ficult to obtain after transforming equa-

tions (5) and (6) first to new functions

f. and then to dimensionless variables.

We have now

{41=
pit

TtT.
for Iyi>1.,.00. 041

For abbreviation it is convenient to use

the following notations

7i
fl = f' 12 -11.n.,ta

rT.— j (2e-ft +;2)4-4 (u:4 u,!), (171

a ,2
where we st131 have C (L-14.) +
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which meana that the parameter oC is in-

versely proportional to the Knudsen num-

ber.

It is to be noted that different

authors introduce the Knudsen number in

somewhat different ways. All these num-

bers only slightly differ from each other

and their radio is always close to unity.

The only important thing to know is the

order of the Knudsen number.

3. The Method of Solution

The system of equations (12) with

the boundary conditions (13), (14) and

(16) will be solved by the method of ite-

rations. The iterational scheme is of the

type
0.0 ae")___1

	

Si9x + ty oth6c)(F76'111j .(18)

r (kv)
In respect to the functions Ti

equations (18) are partial differential

equations with the characteristics defined

by the relation

xe ) fy (")Sa • (19)

Along the characteristical lines we have

instead of (18) an ordinary differential

equation
f

= Oln(11)(FJ f .6149 (20)
de 	 J

where the distance e is measured along

the characteristics.

In the velocity space we introduce

the polar coordinate system,

t cos ty = sin cf (21)

where ypis the angle between the charac-

teristical line and the x-axis.

The macroscopic parameters of the

(101)-st approximation may be calculated

now from the relations substituting those

which enter equations (12), namely

(w) 1 2R

1;0(1Y; le) chf
0

2ROc.n
I

‘.4)t — 357,7574501141(k,Vf)c 4f, (22)

(:•') 4 rair.x
Uy — sisInTY (x, (f)chp

	

yr n 2
0

141(*II 3 7r4,---7M1" jiWCP3(X Y) chi, gur"))2+6:1J.
Here

• (23)

sop=I.2f1(k.i)ciS1 0

Instead of equations (15) in polar

coordinates we have

G z f(pi(y,(p)c-ouedr)

E(")-- ' cp) cos tet 27i-Y2 s

where

(PI 6), tt9
cpsJ z

4.:K•04. f2 0) 41

The limits of integration in equations

(24) are: for the surface of the wall fa-

cing vacuum -31/2 (1)4 70 , whereas


for the opposite surface Ir/2.5.(f 37A.
In spite of the fact that the flow

proceeds in the unbounded space, we shall

look for the macroscopic parameters inside

the finite domain O. Let us choose this

domain to be of rectangular form with the

center of symmetry coinoiding with the

origin and the bounding lines parallel to

coordinate axes. The conditions (13)

written for the infinite distance from

the slot assume to be fulfilled at the

boundary r"of the domain Q . The part

of this boundary situated at the vacuum
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side will be designatedby rl,and the
upstreampart of it - by I-4..Subdomains
divided by y-axis are designatedby Q_
and Q, , correspondingly.Of course, the
domain Q should be sufficientlylarge to

ensure the small influenceof the stated

assumptionson the solutionof the prob-
lem.

The domain Q will be divided by a
grid with equal size of cells along the
both axes. The edges of the slit with co-

ordinates(0,t 1) must necessarycoincide

with any two of the grid points. It is
assumed that in all the grid points the

moments of the k-th approximationare

known, that is, r1N,E71-(g) . Due to

a symmetry in respect to x-axis we may

restrictourselvesby considerationof on-

ly upper half-space,the x-axis included.

It is to be notei that the wall has two
surfaces,which means that at the grid

points belongingto a wall one should

prescribefor each of these points two

values of the macroscopicparameters.

The importantassumptionis that all
the macroscopicvariablesare changing
between the neighbouringgrid points
according to a linear law. It is easy to
see that this assumptionis not very good

in the vilcinityof the edges, where the
flow parametersare changingmost quickly.

Moreover,for the large Knudsennumbers
these parameterslose their condinuityat

the points (0,± 1) (see, for example,ana-

lytic formulae for the free molecular

flow, (28) and (29)).Therefore,at these

grid points three values of the flow para-
meters must be prescribed two for both

sides or the wall and one for the limit

from inside of the slit along the y-axis.

The essential featuresof the compu-

tationalprocess are the following.For
the chosen angle tp the characteristic

lines are drawn, coverinR the whole do-

main Q . Along each of these lines the
equation (20) is solved with the appropri-

ate initial conditions.Then, after inte-
gration over t one gets the values of

the integrals (23)'‘and (25) along the


characteristics;the values at the grid

points are found by means of linear inter-

potation between the nehghbouring charac-

teristics. Making such a calculations for

various values of (f) between zero and 2.91"

and adding togetherall the 45-functions

multipliedby the coefficients,which de-

pend on the type of the integrationfor-

mula, one obtains the integral sums neces-

sary for getting at the grid points the

moments of the (k+1)-thapproximation.Re-

peating the prooesswe shall obtain the

(k+2)-thapproximationand so on, until

the iterationsconverge.

By conductingthe calculationsit is

necessary to make a distinctionfor seve-
ral families of characteristicsdepending

on their directionand inclination.These
factors have an essentialinfluence of

the choice of the initialconditions,as
well as on the some details of the inter-
polation process. The full descriptionof
all the possible variantswould take too

much place, we have but to draw attention

to the following fact. As it was already
mentionti,the Mow parametersare discon-

tinuousalong the y-axis,and thus the

edge of the slit is the singular point.

By the calculations,the macroscopicpara-
meters at this point were taken to be

equal to the half-sumsof their limit val-

ues near the positiveand negative sides
of the wall. It is assumed that such a

simplificationwill not essentiallyinflu-

ence mm the solutionas a whole, if only

the cell size h is less than thetnean
free path of the molecules.

The integralsover the variables
were calculated by the Simpson's formulae

in which the upper limit was determined
by the condition t< u+3V-F . The step

of integrationwas chosen to be 0.2. By

the way, the calculations showed that the

application of Gaussian formulae with the

Legendre's or Tchebysheff-Hermite's poly-

nomials is leading to diminishing of the

accuracy, especially in the region Q...

The integration over (4)was made

by the Simpson's method, too. Depending
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on the variant of calculations, the step

of integration was taken between 2.53 and

1.253.

To integrate the equation (20) along

the characteristic line we have applied

the implicit finite difference scheme of

the type
Ocv)

- cKili -f.. —f. • _ (0)(r. (1)

Ae

where indics i and 1-4correspond to val-

ues at the two successive points of the

characteristic line, ei and ti.4 . The

scheme (26) is stable for any values of

t and oC .

When solving the equations (20) it is

possible to write them down in integral

form (see (3)) and to calculate the re-

sults using the quadrature relations.

Such an approach might to be of higher

accuracy but demands larger computer time

due to a complex structure of integrals a

and integrands. As to the present method,

it permits to save a great amount of the

computer time just because the calcula-

tions along the characteristics are con-

ducted simultaneously for the whole domain

Q . In spite of the fact that the cal-

culations are made on the level of distri-

bution function, it is possible to rest-

rict oneself by storing in the grid points

only the moments of distribution function

of the k-th approximation and the integ-

ral sums for the (k+1)-th approximation.

4• The Numerical Results

Any iterational process leading to a

solution of the problem for the fi7tedand

finite Knudsen number should take as an

initial step some solution known. It is

natural that for the large Knudsen numbers

much -n initial solution would be the free

rolecular flow. Taking into account that

the free molecular distribution function

is conserved along the rectilinear trajec-

tories of the particles, one could easily


obtain the analytic expressions for the

macroscopic parameters in the upper half-

space. In the high-pressure region (X.:10
we have

 27rIA))

	

f7T 4 y-R-arc
X for X ,

- 2-11. si9n6-10for X= 0 ,
(2n

arcig

(12;---i-i--":014(COS- W350

14.y- Sin0;)

17..TOdpa Lily9

By the similar way, ir low-pressur3 region

(X 4 0) we obtain

air

(kT.
2n 27rm Ck)k),

U (. 21<-1
2n

-r!-)1/26in
Y rrn

T= - -r-7<3(u„24-4).

In audition to the urual flrw parame-

ters it is important to know the mass flow

rate of the gas through a slit. The local

mass flow rate is

(o,y)001,i

whereas the total mass flow rate is equal

to

fri=„1rh(Y)cly.
-g

Y-R+ arc Lci for X*0,
0 X

Ir .7- a sion(y.m)for X=0.
(28)

(26)
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The corresponding expressions for the

free molecular flow are

KA n.R 

mo= const, rt. 	 =cons&

2orhs,

For the Knudsen numbers P(..?.:2an

initial approximation waa taken in the

free molecular form defined by equations

(27) and (28). The solution obtained for

K=2 was concirleredag an initial ap-

proximation for the case PC=1 , whereas

the last solution was, in its turn, initi-

al for K.0.5. The establishment of the

profiles of macroscopic parameters was

considered as a criterion for convergency

of iterations. For the case K= 5 such a

convergency (with the accuracy uf the or-

der of 0.2%) was achieved after 5 itera-

tions, whereas for other values of K it

was necessary to make from 10 to 12 itera-

tions.

To chose the linear size of the cell •

the condition was set that the mean change

of the macroscopic parameters after divi-

ding that size by two should not exceed

1%. The value of h satisfying such a

ccndition was 0.25 (for K 21 or 0.125

(for K< 2).

Rather serious difficulties were ho-

untered by the choice of the outer bounda-

ry of the domain Q . As a matter of fact,

the boundary conditions for the particles

entering this domain (see equations (13))

ought to be satisfied at the infinity,

•hereas we saould set the same conditions

at the finite distance from the slit. It

might seem that the farther is the boun-

dary r , the better accuracy will be

achieved in satisfying real boundary con-

ditions. But if the boundary r"is moved

too far away, then it will certainly in-

crease both the computer time and the me-

mory required. Moreover, accuracy of the

results beoomes even worse due to the faot

that some of the nom parameters are very

small at the large distances, so that the

relative error is increased. In the oppo-

site case of the boundary r situated too

close to the slit, the layer where the

condition of conservationof mass is not

fulfilled, might influence the solution

in the immediate vicinity of the slit, at

any rate from the high-pressureside.

Happily enough, of the most interest

for us is the low-pressureregion which

is the lelst silbjectedto the influence

of the boundary's replacement.Neverthe-

less, by the calculations the mass flow

rates through several control surfaces

insidl the domain Q were computed, and

by means of a trial-snd-error method such

an outer boundary r was determined, for

which the accuracy of the mass conserva-

tion law fulfillment is not less than 3%.
Figures 2-4 show the changes of the

density, velocity and temperature along

the x -axis for various Knudsen numbers.

It is evident that the influence of the

Knudsen number on the density and velocity

is rather small in the high-pressure re-

gion ( x>0 ). The temperature in this re-

gion tends to its limit value the faster,

the less is K. In the low-pressure region

( X < 0 ) the pattern of density differs

very little from the free molecular solu-

tion, too. However, by decreasing of Pc
there is a notable innrease of the veloci-

ty and decrease of the temperature. It is

interesting to note that the same proper-

ties of the expansion into vacuum are ob-
(10-13)

served by the study of source-type flows .

In the figures 5 and 6 are shown the

curves of ths constant density and cons-

tant temperature for the free molecular

flow ( Kz-oo ) and for the case K. 0.5.

The velocity fields for PC00., PC.5
and Kz 0.5 ere shown in the figures 7-9,
where the arrows indicatethe direction

of velocity vector. By the letter S the

sonic line is designated.

Finally, in the fig.10 there Is shown

the change of the localmass flow rate

inside the slit, measured in the units of

the free molecular value riN9.It seems

that the calculatedmass flow rates are

somewhat too low, since in all the cases

7



enlargingof the domain Q or diminishing

of the cell size h leads to increasing*

of the flow rates. The dotted lines in

fig.10 correspond to the data given in

(5,6) . As should be expeoggWigign these

data and the present results is the more,

the less is Knudsennumber.
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