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DYNAMIC INELASTIC PROPERTIES OF MATERIALS

Part I - Damping Characteristics of Fiber Composites

(*)

Zvi Hashin
Department of Materials Engineering
Technion - Israel Institute of Technology
Haifa, Israel

Abstract

Analytical results for complex moduli of uniax-
ially fiber reinforced materials made of viscoelas-
tic matrix and elastic fibers are reviewed. A gen-
eral mcthod is established to predict complex modu-
1i and loss tangents of viscoelastic laminates made
of uniaxially reinforced laminae. Results are
used to analyze some simple cases of vibrations of
structures made of such viscoelastic composites.

1. Introduction

The ever increasing use of fiber composites
for aero/space structures requires the development
of rational methods for prediction of their rele-
vant propertics within engineering accuracy.

In most current fiber composites the matrix is
a polymer such as epoxy. It is well known that
such polymers exhibit the effect of vibration damp-
ing. Therefore such damping effects will also
occur in composites in which the matrix is polymer-
ic. Since aero/space structures are subjected to
severe vibrational environment and since vibration
damping is beneficial, the quantitative prediction
of such damping is of considerable engineering imp-
ortance.

It is of interest to emphasize the unique com-
bination of desirable properties which are exhibi-
ted by fiber composites: Superior strength and
stiffness, low weight and vibration damping. No
other materials seem to possess this many advant-
ages.

In order to handle the problem analytically,
it is assumed that the matrix is linearly visco-
elastic. Its dynamic viscoelastic properties can
then be characterized in terms of the usual complex
moduli of viscoelasticity which are assumed to be
known on the basis of experiments. The fibers are
represented as lincar elastic. The composite with
such constituents behaves macroscopically as a lin-
ear viscoelastic body which is characterized by
effective complex moduli. There arise three clas-
ses of important investigation:

(a) Prediction of effective complex moduli of
a uniaxially reinforced material on the basis of
matrix complex moduli; fiber elastic moduli and in-
ternal geometrical parameters such as constituent
volume fractions, fiber shapes, ctc.

(b) Prediction of the effective complex modu-
1i of a laminate, whose laminac are composed of
uniaxially reinforced material, on the basis of the
uniaxial material effective complex moduli found in
(a) and the laminate internal gcometry.

(c) Viscoelastic vibration analysis of struc-
tures made of fiber composites.

These different kinds of problems will be dis-
cussed consecutively.

2. Complex Moduli of Uniaxially Fiber
Reinforced Materials

A general theoryv of prediction of effective
complex moduli of composites with linear viscoelas-
tic constituents has been given previouslyf!s2:?),
It will here suffice to discuss without proof some
results which are pertinent for the present inves-
tigation.

Let the local average strains and stresses in

a composite be of oscillatory nature. Thus:
By =g, o'
ij ij
{2.1)
5., =5, et
1j ij

where overbars denote average, 1 = v-1, w is fre-
quency, t is time and latin subscripts range over
1,2,3. The effective complex moduli C;jkl of a

generally anisotropic composite are defined by the
relation:
-~ & "'. -~
O35 = Cljke (') &g (@)
(2.2)
" R I
* = C* *
Cijkn(lm) Cijkz(w) +1 Cijkﬁ(w) (b)
where superscripts R and I denote real and imagin-
ary parts respectively.
The assumption is made that the fiber reinforc-
ed material under consideration is macroscopically

transversely isotropic with respect to fiber direc-
tion. Then (2.2a) assumes the form:

G22 = C12 €11 + C22 €22 + C23 €33
G3a = Crz2 €11 + C23 €22 + C22 €13

B (2.3)
G12 = 2Cuy E12

323 = (Caz - C23) E23

F31 = 2Cus €31

(*) Supported by the Air Force Office of Scientific Research under Contract F 44620-71-C-0100 through
the European Office of Aerospace Research (EOAR), U.S. Air Force.



where x; is in fiber direction and x;, x3 are in
the transverse plane, Fig. 1.

In another notation, the complex moduli in
(2.3) are written:

=

C]z =
Caz = k + G (2.4)
Ezg =k -G

|

Cyy = GA

Here k is a transverse complex bulk modulus,

GT - transverse complex shear modulus in x2, Xj

plane and EA - axial complex shear modulus in planes
containing fiber direction x;. The physical inter-
pretation of f and j is here of little interest.

Inversion of (2.3) is written in the form:

v v
~ ) ~ -
€11 =x-011 - g U2z - =i J33
Ep Ep Ep
v v,
~ ~ 1 =~ -
Eza = = Eﬁ 011 *+ 5— 022 - i 4 O33
A Er Ep
~ ~ T & 1 =
€33 = - FAUU - 5~ 022 + z— J33
A Er Er
E: Gi2 (2.5)
i Y
A
= a!!
b
T
- G131
€31 & —3—
ZGA

where EA and ET are complex Youngs' moduli in axial

(fiber) direction and transverse (to fiber) direc-
tion, respectively, and Va and GT are associated

complex Poisson's ratios.

Establishment of analytical expressions for the
various effective complex moduli listed above in
terms of matrix complex moduli, fiber elastic modu-
1i and phase geometry is based on a correspondence

principletl‘z) which states: The effective complex
moduli of a viscoelastic composite are obtained by
replacement of phase elastic moduli by phase comp-
lex moduli in the expressions for the effective
elastic moduli of a composite with identical phase
geometry.

In the usual fiber reinforced materials the
following conditions are usually fulfilled with
sufficient accuracy

(a) Fibers are by an order of magnitude
stiffer than matrix

(b) The matrix is isotropic and is visco-
elastic in shear only

(c) The matrix shear loss tangent is not

larger than 0.1. Thus:
n_ S
tan GG = Eﬁ < 0.1 (2.6)
m

Under these conditions the following results

have been shown(s) to be valid.

(d) The imaginary parts of the effective com-
plex moduli, 7, I, k, EA are much ‘smaller
than the imaginary parts of the effective

shear moduli EA’ GT.and of ET'

(e) To obtain real parts of all effective com-
plex moduli it is merely necessary to take
corresponding expressions for effective
elastic moduli and to replace in them ma-
trix elastic moduli by real parts of ma-

trix complex moduli.

Some simple general results which are valid
under the conditions listed above will now be given:

For uniaxial stressing in fiber direction
EA(1m) = Emtlu) W, Ef Ve

Rooic _ ol
EA(m) = Em(w) AR Ef Ve

I - I {2:.7)
EA{w) Em(m) Vo
E: tan 6: -
tan GE-—R'—-—-—-—r<< tan GE
EA 1+ Efvf/Emvm

llere m and f denote matrix and fibers, respec-
tively, and v stands for volume fraction, tan GE is

the loss tangent for uniaxial stressing in fiber
direction while tan Gg is the corresponding loss

tangent for the isotropic matrix.

For axial shear

g - 1+ vf
GA(““) = Gm(lw) -—-_'—;’;
ley
R R f
GA(m) il Gm 1 - Ve
(2.8)
1+v
I I f
GA(“) i Gm 1 - Ve
m
tan GGA = tan GG



For transverse shear

I~_.R m
GT = GT tan GG
(2.9)
tan GGT = tan 62
(2,3)

An expression for G$ has been given in

Results for other complex moduli may also be found
in these references.

3. Complex Moduli of Laminates

The laminates to be considered are composed of
plane laminae of uniaxially fiber reinforced mater-
ials, the direction of reinforcement being differ-
ent in each lamina. The laminate is referred to a
fixed coordinate system x;, x2, x3 where x;, x2 are
in the plane of the laminae and x3 is normal to it,
Fig. 2. The nth lamina in the laminate is referred
to a material system of axes x;tn), xz(n]
xl(n) is in fiber direction, xz(n) is normal to the
fibers and x3 coincides with the laminate x3. The

position of the x;tn), Xz[n] system is defined with
respect to the x;, Xz system by the reinforcement
angle

, X3 where

6 =% (™ ,xp) (3.1)

Fundamental assumptions of fiber composite laminate
theory are: (a) Any lamina can be replaced by a
homogenous material whose properties are the effec-
tive properties of tiie uniaxial TFRM of which the la-
mina is made. (b) The laminae are in states of
plane stress.

First an elastic laminate will be considered.
The plane stress-strain relations of a lamina refer-
red to its material system of axes x;(n), x,(n) are
then:

1 A
Elfn) - F-ngn) = g Uzgn)
A A
m_ A _m) 1 _(n
€22 u-E—-G OE—Uz (3.2)
A T
n) Ulsn
Els - 6
“TA
where:
EA - axial Youngs modulus (in fiber direction)

L associated axial Poisson's ratio

m
[

transverse Youngs modulus (normal to fibers)

(2]
[

A axial shear modulus (in x¥“), xi") plane)

The inverse of (3.2) is:

Ulgn) =Cn Elin) + Cy2 Ezgn)

025“’ = C2 €1En) + Cz2 Ezgn] (3.3)
015“) = 2C4u €|£n)
where:
Ey
Ci1 = Ciin1 = . Eﬂ 2
- L
Ciz = Ci122 = VaEy
E, .2
1 - E% “A
(3.4)
C22 = C2222 =
1-5a Vi
E

=

Cuw = C1212 = G,

In terms of the four index moduli in (3.4),
(3.3) can be written compactly as:

) _ ¢ (n)

%R aBys Eyﬁ (3.5)

where here and from now on Greek indices range
over 1,2.

For the sake of simplicity there will be con-
sidered the special group of laminates in which the
application of membrane force NaB in the plane of

the laminate does not induce bending or torsion in
the laminae. Thc most important kind of laminate
which fulfills this requirement is a symmetric lam-
inate. Such a laminate has the property that its
middle plane is a plane of symmetry for the geomet-
ric and elastic moduli of the laminate. The lami-
nate is thus composed of laminae pairs in each of
which the laminae are of same thickness, are sym-
metrically located with respect to the middle plane
and have the same elastic properties with respect to
the x;, X2 system.

The last condition is most commonly fulfilled
by laminae made of identical material and same re-
inforcement angle en (3.1), in each pair. The

elastic stress-strain rclation of such a laminate
is given by

- NaP =
%8 " " Coeyeys M
. (3.6)
Y m
C-uBYﬁ.nEl Cu?yd tn/h (b)

where



E&B - applied average plane stress
EGB - average strain
h - laminate thickness
™ _ . . .
CuBYG effective elastic moduli of laminate
tn - thickness of nth lamina
N - number of laminae
(n)caB 5 " the laminae elastic moduli (3.4) trans-

formed to the x,, x; system of axes.

For establishment of the result (3.6) see

e.g.(4). Proof that (3.6) is based on an elastici-
ty solution which is exact in the Saint Venant
sense for a laminatec whose thickness is small com-
pared to its plane dimensions has been given by
B.W. Rosen (unpublished).

Let it be now assumed that the laminate is vis-
coelastic but remains symmetric as described above.
The laminate is subjected to oscillatory membrane
loads

i it (3.7

The average stresses associated with (3.7) are then:

N. N, 4
- [ 18) o3 lwt - wt
= = = 3-
L Sl et % © (38

The strain response of the laminate is

- = wt
EaS = Ead c (3.9)
The relation betwcen UQB and Eaﬁ is written:
=z, =
Oap C adyd (ww) 575 (3.10)
where Etaﬁyé are the cffective complex moduli of the

laminate.

It follows by the general correspondence princ-

3 (l) 3 i C*
iple of which was quotcd above that CuGYG can be

expressed in form (3.6b). Thus:

-~ N (n}-.

C*yays (W) = r.fl Cogys (W) t/h (3.11)
The single laminae complex moduli (¢ in (3.11)

afys
are interpreted as follows: In the material axes
xl(n), xz(n) of the nth lamima the stresses and
strains are:

v (n) 3 [n)ckwt

aff af
(3.12)
(n)_ =~ (n) _wt
B ™ € ©

The relation between amg") and Eﬂé") in (3.12) is of

type (3.3-3.4). Thus:

=~ (n) _ = = (n)
g CaBY6 EY5 (3.13)
E
H A
Ciizy = €1y = —w—
1 - Bp 32
o A
Er
« - AET
Cii122 = Cy12 =
ET 2
1 - FUA
“A
g (3.14)
-~ ET

Cz2222

n
[w]
~
~
"
S \
~

Ci212 = Cuy = G,

where EA' ET’ N and GA
moduli of the uniaxial material which were discussed
in par. 2.

are the effective complex

If the complex stress strain relation (3.13) is
transformed to the laminate axes x., Xx: it assumes
the form:

(n)x

(n)~
a_, EY6

_ ()
op Cagys

; g . (n) ;
This defines the CaBYG in (3.11).
By tensor transformation:
(n)Ellll = (n)Ell = Ellcos“ﬁn + Ezzsin"on +

+ 2E12coszonsin29n + GE.ucos’anin’Bn

Ln)Ellzz - (n)Elz = (Cyy + Ezz)coszensinzen +

~ : 4 2 1n2
+C1;(cos“an + s1n“en) - 4Cyycos®0 sin’0

(3.16)
(n)x

C2222 = (n)ézz = Ellsiﬂhan + Ezzcos"en +

+ Zelgcoszensinzﬂn + 4Cuucoszﬁnsin’6n

(n)élllz = (n)Ell = - E;;cos’ensin’en +
+ E;;cosensin’en + Eaz(cos’ensinen - cosansin’en)+

. Zeua(cos’onsinﬁn - cosensin’Bn)



n)x n)= s " 3.16

( JCZZIZ = ( ]Czn.' 'C1|C059n51n!en + éant‘d.)
= 3 : P ;03 3 :

+ Cazc08 anxnﬁn + C.g(cosenszn Bn - cos 8n51nen)+

~ .3 3 2
+ 2C~~(cosen51n 6, - cos’0 sinf )

(n)Elzlz = (n]Euu = (E]l * EzzJCOSZBnSinzen -

- Zflzcoszensinzﬁn . qu(coszen - sin’ﬁn)z

The preceding developments together with the
results for complex moduli of uniaxially fiber re-
inforced materials define the computation methods
of the effective complex moduli of symmetric lami-
nates as expressed by (3.11).

For practical purposes it is frequently neces-
sary to compute the effective complex compliances
which are defined as the inverse of (3.11). 1In
matrix notation:

- ~

C* « S* = i

(3.17)

where Ef denotes the effective complex compliance
matrix and J is the unit matrix. Separation of
(3.17) into real and imaginary parts yields

C'R . .“i'R s Ctl . StI 2 J (a)

(3.18)

+S* =0 (b)

Great facilitation is achieved if it is noted that
in view of (2.6) the second term in the left side
of (3.18a) can be neglected with respect to the
first. It then follows:
ctesla (@)
(3.19)
slacgf.ocd g oy

Thus, once EfR AND gfl have becen computed from
(3.11), (3.19) define the effective complex compli-
ance matrix by simple real matrix operations.

Another important simplification is obtained if
in the laminate to each pair with reinforcement
angle ﬂn and thickness t, corresponds another pair

with reinforcement -en and same thickness t. It

is then easily realized by the form of (3.16) that
all contributions to (3.11) of terms with odd pow-
ers of cosOn and sinen cancel mutually. Thus in

this event the effective complex moduli matrix
(3.11) has the form

_E}lll Clizz 0 th €. o
éf = [ Cliza Clazz 0 =|Cl2 Ci2 o0
0 0 Cla1z 0 0 Gl

2 - - (;. 20)

and so the laminate is macroscopically orthotropic.
The situation just described is of frequent practi-
cal occurrence. For example a symmetric laminate
with laminae reinforcement in 6 = 0,90°, + 45°
directions.

4. Structural Applications

4.1 Free flexural vibrations of a
fiber reinforced beam.

As a first example there is considered the case
of free flexural vibrations of a simply supported
beam which is uniaxially reinforced in beam axis
direction. The purpose of the investigation is to
compare vibration damping due to matrix viscoelas-
ticity on the basis of the usual theory which neg-
lects the effect of shear and on the basis of the
more refined Timoshenko theory which takes into ac-
count shear as well as rotatory inertia. For iso-
tropic materials, in which thc compléx Young's mo-
dulus loss tangent and the complex shear modulus
loss tangent are of samec order, the added effect of
shear and rotatory inertia is small for vibration
modes of low order and for long beams. In the pre-
sent case, however, where the axial Young's modulus
loss tangentis by an order of magnitude smaller
than that of the axial shear modulus (section 2)
the situation is quite different as will be shewn
below:

Considering only the effect of flexure the dif-
ferential equation of the freely vibrating beam is:

2 22w 32w

e ezt 0 (a)
, EAI (4.1)
¢t = Bx— (b)
where:

EA - complex axial Young's modulus
I - moment of inertia
A - area of cross section

p - density

Boundary conditions of free support are:

32y
w, 5T =0 X =0, (4.2)
Conventional viscoelastic vibrations analysis

shows that the modes of vibration are given by

1R R
1 == St
wo(x,t) = Ansin BEE e ZVptanogt unt

where An is an arbitrary constant and

R _nin? EA{
“n =T Von ®
(4.4)
tanéEm
tanﬁE =

1_@ (b)
Emvm



Equ. (4.4b) is a repetition of (2.7d). The results
are valid for small enough loss tangents, of order
(2.6). The attenuation LR is defined by

wR

= tanéy (4.5)

rlr.-_

Next the same beam is considered in Timoshenko
fashion, with shear and rotatory inertia. By the
correspondence principle for viscoelastic vibra-

tions(s). the elastic Timoshenko beam equatlon(ﬁ)
transforms into

A (4.6)
2 3w krip 3w
¢l gw g TA F“aszfsir 3= 0
where c2 is given by (4.1b), EA is the axial comp-

lex shear modulus (2.8a), k is the strength of mat-
erials shear shape factor of the section and
r? = I/A.

The nth mode of vibration of the simply sup-
ported beam, (i.e. satisfying (4.2)) is given by:

wn(x,t) = Ansin E%i ela“t (4.7)

where Gn is a solution of the complex frequency
equation:
kE 2
2. W 2.2 A~ 2 kT“p 4 -
ca - [1+0 "ro(1 + E;—Jmn + . ﬁn 0 (a)
(4.8)
nm
T (®)

The solution of (4.8) is the complex
"frequency"

(4.9)
In the case of small loss tangents of order

(2.6) it can be shown by straightforward calcula-
tions that:

R
2 kE 2 2 “
Mo bofrea 2r2 « SRR KRR R Lo (a)
n n GR n G n
A A
(4.10)
RE EpT
[
1
& - (4.11)

m“ (a: ke? p/GA-a r’kEA/GA)tané e ’/m" )tans,

T 2
Zﬁn kr? pIGA—[loun Y (1+kbA/GA)]

It is seen that (4.10) is the frequency equa-
tion of an elastic Timoshenko beam in terms of real
parts of complex moduli. Its validity is based on
the usual additional assumption that real parts of
complex moduli vary sufficiently slowly with fre-

quency. Once &: has heen computed from (4.10),

ﬁ; can be computed from (4.11).

A mostly sufficient accurate approximation for

R
Gn is: R
oRrscfatn-lazene = LY (4.12)
n LN “Fe, T GR *
A

For slender beams and low modes the first term
in each of numerator and and denominator of (4.11)

is insignificant relative to the others. Thus:
I =
an =
2 2
(a 2r’kER/GR)tanﬁ + (cR a "/ﬁR )tand
n A'A G n’' n E (4.13)

1+ an’r‘ (1 + kE /r #

Substitution of (4.9) into (4.7) results in:

nmx -ﬁit 1&2t
wn(x,t) = Ansxn =, 8 (4.14)
where the attenuation is now:
f =&t (4.15)
n n

To obtain an idea of the relative importance of
damping due to shear and rotatory inertia, the at-
tenuations (4.5) and (4.15) have been comparcd for
the following case: Beam of rectangular section

L = 40,0" h=2,0"

Material: Boron fibers, Fpoxy matrix

Ve =V, = .5

Eg=60x10°psi, E M=.5x10%psi, G, "=.185x10°psi

i <

m m m
tnnéE = tanéc = tan§ = .05
R = 30,25 x 10%si G\ = .544 x 10%psi
tandn
tanGF_ ks ¢ tansSG = tanﬁm

o =1.78 x 10" gb(mass)/in®

It has been assumed for simplicity that real parts
of complex moduli and loss tangents are frequency
independent.

For the first mode:

m;R = 1480 1/sec

} Bending only
m = .308 1/sec
0,R = 1380 1/sec
Timoshenko
iy, = 4,44 1/sec beam



It is seen that shear and rotatory inertia have a
very small effect on the frequency but increase the
attenuation by a factor of 14.4. This example
shows that for damping of viscoelastic fiber rein-
forced beams shear and rotatory incrtia are of
major importance.

4.2 Forced torsional vibrations of
laminated cylinder.

A thin walled cylinder which is laminated
through its thickness is built in at one edge and
is subjected to a sinusoidal forcing torque at its
other edge. Each lamina is uniaxially reinforced
and has the same material properties with respect
to its material axes. The laminate is symmetric
with following lamination scheme:

reinforcement in generator direction (axial) -
volume fraction Vo

reinforcement in + € direction - volume fraction A
reinforcement in - 6 direction - volume fraction v 8

Vy, =V

0 (4.16)

-8

For the purpose of analysis of torsional vib-
rations, the only effective laminate prOperty need-
ed is the effectivc complex shear modulus Gy,. It

follows from (3.11) that:

Cl2 = C*212 = (O)Exzxztofh + (+G)E|zlzt+0/h +
(4.17)
*(-G)Cizxzt_alh

where t, is the sum of the thickness of the 6=0
laminae, te and t_e - the sums of the thicknesscs

of the +0 and -0 laminae, respectively.

Now:
t/h=yvy
o o (4.18)
t’e/h = t_e/h =V,
and from the last of (3.16)
(+e)61112 = (-O)Elzxz = (8)51211 = to)abu (4.19)

Introduction of (4.18-19) into (4.17) yields

Gly = (O)Eg.vo + Z(B)E..ve (4.20)
By the last of (3.16) and from (2.4),(4.20) assumes

the form:
(4.21)

Gz = EAVO . [é{ﬁ+E-ZE+ET)sin226+2ﬁAcos’ZB]ve
It has been mentioned before (Section 2) that

the imaginary parts of n,f and k can be _neglected
with respect to the imaginary parts of GT and ﬁ for

the usual fiber reinforced material. Consequently,
the separation of (4.21) into real and imaginary
parts assumes the form:

G1§ = fR +[ 5(n RokR.28Reg )s:n‘?B + ZG:CQSIZG]Ve(a)
(4.22)

s - i . I .2

G2 GAVO - (7 GTs1n 20 + ZGAcos Ze)ve (b)

In the usual fiber reinforced materials generally
1. R,R ,,R R R
E{“ +k -22 +GT) > ZGA

1.1 I

It follows that the shear loss tangent of the
laminate
c1:

tandé* = —:E
Gl2

(4.23)

has a maximum for f=0 and decreases monotonically to
a minimum for A=45°. On the other hand shear
strength is smallest for A=0 and increases monotoni-
cally to a maximum for Ds45°. Therefore, in design
for maximum damping it is necessary to choose the
smallest angle 0 which complies with allowable

shear stress.

Let the forcing torque at the edge x;=% be repre-
sented as
M=Msinot
o
and let the amplitude of angle of twist 4 at x;=f

be written Amp (4). By standard theory of viscoe-
lastic vibrations with small loss tangents(2,3)

cM, \fsin? (20) +sinh?(28)

hp(d) & —p "~ cosh(28) (E20)
JG* w
where
P*R
cz i 1:2(:
pl
wf
" T
wls*
B 2c
p - density
C - Torsional constant of section
J - Polar moment of inertia of section
Gi% - equ. (4.22a)
&* - equ. (4.23)

Numerical analysis has been carried out for a
laminate composed of boron/epoxy laminae with both
constituent volume fractions equal to .5. Laminae
fractional volumes in laminate are




= = i n = .
Yo o6 Vig 2 with REi (5) R. M. Christensen - Theory of Viscoelasticity -

Academic Press, (1971).

Analysis has been performed in following stages

(a) Experimental results for epoxy matrix complex (6) W. Nowacki - Dynamics of Elastic Systems -
shear modulus and loss tangent as a function of Chapman § Hall, (1963).
frequency have been described by an empirical
formula.

(b) This formula together with clastic properties
of fibers have been used to compute effective
complex moduli of the uniaxially reinforced
laminae, as a function of frequencv. For this
purpose results (2.7-9) and other formulae giv-
en in (2,3)have been used.

(c) With the aid of singlc laminae properties the
rcal and imaginary parts (4.22) of the cffec-
tive complex shear modulus Gf; have hcen comp-
uted as function of frequency. It should he
noted that in the present application: 1 in-

dicates generator direction of cvlinder, and
2 the direction normal to generator and tan- FIG.1 UNIAXIALLY FIBER
gent to section contour. REINFORCED MATERIAL
(d) The results “or GTE and G?% have been used to ) ()
compute (4.24) as a function of frequency w. x(; n

X2 Xy
A plot of such results is shown in Fig, 3 for t
a cylinder of length 2=100 in. and thin walled cir-
cular section. It is seen that the first resonance
peak is very significant and may be regarded as an
elastic resonance. Ilowever, the daming of the vis-
coelastic matrix becomes morc cffective with higher
order resonanees, thc fourth onc being considerably
reduced.

5. Conclusion

It has been shown that complex moduli of uni- >
axiallv fiber reinforced materials and of laminates
of such materials, consisting of viscoelastic matrix FIG, 2 LAMINATE
and elastic fibers can be computed in straight for- R
ward fashion. The results can be used for analysis
of structural vibrations on the basis of availatle 98!10-3

theory. f(n) [ Amp(9)=g—:4%c f(n)

Twe ctractural examples have been given to o
assess the significance of vibration damping. (“)fb

analyzed by the theory which has been presented.

Many more other interesting applications can be 20 I
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Abstract

A new approach to the reprcsentation of time
dependent inelastic material behavior is described.
Realistic properties such as strain hardening,
strain rate effects, and anelasticity can be incor-
porated in this description which is particularly
well suited for the computational solution of struc-
tural problems involving cyclic loading and large
inelastic strains. Application to technological me-
tals such as titanium is indicated.

1. Introduction

The analysis of the mechanical response of
structures and machine parts in the range where the
material response is inelastic and time dependent
requires adequate representation of the material be-
havior under those conditions. The classical ideal-
izations of elasticity, plasticity, and viscoelasti-
city have considerable limitations when time effects
combined with strain hardening and inelasticity are
significant factors. These limitations are especi-
ally severe when the structures are subjected to
complicated loading histories that include changes
of direction and rate of loading such as cyclic
loading in the inelastic range. The various gene-
ralizations of the classical material idealizations
that have been proposed to account for certain mat-
crial propertics, c.g. rate dependent plasticity,

(1'2), arc difficult to use in structural problems
and do not properly represent material response for
general loading and unloading histories.

The present paper reports on a new method of
characterization of material behavior that can serve
for a wide range of properties including strain
hardening, strain rate sensitivity, anelasticity,
accumulation of large plastic strains, and creep.
The method is well suited for the computer solution
of structural problems involving large deformations
and complicated loading histories. An interesting
aspect of the represcntation is that the stress
strain curve of the material is a conscquence of
the constitutive equations and the conditions of
loading. That is the stress strain curve is the
solution of a particular boundary value problem and
is not a "basic'" material property.

A description of this approach has appeared in

an earlier paper( for the case of perfect plasti-
city, i.e. neglect of strain hardening. The present
paper reviews the procedure including the considera-
tion of strain hardening. Examples are given to

show the applicability of the equations to the case
of titanium tensile specimens subjected to uniaxial
loading at various uniform and changing strain rates.

2. General Formulation

The essential point of the present procedure is
that the dcformation rate tcnsor di is considered

to consist of hoth elastic (fully reversible) and
inelastic (irreversible) components at each stage,

AT P

dij = dij + dij (1)
The relations hetween these components and the elas-
tic stress, which is the reference state variable,
are the basic constitutive equations of the material.
There is therefore no distinct region of material
response that is fully elastic since inelastic
strains would be present at all stages of loading
and unloading. A special unloading criterion is
therefore not required since the same constitutive
equations hold under all conditions. This makes the
method particularly well adopted for computer appli-
cations involving arbitrary loading histories.

Another consideration is that the total stress
contains an anelastic component in addition to the
clastic stress. The anelastic stress is introduced
to account for viscous resistance to motion and is
responsible for energy losses for gcometrically re-
versible motions, e.g. internal dampine. This
stress can, in general, be exprcssed as a function
of the elastic stress and the total deformation rate.
The anelastic stress will, however, be taken as zero
in the examples discussed in this paper.

The equations relating the deformation rate to
the velocity gradients and the strain rate using the
Almansi strain mcasure have been described for gene-

ral deformation 5[41&5(3). The eclastic strain is a

function of the elastic stress, so the elastic com-
ponent of the deformation rate can, upon integration,
be directly related to the clastic stress,

The constitutive law for the plastic (irrever-
sible) component is also a relation between dgj and
clj' In the following the flow law of classical
plasticity, this relation is taken to have the genc-
ral form

P = p =
df; = b =gy (2)

ij

(*) The research rcported in this paper has been sponsored in part by the Air Force Office of Scientific
Research through the Luropean Office of Aerospace Research, OAR, United States Air Force under

Contract F 44620-72-C-0004.




where the bar symbol refers to the deviatoric ten-

sor. The quantity ) is determined by squaring (2)
to give
z-
A? = pb/J, (3)
where J, is the second invariant of the elastic

2
stress deviator and Qg is the second invariant of

the plastic deformation rate tensor. The von Mises
yield criterion of classical plasticity states that
plastic flow occurs when, in the present notation,

3, = - Y2/3

where Y is the yield stress in tension.

(4)

The present viscoplastic theory considers that
a relation exists between Qg and 52 to be used in

conjunction with (2) and (3). This relation between
the plastic deformation rate and the elastic stress
invariants,
pl

D) = £(J;) (5)
therefore forms the constitutive equation for des-
cribing the viscoplastic deformation properties of
the material. Expressions for this relation are
motivated by the equations relating dislocation ve-
locity with stress which are basic to the field of

"dislocation dynamics,"c.g.(4?A useful particular
form for (5) is

op ng exp (-[€*/(-1,)1M (6)
where
c = 3 z2@hl/n (5e)

In these equations, D_, Z and n are material para-
meters. The coefficient D_ is the asymptotic value
of the deformation rate at large stresses, i.e. the
plastic deformation rate is bounded. The quantity
n is a measure of the steepness of the curve and is
therefore a mcasure of the strain rate sensitivity
of the material; larger values of n would corres-
pond to a steeper slope and therefore mean the re-
sponse is less rate sensitive. The parameter Z is
related in a very general way to the yield strength
of the material since the maximum slope of the curve
occurs when

J. = =223

I, @)
However, there is no direct correspondence between
Z and the usual definitions of yield stress.

To incorporate strain hardening into the formu-
lation it is necessary to identify the variables
that represent this property. The simplest and
seemingly most logical is the work done during plas-
tic deformation, Wp, since all strain hardening

mechanisms described in the metallurgical literature
depend in some manner on this parameter. This had

also been suggested by Hillts) as the most signifi-
cant single factor for strain hardening. On the
microscopic level, strain hardening means increased
resistance to dislocation motion and therefore to
plastic flow. In the present formation this would

correspond to dzj being a decreasing function of "p

10

which is a state variable. There should, however,

be a limiting lower limit to dz. since othervise
the material would hehave fully elastically as Wp

became very large. That would correspond to an up-
ward turning on the stress strain curve at large
strains which is not realistic. Microscopic analy-
ses also indicate that plastic flow never fully
ceases since there are limits to the distances be-
tween the obstacles that oppose dislocation motion.
Strain hardening can thecrefore be introduced into
(6) bv making Do a decreasine function or C an in-

creasing function of WP. The latter was chose in

the present example and the parameter Z was taken to
have the form

& -mW_/Z
2= zZ, + (Zo - Zl) e o

(8)

where Z Z , and m are new material parameters.

1" o

This formulation of strain hardening corresponds
to isotropic hardening which means that it would not
account for any Bauschinger effect. That would re-
quire introducing particular non-symmetric features
into the analysis which is possible in principle but
verv complicated. The above formulation could also
account for other special material effects such as
age hardening and strain ageing. Age hardenine

would mean that d?j would be a decreasing function

of absolute time. Strain ageing is a more complica-
ted phenomenon and could be considered by making

dgj decrease with the time of deformation. This
would mean that shorter deformation times would cor-
respond to larger values of d?j and therefore to lo-

wer stresses which are the macroscopic characteris-
tics of strain ageing. The present examnle, however,
considers only strain hardening as indicated by (8).

3. Specialization to Uniaxial Straining

The examples described in this paper are of uni-
axial straininpg of a material at various uniform and
changing strain rates. The constitutive equations
developed for this case can also bhe used for multi-
axial boundary value problems.

The deformation rate tensor is defined in terms
of the velocity gradient,

d.j = 1/2(vi'j ¥, ) &))

i i, i
where vy is the velocity vector. TFor the uniaxial

stress state, the only non-zero deformation rate
components are dx (axial direction) and dy in both

transverse directions. All shearing components van-
ish for this case. The axial deformation rate is

simply
:!vx
g B "
where v_ is the particle velocity in the axial dir-
ection.” In terms of the crosshead velocity of the

straining device Vc and the specimen gauge length L,
d = V./L (11)

The other component dy is determined by the state of



stress. The deviatoric components of the deforma-
tion rate are then given by

d, = 2/3 (4, - d) (12a)

d

d, )

y (12b)

=d =-1/3 (@, -d

and each component is considered to be the sum of

elastic and plastic parts, e.g.
d, = dy + aF (13)

The elastic stress-strain relations, assuming the

elastic strains are sufficiently small so that

Hooke's Law is applicable, are

(14)

a.

ij = 2G Ei'

]

c = 3K g

Kk (15)

kk

and in this example M is the only non-zero stress
component.

For large strains, the deformation rate is not,

in general, equal to the strain ratets). However,
this identity does hold for the simple geometry of
the present problem since the other terms in the
general relationship become zero.

The elastic part of the deformation rate ten-
sor is related to the stresses through (14) and (15)
and the plastic part through (2), (3), (6) and (8).
The material is compressible for elastic deforma-
tions (15) and is incompressible for plastic deform-

ations in accordance with the flow law (2). The
rate of plastic work, Wp, is given by

» P

wp o, dy (16)

These equations can then serve to determine the
stress required to pull a rod of the material at a
uniform velocity Vc' This is actually a particular

boundary value problem whose solution leads to the
uniaxial force-elongation (stress-strain) relation
of the material.

A numerical scheme was devised to compute the
stress from the preceding equations when the mater-
ial constants and the applied velocity Vc are given.

The method is a step by step procedure which follows
the deformation history. All quantities such as
a ar
ij ij
are determined at each step. The numerical scheme
can be readily adjusted to account for changes in
the applied velocity and for loading and reloading.
That is, the method can consider completely arbi-
trary loading or straining histories. In this pa-
per, however, only examples involving uniform velo-

; wp, the total elongation, and the stress

cities and a single change of velocity are described.

4. Application to Titanium

A series of tensile tests were performed in a 10 ton
capacity Instron testing machine on specimens of
commercially pure titanium. The specimens were cut
from a 1 mm thick plate in the rolling direction and
were 8 mm wide. An extensometer was used for the
strain measurement and the load was recorded as a
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function of strain. Titanium is a fairly rate sens-
itive material which makes it useful for studying
the effect of different straining rates and the re-
sponse to changes of rate during a test. In general,
material response is influenced by the complete
strain rate history and titanium appears to be a
good specimen material for such studies. This has
been emphasized recently by a number of investiga-

tors, e.g.(G). The proposed method of material re-
presentation and the associated constitutive equa-
tions intrinsically include strain rate history ef-
fects.

In order to examine the applicability of the present
theory to titanium, the material constants of the
constitutive equations, (6), (6a), (8) were deter-
mined from the results of two tests at different
constant extension rates. The response to other
straining rates and to varying straining histories
were then calculated and compared to corresnmonding
experimental results.

Tests were conducted for four constant crosshead ve-
locities: 0.005, 0.05, 0.5 and 1.0 cm/min. The ef-
fective overall specimen gauge length was 52 mm so
the imposed velocities correspond respectively to
the strain rates: 1.6 x 1075, 1.6 x 107%, 1.6 x 107}
and 3.2 x 107 ’sec”?

The material constants were obtained by fitting the
calculated response of the material at the highest
and lowest rates to the corresponding experimental

curves. The values of the material constants de-
termined in this manner for commercially pure tita-
nium are:

Z, = 11.5 Kbars (112.8 Kg/mm?)

Z, = 14.0 Kbars (137.0 Kg/mm?)

D; = 10° sec”?

n =1

m = 100

constants for titanium are
23 x 10* Kbars (12.0 x 10* Kg/mm?)

The elastic
K=1.

G = 0.44 x 10* Kbars (4.3 x 10® Kg/mm )

The calculated load-elongation curves for these
constants are shown in Fig. 1 for the highest and
lovest straining rates. Also shown are the experi-
mental curves to which they were fitted. Calculated
load-elongation curves for the other straining rates
are shown in Fig. 2 along with the corresponding ex-

perimental results.

Of greater interest is the effect of varying strain
and strain rate histories on the deformation charac-
teristics. One significant experiment of this kind
is to change the crosshead velocity during the
course of a test. This can be easily accomplished
on an Instron machine by pressing thec button that
activates a magnetic clutch on the speed regulator.
A number of tests were run in which the slowest and
fastest rates were interchanged at 4% strain without
unloading. The experimental results were consis-
tently reproducible, Figs. 3, 4, and could be summa-
rized as follows:

(a) Immediately upon changing from the high to the

low rate, the stress drops in an essentially



elastic manner to about or slightly above the
level corresponding to the lower rate for a
constant rate test. The stress then shows a
small rise and continues approximately parallel
and above the constant rate curve and tends to-
ward it with increasing strain (Fig. 3).

(b) Upon changing from a lower to a higher rate, the
immediate response is close to the elastic val-
ue and the stress then approaches the curve cor-
responding to the higher uniform rate test but
at a lower level. There is a small rise and
fall of the stress curve after the initial elas-
tic response which is similar to the 'upper
yield point" phenomena. The stress tends to-
ward the uniform rate curve with increasing
strain. The flow stress at a high rate is
therefore less when it is subjected to prior
deformation at a low rate than if uniformly
strained at the high rate (Fig. 4).

Another closely related experiment would be to
unload the specimen at a given strain and then to
reload at a different rate. A few experiments of
this kind were performed and the results indicated
little overall difference between this case and that
of rate changing without unloading. The "cusp'" ob-
served in going from the high to the low rate in
the former tests is not observed when the specimen
is fully unloaded before the rate is changed. An
"upper yield point" effect is also observed in this
case upon reloading at a higher rate, but it is less
pronounced than when the rate is changed without
unloading.

Similar experiments to type (b) above, namely
changing from a low to a high rate without unload-

ing have heen performed on titanium in shear(e) with
generally similar results. The '"upper vield point"

effect was, however, not observed in those tests (6?
An experiment of this kind on aluminum for a very(7)
large change of rate of loading has been reported
and the "upper yield point'" behavior of the incre-
mental response was observed. Various experiments
on changing the rate of straining after complete un-

loading were performed on aluminum(s’g) and led, in
general, to results similar to those obtained here.

The calculated response of the material hased
on the present theoretical formulation for the same
variable strain rate history gave results that
closely approximated the experimental ones, Figs. 3,
4. The "cusps'" observed on reducing the strain rate
and the "upper yield point" observed on increasing
the rate were, however, not reproduced in the calcu-
lated response curves. These seem to be transient
effects which depend on more detailed mechanisms of
plastic flow than are represented in the present
theoretical formulation. It may be possible to in-
clude such effects by generalizing the material con-
stants to more closely simulate microscopic paramet-
ers (internal variables) such as dislocation density
and velocity. The reason for the respective stress
levels upon changing rates can be explained in terms
of the plastic work W_ prior to the rate change
which influences the psuhsequcnt flow stress. Wp is

larger at the higher rate which leads to a relative-
ly higher stress curve upon reducing the rate (com-

pared to a constant lower rate test), while the re-

verse holds for the other case. These stress level

differences could also be explained in terms of the

developed microstructure but this will be left to a

subsequent paper.

It is particularly interesting to examine the
details of the deformation upon changing from the
lower to the higher rate. Por this particular case,

the plastic deformation rate component dE. is initi-
ally 99.7% of the total dij' Immediately after the
change the value of dgj increases slightly but its
percentage of dij drops to 56.6%.

The incremental response is largely elastic and
experimentally may appear to be fully elastic for
approximate measurements. If the change of imposed
velocity at the specimen end had been sufficiently
rapid to generate waves, then an elastic wave would
propagate along the specimen. The plastic compon-
ent would not be dominant and would attenuatg rapid-
ly with distance. O0Nhservations some distance from
the end would indicate that the incremental response
to the velocity change is elastic.

The proposed constitutive equations are also
suitable for cyclic loading histories, which would
be important for low cycle fatigue studies. An in-
dependent criterion, however, would have to be intro-
duced to indicate the onset of fatigue microcracks
or other failure phenomena. If such a criterion
were expressible in terms of the state variables 9y

and Wp, then the present analysis could serve to de-

termine the condition for which the criterion would
be reached for very general cyclic loading histories.
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