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DYNAMIC INELASTICPROPERTIESOF MATERIALS

Part I - Damping Characteristicsof Fiber Composites(*)

Zvi Hashin
Departmentof Materials Engineering

Technion - Israel Instituteof Technology
Haifa, Israel

Abstract

Analytical results for complexmoduli of uniax-
ially fiber reinforcedmaterialsmade of viscoelas-
tic matrix and elastic fibers arc reviewed. A gen-
eral mcthod is establishedto predict complex modu-
li and loss tangents of viscoelasticlaminatesmade
of uniaxially reinforced laminae. Results are
used to analyze some simple cases of vibrations of
structuresmade of such viscoelasticcomposites.

1. Introduction

The ever increasinguse of fiber composites
for aero/spacestructures requiresthe development
of rationalmethods for predictionof their rele-
vant propertieswithin engineeringaccuracy.

In most current fiber compositesthe matrix is
a polymer such as epoxy. It is well known that
such polymers exhibit the effect of vibrationdamp-
ing. Therefore such damping effectswill also
occur in composites in which the matrix is .polymer-
ic. Since aero/space structuresare subjected to
severe vibrationalenvironmentand since vibration
damping is beneficial,the quantitativeprediction
of such damping is of considerableengineeringimp-
ortance.

It is of interest to emphasizethe unique com-
bination of desirable propertieswhich arc exhibi-
ted by fiber composites: Superiorstrength and
stiffness,low weight and vibrationdamping. No
other materials seem to possess this many advant-
ages.

In ordcr to handle the problem analytically,
it is assumed that the matrix is linearlyvisco-
elastic. Its dynamic viscoelasticpropertiescan
then be characterizedin terms of the usual complex
moduli of viscoelasticitywhich are assumed to be
known on the basis of experiments. The fibers are
representedas linear elastic. The compositewith
such constituentsbehaves macroscopicallyas a lin-
ear viscoelasticbody which is characterizedby
effectivecomplexmoduli. There arise three clas-
ses of important investigation:

Predictionof effectivecomplex moduli of
a uniaxiallyreinforcedmaterial on the basis of
matrix complex moduli; fiber elasticmoduli and in-
ternal geometricalparameters such as constituent
volume fractions,fiber shapes, etc.

Predictionof the effectivecomplex modu-
li of a laminate,whose laminae are composed of
uniaxially reinforcedmaterial, on the basis of the
uniaxial material effective complexmoduli found in
(a) and the laminate internalgeometry.

Viscoelasticvibration analysis of struc-
tures made of fiber composites.

These different kinds of problems will be dis-
cussed consecutively.

2. ComplexModuliof UniaxiallyFiber 
ReinforcedMaterials


A general theory of predictionof effective
complex moduli of compositeswith linear viscoelas-
tic constituentshas been given previously(1.2P3).
It will here suffice to discuss without proof some
results which are pertinent for the present inves-
tigation.

Let the local average strains and stresses in
a composite be of oscillatorynature. Thus:
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ij ij
(2.1)
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1) tj

where overbars denote average, 1 = V7f, w is fre-
quency, t is time and
1,2,3. The effective complex moduli Cjk

latin subscriptsrange over

a .9.
of a

composite are defined by thegenerally anisotropic
relation:

aij = EIjkk(w) Ekk
(a)

(2.2)

-qjk,(1.) = clikz(w) , Ctila(w) (b)

where superscriptsR and I denote real and imagin-
ary parts respectively.

The assumption is made that the fiber reinforc-
ed material under considerationis macroscopically
transversely isotropicwith respect to fiber direc-
tion. Then (2.2a) assumes the form:

all= Ell Ell . E12 E22 El2 E33

0 22 = E12 Ell Z22 E22 4E23 E33

0 33 = E12 Ell E23 E22 E22 E31

(2.3)
012 = 2E44 E12

0 23 = (E22 - E23) E23

031 = 2E44 E31

(*) Supportedby the Air Force Office of Scientific Research under Contract F 44620-71-C-0100through
the European Office of AerospaceResearch (EOAR),U.S. Air Force.
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where xl is in fiber directionand x2, x3 are in (b) The matrix is isotropicand is visco-
the transverseplane, Fig. 1. elastic in shear only

In another notation, the complex moduli in
(2.3) are written:

C11 = ii

212 =

C22 = K ar (2.4)

223 = - aT
.aA

Here k is a transversecomplexbulk modulus,

GT - transverse complex shear modulus in x2, x3

plane and GA - axial complex shear modulus in planes

containingfiber direction xl. The physical inter-
pretation of fiand is here of little interest.

Inversionof (2.3) is written in the form:

 ,Az  rAz1
Eli = vAii - u22 F-033

LA EA 'A

T z1  E22=
u11 F—u,22 -

EA LT ET

A z
"N3Tz 1 A

E33 = 022
LA LT LT


(c) The matrix shear loss tangent is not
larger than n.l.Thus:

GImm
tan 6G = 5 0'1

Gm
(2.6)

Under these conditionsthe followingresults

have been shown(3) to be valid.

The imaginaryparts of the effectivecom-

plex moduli, ii,I, fZ,EA are much'smaller

than the imaginaryparts of_the effective

shear moduli GA, GT.and of ET.

To obtain real parts of all effectivecom-
plex moduli it is merely necessaryto take
correspondingexpressionsfor effective
elastic moduli and to replace in them ma-
trix elasticmoduli by real parts of ma-
trix complex moduli.

Some simple general results which are valid

under the conditions listed above will now be given:

For uniaxial stressing in fiber direction

EA(tw)='cow) yin Ef vf

E(w) = Em(w) vm + Ef vf

(2.7)
E(w) EI(w) v
A m m

E12 =
012 (2.5)

023
E23

031

E31 = 2aA

where EA and ET are complex Youngs' moduli in axial

(fiber)direction and transverse (to fiber) direc-
tion, respectively,and vA and vT are associated

complex Poisson's ratios.

Establishmentof analyticalexpressionsfor the
various effective complex moduli listed above in
terms of matrix complex moduli, fiber elastic modu-
li and phase geometry is based on a correspondence

0
principle,2) which states: The effectivecomplex
moduli of a viscoelasticcompositeare obtained by
replacementof phase elastic moduli by phase comp-
lex moduli in the expressionsfor the effective
elastic moduli of a compositewith identicalphase
geometry.

In the usual fiber reinforcedmaterials the
followingconditions are usually fulfilledwith
sufficientaccuracy

(a) Fibers are by an order of magnitude
stiffer than matrix

EI tan 6m
A 	

tan 6 - << tan 6E
E R

EA 1 + Efv /ERv
f mm

Here m and f denote matrix and fibers, respec-
tively, and v stands for volume fraction,tan 6E is

the loss tangent for uniaxial stressingin fiber

direction while tan 6E is the correspondingloss

tangent for the isotropicmatrix.

For axial shear

1 + vf
aAow) amow)	

1 - vf

1 + vf
G(w) - Gm 1 - vf
A

G(w) - GI
1 + vf

Am 1 - vf

(2.8)

tan 6 =tanS
GA

m
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For transverseshear

GI ; CR tan 6m
TT

(n)(n)(n)
all= C11 cif+ Cl2 C22

(n)(n)(n)
022= C12 C114' C22 £22 (3.3)

(2.9)

tan 6CT = tan (5
G

(n)(n)
(712 = 2C44 £12

An expressionfor GT has been given in
(2,3)

Results for other complex moduli may also be found
in these references.

where: EA

C11 = C1111 =EA 2
-
ET A

3. ComplexModuliof Laminates


The laminates to be consideredare composed of
plane laminaeof uniaxially fiber reinforcedmater-
ials, the direction of reinforcementbeing diffcr-
ent in each lamina. The laminate is referred to a
fixed coordinate system xl, x2, x3 where xi, x2 are
in the plane of the laminae and x3 is normal to it,
Fig. 2. The nth lamina in the laminateis referred

to a material system of axes xl(n), x2(1), x3 where
(n)  isin fi

xi ber direction, x2(1) is normal to the
fibers and x3 coincides with the laminatex3. The

(n)

	

position of the x1 (n), x2 system is defined with
respect to the xl, x2 system by the reinforcement
angle

	

n
= (x1 (n) ,x1) (3.1)

Fundamentalassumptionsof fiber compositelaminate
theory are: (a) Any lamina can be replacedby a
homogenousmaterial whose propertiesarc the effec-
tive propertiesof the uniaxial FR:4of which the la-
mina is made. (b) The laminaeare in states of
plane stress.

First an elastic laminatewill be considered.
The plane stress-strainrelationsof a lamina refer-
red to its material system of axes xl(n), x2(n) are
then:

	

(n) _ 1 (n) vA (n)
Ell - 011 - E 022


A
A

	

£22 - --E—all I.IF-022

	

(n)_ vA (n) 1 (n)

	

A 'T
(3.2)

where:

EA - axial Youngs modulus (in fiber direction)

vA - associatedaxial Poisson's ratio

ET - transverseYoungs modulus (normalto fibers)

CA - axial shear modulus (in xfn), x(n) plane)

Cl2 = C1122 = VAET

E 21 - A vA
ET

(3.4)

C22 = C2222 = E 21 - A vA
F-
"T

C. = CI212 = CA

In terms of the four index moduli in (3.4),
(3.3) can be written compactlyas:

(n) (n)
Caey6

cy6 (3.5)

where here and from now on Creek indices range
over 1,2.

For the sake of simplicitythere will be con-
sidered the special group of laminates in which the
applicationof membrane force Na3 in the plane of

the laminate does not induce bending or torsion in
the laminae. Thc most importantkind of laminate
which fulfills this requirementis a symmetric lam-
inate. Such a laminatehas the property that its
middle plane is a plane of symmetry for the geomet-
ric and elastic moduli of the laminate. The lami-
nate is thus composed of laminaepairs in each of
which the laminae are of same thickness,are sym-
metrically located with respect to the middle plane
and have the same elastic propertieswith respect to
the xl, x2 system.

The last condition is most commonly fulfilled
by laminae made of identicalmaterial and same re-
inforcementangle On (3.1), in each pair. The

elastic stress-strainrelationof such a laminate
is given by

N
= (=LP= c.C (a)

of3 h aCyd yts

(3.6)

C. - E (n)CaPy6 tn/h (b)
aPyr n=1

(n) -
£12 ,r

-"A

ai(n)

ET

The inverse of (3.2) is: where
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- applied average plane stress type (3.3-3.4). Thus:

aB
- average strain

- laminate thickness

EA
C*- effective elastic moduli of laminate

aBy6 CIIII 0 F11 • •---
th I - ET  5!

tn - thickness of n lamina „

1-3/1.iT
E1122 El2 =

CaBy6 - the laminae elastic moduli (3.4) trans- 1 - 7—
formed to the xl, x2 system of axes. "A

vA

For establishmentof the result (3.6) see

e.g.(4). Proof that (3.6) is based on an elastici-
ty solution which is exact in the Saint Venant
sense for a laminatewhose thickness is small com-
pared to its plane dimensionshas been given by
B.W. Rosen (unpublished).

E2222 = E22 = ----E----

(3.14)

E E (n)
csB aBy6 y6

(3.13)

LA

- number of laminae

N ntwt
063 cai

C1212 E44 = GA

where EA' ET' SiA and GA are the effectivecomplex

moduli of the uniaxialmaterial which were discussed
(3.7) in par. 2.

Let it be now assumed that the laminate is vis-
coelasticbut remains symmetricas described above.
The laminate is subjected to oscillatorymembrane
loads

If the complex stress strain relation (3.13) is
transformedto the laminateaxesxi.,x: it assumes
the form:

The average stresses associatedwith (3.7) are then:

N N
— twta = - e e (3.8) (n)a (n)c (n)-

c43 h h act ccP. ca0 Y6

This defines the
(n)Coy6 in (3.11).The strain response of the laminateis

-E _- Iwt
Ecti2C (3.9)

By tensor transformation:

The relation between and cci6is written: (n)- (n)
u;.:CIIII = ll = Clicos4en + L22sin40n +

cic4
= C*cayd (IW)yd (3.10)

+ 2C12cos20nsin20n+ 4Errcos20nsin20n

where C*cay6 are the effectivecomplex moduli of the ,
L1122 = LI2 = (Ell + L22)

cos-10,nstn-on+

- -

	

It follows by the general correspondenceprinc- +c12(coshen+ sin48n) - 4C4rcos20nsin28n
(1)




iple of which was quoted above that t-* can be (3.16)
aLT,Y6

expressed in form (3.6b). Thus: (n)E2222= (11).t22= Ellsin40n + E22cos*0n +

(n)- E1E*afiy6

	

(tw) = CaByó O
4.

w) tn/h (3.11) 22cos20 sin2O + 4C44cos20 sin'O
n n

The single laminae complex moduli (n)EaCy6 in (3.11)

arc interpretedas follows: In the material axes(n)2 (n)-

(n) (n)
1112 = C14 = - C1Icos30sin3O +n n

xl , X2 of the nth lamina the stresses and

strains are:	 + E22cos0nsin18n+ E12(cos30nsinOn- cos0nsin3en)+


a (n1a (n)eLwt
aB aB + 2E44(cos30nsinen- cosensin30n)

(3.12)

	

(n) (n) Iwt
aB

ca8 e

(n) (
The relationbetweenoa and ca n) ifi n (3.12) is of

laminate.

4



(n)-(3.16
n nL22I2 = C24 = sin30 +

cont'd.)

+ C22cos3 0nsinen • C12(cos0 nsin30n - cos38nsinen)+

+ 2C44(cos0 nsin30n - cos30n51nen)


and so the laminate is macroscopicallyorthotropic.
The situation just described is of frequent practi-
cal occurrence. For example a symmetric laminate
with laminae reinforcementin9n = 0,90°, ± 45°
directions.

4. StructuralApplications


(n):: (n);„- , 2n 2n
L1212 = L.44 = lull u22)cos -cnn -

- 212cos2 01sin26n + C4r (cos20n - sin20n)2

The preceding developmentstogetherwith the
results for complex moduli of uniaxiallyfiber re-
inforcedmaterials define the computationmethods
of the effective complex moduli of symmetric lami-
nates as expressed by (3.11).

For practical purposes it is frequentlyneces-
sary to compute the effective complex compliances
which arc defined as the inverseof (3.11). In
matrix notation:

E.•= J (3.17)

where §* denotes the effective complex compliance
matrix and J is the unit matrix. Separationof
(3.17) into real and imaginaryparts yields

f*I c*I
• (a)

(3.18)

e* R _ 0
(b)L% a -


Great facilitationis achieved if it is noted that
in  io, of 2.6) the second term in the left side
of (3.18a)can be neglected with respect to the
first. It then follows:

(a)

(3.19)

S*I - S*R • C*1 S*R (b1

Thus, once C*R AND C*I have been computed from
(3.11), (3.1-9)defiii-ethe effectivecomplex compli-
ance matrix by simple real matrix operations.

Another important simplificationis obtained if
in the laminate to each pair with reinforcement
angle ln and thickness tn correspondsanother pair

with reinforccment-0n and same thicknesstn. It

is then easily realized by the form of (3.16) that
all contributionsto (3.11)of terms with odd pow-
ers of cos0n and sin0n cancel mutually. Thus in

this event the effective complexmoduli matrix
(3.11) has thc form

4.1 Free flexuralvibrations of a
fiber reinforcedbeam.

As a first example there is considered the case
of free flexural vibrationsof a simply supported
beam which is uniaxiallyreinforced in beam axis
direction. The purpose of the investigationis to
compare vibration damping due to matrix viscoelas-
ticity on the basis of the usual theory which neg-
lects the effect of shear and on the basis of the
morc refined Timoshenko theory which takes into ac-
count shear as well as rotatory inertia. For iso-
tropic materials, in which the complex Young's mo-
dulus loss tangent and the complex shear modulus
loss tangent arc of same order, the added effect of
shear and rotatory inertia is small for vibration
modes of low order and for long beams. In the pre-
sent case, however, where the axial Young's modulus
loss tangentis by an order of magnitude smaller
than that of the axial shear modulus (section2)
the situation is quite different as will be shown
below:

Considering only the effect of flexure the dif-
ferential equation of the freely vibrating beam is:

2 .21,1 1 2w

)(4

2 CAIc = ---
pA

where:

CA - complex axial Young's modulus

I - moment of inertia

A - area of cross section

0 - (1ensity

Boundary conditionsof free support are:

x = o, l (4.2)

Conventional viscoclasticvibrations analysis
shows that the modes of vibration are given by

1 R
nrrx tamcE et thjtwn(x,t) = An --sin — c 2 n

where A is an arbitraryconstant and

(a)

(4.1)
(h)

7)2 w 

w, 0

cO =

Ctill

21122

0

1'122

22222

0

0


0

21212




C11C12

Et2 C;2

o

0

0

(3 20)

n

Rn 272 EAI= 


(4.4)
1

__
PA

tan6Em
tand=E Eff

1+
Emvm
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Equ. (4.4b) is a repetitionof (2.7d). The results .I
wn can be computed from (4.11).are valid for small enough loss tangents,of order

(2.6). The attenuationnn is defined by.

A mostly sufficientaccurate approximationfor
wn .R 4

nn = - tandE (4.5) (1)n-s:
kERR R 2. 1 2 2nn = c an El --an r (1 + nA)] (4.12)

	

Next the same beam is,considered in Timoshenko GA

fashion,with shear and rotatory inertia. By the
correspondenceprinciple for viscoelasticvibra- For slender beams and low modes the first term

in each of numerator and and denominatorof (4.11)ti;ns(5),the elastic Timoshenkobeam equation(6)
transformsinto is insignificantrelative to the others. Thus:

(4.6)
2 a4W 32w4' ,2r,

kiA, 3w 	 kr2p 34w _ 0c 174- rt-r-- 7)33eatz *

where c2 is given by (4.1b),GA is the axial comp-

lex shear modulus (2.8a),k is the strengthof mat-
erials shear shape factor of the section and
r2 = I/A.

The nth mode of vibrationof the simply sup-
ported beam, (i.e. satisfying (4.2)) is given by:

wirx

	

wn(x,t) Ansin c (4.7)

1.

(an2r2kER/C
R2R)tand + (c an4/wn

)tand
A A

1 4.a 2r2 (1 + kERA/CRA)

Substitutionof (4.9) into (4.7) results in:

.1 .R
-w t iwnttrnx n

wn(x,t) = Ansin -c e

wherc the attenuationis now:

(4.13)

(4.14)

where An is a solution of the complex frequency

equation: fi = AIn n
(4.15)

kE
ea 4_1.14.02r2r1 ••  ,n 2 kr2P . 0

(a)n n CA ' n n
A

(4.3)
irrr

an = (b)

To obtain an idea of the relative importanceof
damping due to shear and rotatory inertia,the at-
tenuations (4.5) and (4.15)have been comparcd for
the following case: Beam of rectangularsection

2.= 40.0" h = 2.0"

The solution of (4.8) is the complex
"frequency" Material: Boron fibers,Epoxy matrix

	

R v = v = .5

	

n lw (4.9)
r m

n n

In the case of small loss tangents of order Ef=60x104psi,EmR=.5x10Gp5i,GmR..185x10'psi

(2.6) it can be shown by straightforwardcalcula-
tions that:

R2

R ta0Em = tan6Gm • taw'.m= .05

	

kEA .R2 kr2p R4
can4-[1+an2r2(1 + --- )]w + ----A = 0 (a)Rn Rn  GA

GA EAR = 302; x 106psi CAR = .544 x 106psi

	

(4.10) tandm

R
tandr = ---...--- tand0 = tanAm

R2 EAI ,,,
le

	

C •. --- ku,0A

I
An . (4.11) It has been assumed for simplicitythat real parts

of complex moduli and loss tangents are frequency@II„AR v_2,,GR_a 2r2kER,GR,tnn6_,CR2a 2/AR2)tandE independent.n V"22̂ 1-V' A n A' A' G ' n n 

2

2AR2kr2p/GR-(1+an2y2(1+kER/GRA For the first mode:n A A A

wiR • 1480 1/sec

It is seen that (4.10) is the frequency equa- } Bending only

	

tion of an elastic Timoshenkobeam in terms of real ni • .308 1/sec

parts of complex moduli. Its validity is based on
the usual additional assumptionthat real parts of AIR = 1380 1/sec
complex moduli vary sufficientlyslowly with fre- ) Timoshenko

fliquency. Once A: has heen computed from (4.10), . 4.44 1/sec beam

p • 1.78 x 10-4 2.b(mass)/in3
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It is seenthatshearand rotatoryinertiahavea
verysmalleffecton thc frequencybut increasethe
attenuationby a factorof 14.4. Thisexample
showsthatfordampingof viscoelasticfiberrein-
forcedbeamsshearand rotatoryinertiaareof 
majorimportance.


4.2 Forcedtorsionalvibrationsof

laminatedcylinder.


A thinwalledcylinderwhichis laminated
throughitsthicknessis builtin at one edgeand
is subjectedto a sinusoidalforcingtorqueat its
otheredge. Eachlaminais uniaxiallyreinforced
andhas the samematerialpropertieswithrespect
to itsmaterialaxes. The laminateis symmetric
with followinglaminationscheme:

reinforcementin generatordirection(axial)-
volumefractionvo

reinforcementin + edirection- volumefractionv0

theusualfiberreinforcedmaterial.Consequently,
the separationof (4.21)intorealand imaginary
partsassumesthe form:

*R R 1RRRR2 R 2 (a)
C12 ' GAvo+[-2-(n+k -2t+GT)sin20 + 2GAcos20]ve

(4.22)

*I I
C12 = GAv + cIsin220+ 2GIcos220)ve o 2 T A

In theusualfiberreinforcedmaterialsgenerally

1RR RR74n +k -2t+GT)> 2GA

1
T
I < 2GA

It followsthatthe shearlosstangentof the
laminate

(b)

reinforcementin - edirection- volumefractionv-0

Gt2
tan6*= ---,*R

.12

(4.23)

(4.16)

Forthepurposeof analysisof torsionalvib-
rations,theonlyeffectivelaminatepropertyneed-
ed is theeffectivecomplexshearmodulusG;2. It
followsfrom (3.11)that:

a12 = = (0)E1212to/h + (+0)E1212t4.0/h +

(4.17)
4(-8)r-1212t_e/h

whereto is thesumof the thicknessof the 0=0

laminae,t and t_e - the sumsof thethicknesses


of the+0 and -0 laminae,respectively.

Now:


has a maximumfor0=0 anddecreasesmonotonicallyto
a minimumfor0=45°. On theotherhandshear
strengthis smallestfore=oand increasesmonotoni-
callyto a maximumforD-145°.Therefore,in design
formaximumdampingit is necessaryto choosethe
smallestangle0 whichcomplieswithallowable
shearstress.

Let the forcingtorqueat thcedgexl=tbe repre-
sentedas

M = Mosinwt

and letthe amplitudeof angleof twistt at x1=2
be writtenAmp (6). By standardtheoryof viscoe-
lasticvibrationswithsmalllosstangents(2,3)

cMoFi.;2(2a)+sinh2(2e)

AmP('4) R cos2a+ cosh(20T—JG* w
(4.24)

t/h = vo o where
(4.18)

2 "I2Ut /h = t-e/h= v c+0 0 pI

and fromthe lastof (3.16) a tut

(-0)(0);-: (0);.-
s-1212,-1212,-1212 'U44 (4.19)fl 03*

2c

Introductionof (4.18-19)into(4.17)yields
- density

at2 (°)E40,0 20)E40,0 (4.20) C - Torsionalconstantof section

By the lastof (3.16)and from (2.4),(4.20)assumes
the form:

(4.21)

a12 = ijAvo• [1-01+1-:-2Z+aT)sin220+2aAcos2201ve

It hasbeenmentionedbefor.e(Section2) that
the imaginarypartsof and k canbe,neglected
withrespectto the imaginarypartsof GT andGA for

J - Polarmomentof inertiaof section

*Ft
G12 - equ. (4.22a)

6* - enu. (4.23)

Numericalanalysishasbeencarriedout for a
laminatecompesedof boron/epoxylaminaewithboth
constituentvolumefractionsequalto .5. Laminae
fractionalvolumesin laminateare

7



vo = .6 v±0= .2withn = 22.50°
(5) R. M. Christensen - Theoryof Viscoelasticity 

Academic Press, (1971).
Analysis has been performed in followingstages
Experimentalresults for epoxy matrix complex
shear modulus and loss tangent as a functionof
frequencyhave been describedhv an empirical
formula.
This formula togetherwith elastic properties
of fibers have been used to compute effective
complex moduli of the uniaxially reinforced
laminae, as a functionof frequency. For this
purpose results (2.7-9)and other formulae giv-
en in (2,3)havebeen used.
With the aid of single laminaepronertiesthe
real and imaginaryparts (4z22)of the effec-
tive complex shear modulus n!2 have been comp-
uted as function of frequenc. It should be
noted that in the present application:1 in-




dicates generator directionof cylinder, and
2 the direction normal to generator and tan-




gent to section contour.
*R

*1The results for C12 and (112have been used to
compute (4.24) as a functionof frequencyN.

A plot of such results is shown in Fig. 3 for
a cylinder of length 9.=100in. and thin •alledcir-
cular section. It is seen that the first resonance
peab is very significantand may he regarded as an
elastic resonance. i!owever,the damning of the vis-
coclastic matrix becomes more effectivevith higher
order resonances,fie fourthone being considerably
reduced.

5. Conclusion


It has been -Aloumthat complexmoduli of uni-
axially fiber reinforcedmaterials and of laminates
of such materials, :onsistingnf viscoelasticmatrix
and elastic fibers ,:anbe computed in straight for-
ward fashion. The resultscin be used for analysis
of structuralvibrationson the basis of available
theory.

f(n)
Twr examples have been given to

assess the significanceof vibrationdamping.

	

Many more other interestingapplicationscan be 20
analyzed by the theory which has been presented.

References


Z. Hashin - "Complex moduli of viscoelastic 15

composites - I. General theory and
applicationto particulatecomposites" Int. J.
Solids Structures6, 539-552, (1970).

Z. Hashin - "Complex roduli of viscoelastic 10

composites - II. Fiber reinforcedmaterials"
Int. J. Solids Structures6, 797-807, (1970).

Z. Hashin - "Theory of fiber reinforced 5

materials" Pt. 4, Final Report. Contract
NAS 1-8818 NASA, Langley ResearchCenter, Nov.
(1970). NASA CR-1974 (1972)

FIG.1 UNIAXIALLYFIBER
REINFORCEDMATERIAL

X2n)

FIG. 2 LAMINATE

98x10-3 Amnfel . cMo ffnl
P#1 G*RC

(6) W. Nowacki - Dynamicsof ElasticSystems-
Chapman & Hall, (1963).

(4) Y. Stavsky - "Bending and stretchingof
laminated aelotropicplates" Trans. ASCE, EM
Div. 127, Pt. I, 1194-1219, (1962).

0 

0 500 1000

325 975


1500 2000 n
ps)

1625 2275

FIG.3 AMPLITUDEOF ANGLE OF

TWIST



DYNAMIC INELASTICPROPERTIESOF MATERIALS


Part II - Representationof Time Dependent


Characteristicsof Metals(*)

S.R. Bodner and Y. Partom

Department of Materials Engineering


Technion - Israel Instituteof Technology

Haifa, Israel

Abstract

A new approach to the representationof time
dependent inelasticmaterial behavior is described.
Realistic properties such as strain hardening,
strain rate effects, and anelasticitycan be incor-
porated in this descriptionwhich is particularly
well suited for thc computationalsolutionof struc-
tural problems involvingcyclic loadingand large
inelasticstrains. Application to technologicalme-
tals such as titanium is indicated.

1. Introduction

The analysis of the mechanicalresponse of

structuresand machine parts in the range where thc

material response is inelasticand tine dependent

requires adequate representationof the material be-




havior under thosc conditions. The classical ideal

izations of elasticity,plasticity,and viscoelasti

city have considerable limitationswhen time effects

combined with strain hardening and inelasticityare

significantfactors. These limitationsare especi-




ally severe when the structuresare subjectedto

complicated loading histories that include changes

of direction and rate of loading such as cyclic

loading in the inelasticrange. The various gene-




ralizationsof the classicalmaterial idealizations

that have been proposed to account for certain mat-




erial properties,e.g. rate dependentplasticity,
(1,2)

, arc difficult to use in structuralproblems
and do not properly represent materialresponse for
general loading and unloading histories.

The present paper reports on a new method of
charactcrizationof material behavior that can serve
for a wide range of properties includingstrain
hardening, strain rate sensitivity,anelasticity,
accumulationof large plastic strains,and creep.
The method is well suited for the computer solution
of structuralproblems involving large deformations
and complicatedloading histories. An interesting
aspect of the representationis that the strcss
strain curve of the material is a consequenceof
the constitutiveequations and the conditionsof
loading. That is the stress strain curve is the
solution of a particular boundary value problem and
is not a "basic" material property.

A descriptionof this approachhas appeared in

an earlier paper(3)for the case of perfect plasti-
city, i.e. neglect of strain hardening. The present
paper reviews the procedure includingthe considera-
tion of strain hardening. Examplesarc given to

show the applicabilityof the equations to the case
of titanium tensile specimenssubjected to uniaxial
loading at various uniform and changing strain rates.

2. CeneralFormulation


The essential point of the present procedure is
thattliedcformationratetensord..is considerediy
to consist of both elastic (fully reversible) and
inelastic (irreversible)componentsat each stage,

d.. = d!. + d. (1)ij 13 13

The relations between these components and the elas-
tic stress, which is the reference state variable,
are the basic constitutiveequations of the material.
There is therefore no distinct region of material
response that is fully elastic since inelastic
strains would be present at all stages of loading
and unloading. A special unloading criterion is
therefore not required since the same constitutive
equations hold under all conditions. This makes the
method particularlywell adopted for computer appli-
cations involving arbitrary loading histories.

Another considerationis that the total stress
contains an anelastic componentin addition to the
elastic stress. The anelasticstress is introduced
to account for viscous resistanceto motion and is
responsible for energy losses for geometricallyre-
versible motions, e.g. internaldamping. This
stress can, in general, he expressed as a function
of the elastic stress and the total deformation rate.
The anclastic stress will, however, be taken as zero
in the examples discussed in this paper.

The equations relating the deformation rate to
the velocity gradients and the strain rate using the
Almansi strain measure have been described for gene-

ral jefomation st ites(3). The elastic strain is a
function of the elastic stress, so the elastic com-
ponent of the deformation rate can, upon integration,
be directly related to the elastic stress.

The constitutive law for the plastic (irrever-

sible)componentisalsoarelationbetweeng.and
ij

aij. In the following the flow law of classical

plasticity, this relation is taken to have the gene-
ral form

PPd.. = d= Xa..ij (2)

(*) The research reported in this paper has been sponsored in part by the Air Force Office of Scientific
Research through the European Office of Aerospace Research, OAR, United States Air Force under
Contract F 44620-72-C-0004.
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wherethe bar symbolrefersto thedeviatoricten-
sor. The quantityA is determinedby squaring(2)
to give

Az . Dpij
(3)

where12 is the secondinvariantof theelastic

stressdeviatorand DP is thesecondinvariantof—2
theplasticdeformationratetensor.The vonMises
yieldcriterionof classicalplasticitystatesthat
plasticflowoccurswhen,in thepresentnotation,

12 = - Y213 (4)


whereY is the yieldstressin tension.

The presentviscoplastictheoryconsidersthat

a relationexistsbetweenDP and12 to be usedin—2
conjunctionwith (2)and (3). Thisrelationbetween
theplasticdeformationrateandtheelasticstress
invariants,

—2 —2DP = f(J) (5)

thereforeformsthe constitutiveequationfordes-
cribingtheviscoplasticdeformationpropertiesof
thematerial.Expressionsforthisrelationare
motivatedby the equationsrelatingdislocationve-
locitywith stresswhicharebasicto the fieldof

"dislocationdynamics,"e.g.(4)A. usefulparticular
formfor (5)is

DP = D2 exn ( [C2/(-1)]n) (6)2 o

where

In theseequations,Do, Z andn arematerialpara-
meters. The coefficientDo is theasymptoticvalue
of thedeformationrateat largestresses,i.e.the
plasticdeformationratcis bounded.The quantity
n is a measureof the steepnessof the curveand is
thereforea measureof thestrainratesensitivity
of thematerial;largervaluesof n wouldcorres-
pondto a steeperslopeandthereforemeanthe re-
sponseis lessratesensitive.The parameterZ is
relatedin a verygeneralway to theyieldstrength
of thematerialsincethemaximumslopeof the curve
occurswhen

12 = (7)

However,thereis no directcorrespondencebetween
Z andtheusualdefinitionsof yieldstress.

To incorporatestrainhardeningintothe formu-
lationit is necessaryto identifythevariables
thatrepresentthisproperty.The simplestand
seeminglymost logicalis theworkdoneduringplas-
ticdeformation,W , sinceallstrainhardening

mechanismsdescribedin themetallurgicalliterature
dependin somemanneron thisparameter.Thishad

alsobeensuggestedby Hill(5)as themostsignifi-
cantsinglefactorforstrainhardening.On the
microscopiclevel,strainhardeningmeansincreased
resistanceto dislocationmotionandthereforeto
plasticflow. In thepresentformationthiswould

correspondtod..beinga decreasingfunctionof Wpij

whichis a statevariable.Thereshould,however,

bealimitinglowerlimittod.since otherwiseij
thematerialwouldbehavefullyelasticallyas WT.)

becamevery large. Thatwouldcorrespondto an up-
wardturningon thestressstraincurveat large
strainswhichis notrealistic.4icroscopicanaly-
sesalsoindicatethatplasticflowneverfully
ceasessincethereare limitsto thedistancesbe-
tweentheobstaclesthatopposedislocationmotion.
Strainhardeningcanthereforebe introducedinto
(6)by makingDo a decreasingfunctionor C an in-

creasingfunctionof W . The latterwas chosein

thepresentexampleandtheparameterZ was takento
havethe form

Z = Z1 + (Zo- Z1)e-mW.r/Zo (8)

whereZl, Zo, andm arenewmaterialparameters.

Thisformulationof strainhardeningcorresponds
to isotropichardeningwhichmeansthatit wouldnot
accountforany Bauschingereffect. Thatwouldre-
quireintroducingparticularnon-symmetricfeatures
intothe analysiswhichis possiblein principlebut
very complicated.The aboveformulationcouldalso
accountforotherspecialmaterialeffectssuchas
age hardeningand straina=eing. Age hardening

rwouldmeanthatdijwould be a decreasingfunction

of absolutetime. Strainageingis a morecomplica-
tedphenomenonandcouldbe consideredby making

(IP decreasewiththetimeof deformation.Tbis
ij

wouldmeanthatshorterdeformationtimeswouldcor-
rrespondtolargervaluesofdijand thereforeto lo-

wer stresseswhicharethemacroscopiccharacteris-
ticsoc strainageing.Thepresentexample,however,
considersonlystrainhardeningas indicatedby (8).

3. S)ecializationto UniaxialStraining

The examplesdescribedin thisraperareof uni-
axialstrainingof a materialat variousuniformand
changingstrainrates. The constitutiveequations
developedforthiscasecanalsobe usedformulti-
axialboundaryvalueproblems.

The deformationratetensoris definedin terms
of thevelocitygradient,

d..=1/2(v. . + v.
1.)

(9)ij 1.l 7.

wherev.is thevelocityvector. For theuniaxial

stressstate,theonlynon-zerodeformationrate
componentsare dx (axialdirection)andd in both

transversedirections.All shearingcomponentsvan-
ish for thiscase. The axialdeformationrateis
simply

dx ax

dvx
(10)

wherevx is theparticlevelocityin theaxialdir-
ection. In termsof thecrossheadvelocityof the
strainingdeviceVc andthe specimengaugelengthL,

d = V /L
x c

The othercomponentd is determinedby the stateof

(6a)3
cz . z2(n+1)1/n
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stress. The deviatoriccomponentsof thedeforma-
tionrateare thengivenby

	

d = 2/3 (d -d ) (12a)

	

—x x y

	

d = d - 1/3 (d - d ) (121,)

	

—y —z x y

and eachcomponentis consideredto be the sumof
elasticandplasticparts,e.g.

d = de + dp—x —x —x

The elasticstress-strainrelations,assumingthe
elasticstrainsare sufficientlysmallso that
Hooke'sLaw is applicable,are

	

= 2G c.. (14)—a) —a)

	

ckk = 3K Ekk (15)

and in thisexampleax is theonlynon-zerostress
component.

For largestrains,thedeformationrateis not,

in general,equalto the strainrate(3).However,
thisidentitydoesholdforthe simplegeometryof
thepresentproblemsincetheothertermsin the
generalrelationshipbecomezero.

The elasticpart of thedeformationrateten-
sor is relatedto the stressesthrough(14)and (15)
and theplasticpart through(2),(3),(6)and (8).
The materialis compressibleforelasticdeforma-
tions(15)and is incompressibleforplasticdeform-
ationsin accordancewiththe flowlaw (2). The
rateof plasticwork,W , is givenby

Wp = a dP

	

x-x (16)

Theseequationscan thenserveto determinethe
stressrequiredto pulla rodof thematerialat a
uniformvelocityVc• This is actuallya particular

boundaryvalueproblemwhosesolutionleadsto the
uniaxialforce-elongation(stress-strain)relation
of thematerial.

A numericalschemewas devisedto computethe
stressfromtheprecedingequationswhenthemater-
ialconstantsand the appliedvelocityVc arc given.

The methodis a stepby stepprocedurewhichfollows
the deformationhistory. All quantitiessuchas

d? dP Wthe totalelongation,and the stress
P'

are determinedat eachstep. Thenumericalscheme
can be readilyadjustedto accountforchangesin
the appliedvelocityand for loadingandreloading.
That is,themethodcan considercompletelyarbi-
traryloadingor straininghistories.In thispa-
per,however,onlyexamplesinvolvinguniformvelo-
citiesand a singlechangeof velocityaredescribed.

4. Applicationto Titanium


A seriesof tensiletestswereperformedin a 10 ton
capacityInstrontestingmachineon specimensof
commerciallypuretitanium.The specimenswerecut
froma 1 mm thickplatein therollingdirectionand
were8 mm wide. An extensometerwasusedforthe
strainmeasurementand the loadwas recordedas a

functionof strain. Titaniumis a fairlyratesens-
itivematerialwhichmakesit usefulfor studying
the effectof differentstrainingratesand the re-
sponseto changesof rateduringa test. In general,
materialresponseis influencedby the complete
strainratehistoryandtitaniumapfearsto be a
goodspecimenmaterialforsuchstudies.Thishas
beenemphasizedrecentlyby a numberof investiga-

tors,e.g.(6).The proposedmethodof materialre-
presentationand the associatedconstitutiveequa-
tionsintrinsicallyincludestrainratehistoryef-
fects.

In orderto examinetheapplicabilityof thepresent
theoryto titanium,thematerialconstantsof the
constitutiveequations,(6),(6a),(8)weredeter-
minedfromthe resultsof twotestsat different
constantextensionrates. The responseto other
strainingratesand to varyingstraininghistories
werethencalculatedandcomparedto corresnonding
experimentalresults.

Testswereconductedforfourconstantcrossheadve-
locities:0.005,0.05,0.5and 1.0cm/min. The ef-
fectiveoverallspecimengaugelengthwas 52 mm so
the imposedvelocitiescorrespondrespectivelyto -
the strainrates:1.6x 10-8,1.6x 10-4,1.6x 10 !
and 3.2x 10-3sec-1.

The materialconstantswereobtainedby fittingthe
calculatedresponseof thematerialat thehighest
and lowestratesto the correspondingexperimental
curves. The valuesof thematerialconstantsde-
terminedin thismannerforcommerciallypuretita-
niumare:

Zo = 11.5Kbars(112.8Kg/mm2)

Z1 = 14.0Kbars(137.0Kg/mm2)

02 = 108sec-2

n = 1

m = Ion

The elasticconstantsfortitaniumare

K = 1.23x 103 Kbars(12.0x 103 Kg/mm2)

C = 0.44x 103Doss (4.3x 103 Kg/mm)

The calculatedload-elongationcurvesfor these
constantsare shownin Fig.1 forthehighestand
loweststrainingrates. Alsoshownare the experi-
mentalcurvesto whichtheywerefitted. Calculated
load-elongationcurvesforthe otherstrainingrates
are shownin Fig.2 alongwiththe correspondingex-
perimentalresults.

Of greaterinterestis the effectof varyingstrain
and strainratehistorieson thedeformationcharac-
teristics.One significantexperimentof thiskind
is to changethe crossheadvelocityduringthe
courseof a test. Thiscanbe easilyaccomplished
on an Instronmachineby pressingthcbuttonthat
activatesa magneticclutchon the speedregulator.
A numberof testswererun in whichthe slowestand
fastestrateswereinterchangedat 4% strainwithout
unloading.The experimentalresultswereconsis-
tentlyreproducible,Figs.3, 4, and couldbe summa-
rizedas follows:

(a) Immediatelyuponchangingfromthe highto the
lowrate,the stressdropsin an essentially

(13)
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elasticmannerto aboutor slightlyabovethe
levelcorrespondingto the lowerratefora
constantratetest. The stressthenshowsa
smallriseand continuesapproximatelyparallel
andabovethe constantratecurveandtendsto-
wardit with increasingstrain(Fig.3).

(b)Uponchangingfroma lowerto a higherrate,the
immediateresponseis closeto theelasticval-
ue and the stressthenapproachesthecurvecor-
respondingto thehigheruniformratetestbut
at a lowerlevel. Thereis a smallriseand
fallof the stresscurveafterthe initialelas-
ticresponsewhichis similarto the "upper
yieldpoint"phenoment.The stresstendsto-
wardthe uniformratecurvewithincreasing
strain. The flowstressat a highrateis
thereforelesswhen it is subjectedto prior
deformationat a lowratethanif uniformly
strainedat thehighrate(Fig.4).

Anothercloselyrelatedexperimentwouldbe to
unloadthe specimenat a givenstrainandthento
reloadat a differentrate. A fewexperimentsof
thiskindwereperformedand theresultsindicated
littleoveralldifferencebetweenthiscaseandthat
of ratechangingwithoutunloading.The "cusp"ob-
servedin goingfromthehighto the lowratein
the formertestsis not observedwhenthe specimen
is fullyunloadedbeforetherateis changed.An
"upperyieldpoint"effectis alsoobservedin this
caseuponreloadingat a higherrate,but it is less
pronouncedthanwhentherateis changedwithout
unloading.

Similarexperimentsto type(b)above,namely
changingfroma lowto a highratewithoutunload-

inghavebeenperformedon titaniumin shear(6)with
generallysimilarresults.The "upperyieldpoint"

(6)
effectwas,however,not observedin thosetests .
An experimentof thiskindon aluminumfora very,7,
largechangeof rateof loadinghasbeenreported''
and the "upperyieldpoint"behaviorof the incre-
mentalresponsewas observed.Variousexneriments
on changingthe rateof strainingaftercompleteun-

loadingwereperformedon aluminum(8'9)and led,in
general,to resultssimilarto thoseobtainedhere.

The calculatedresponseof thematerialbased
on thepresenttheoreticalformulationforthe same
variablestrainratehistorygaveresultsthat
closelyapproximatedthe experimentalones,Figs.3,
4. The "cusps"observedon reducingthe strainratc
and the"upperyieldpoint"observedon increasing
theratewere,however,not reproducedin the calcu-
latedresponsecurves.Theseseemto be transient
effectswhichdependon moredetailedmechanismsof
plasticflowthanare representedin thepresent
theoreticalformulation.It maybe possibleto in-
cludesucheffectsby generalizingthematerialcon-
stantsto morecloselysimulatemicroscopicparamet-
ers (internalvariables)suchas dislocationdensity
andvelocity.The reasonfortherespectivestress
levelsuponchangingratescanbe explainedin terms
of theplasticworkW priorto theratechange
whichinfluencesthePsubsequentflowstress. W is

largerat the higherratewhichleadsto a relative-
ly higherstresscurveuponreducingthe rate (com-
paredto a constantlowerratetest),whilethe re-
verseholdsfor theothercase. Thesestresslevel
differencescouldalsobe explainedin termsof the
developedmicrostructurebut thiswillbe leftto a
subsequentpaper.

It is particularlyinterestingto examinethe
detailsof thedeformationuponchangingfromthe
lowerto thehigherrate. Porthisparticularcase,

the plasticdeformationratecomponentdP Is initi-1j
ally99.7%ofthetotaldi—Immediately afterthej
changethevalueofthj increasesslightlybut itsi
percentageofd.jdropsto 56.6%.i

The incrementalresponseis largelyelasticand
experimentallymay appearto be fullyelasticfor
approximatemeasurements.If the changeof imposed
velocityat the specimenendhadbeensufficiently
rapidto generatewaves,thenan elasticwavewould
propagatealongthe specimen.The plasticcompon-
entwouldnot be dominantandwouldattenuaterapid-
ly withdistance.Observationssomedistancefrom
the endwouldindicatethatthe incrementalresponse
to thevelocitychangeis elastic.

The proposedconstitutiveequationsarealso
suitableforcyclicloadinghistories,whichwould
be importantfor lowcyclefatiguestudies.An in-
dependentcriterion,however,wouldhaveto be intro-
ducedto indicatetheonsetof fatiguemicrocracks
or otherfailurephenomena.If sucha criterion
wereexpressiblein termsof the statevariablesux

andW , thenthepresentanalysiscouldserveto de-

terminethe conditionforwhichthecriterionwould
be reachedforverygeneralcyclicloadinghistories.
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Fig. 1 - EXPERPMNTAL AND CALCULATED (FITTED) STRESS STRAIN

CURVES FOR TITANIUM AT CONSTANT STRAIN RATES.
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Fig..2 - EXPERIMENTALAND CALCULATED (DERIVED)STRESS STRAIN
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