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Abstract


A small perturbation theory is pre-
sented for the prediction of circumferen-
tial flow distortions in high hub-tip
ratio multi-stage axial compressors with
inlet maldistribution. The analytical
model replaces the stages by actuator
discs. Numerical examples have been pre-
sented which demonstrate the influence of
varying stage characteristics on the at-
tenuation of the distortions and which
show how the distorted flow redistributes
in large axial clearances within a com-
pressor. The theory has been compared
with interstage traverse data obtained
from a 4-stage axial flow compressor.
Results show that circumferential cross-
flow within the compressor is small but
further numerical evidence indicates that
crossflow may become significant as the
number of stages, and hence the overall
gap length, increase.

I. Introduction

Stenning and Plourde(1) have pre-
sented an analytical model for calculat-
ing the development of circumferential in-
let distortions in multi-stage machines.
The procedure they followed was to re-
place the stages of the compressor by an
appropriate distribution of body forces.
Although the analysis in the presented
form assumes that all stages are identi-
cal and further requires as input an em-
pirical resistance factor (which controls
the amount of crossflow within the com-
pressor) its simplicity makes the method
valuable for initial design studies.

A more accurate survey of the per-
turbed flow field upstream, within and
downstream of a multi-stage compressor
may be obtainby using an analysis giv-
en by Dunham.' ' The mathematical model
replaces rotor and stator blade rows
(or, alternatively, the stages) by ac-
tuator discs. The initial assumption of
small axial clearances between the b;acie
rows has been overcome by Whitehead.0)
This latter analysis is more complex than
the first.

The object of the method presented
in this paper is to retain the simplicity
of Stenning/Plourde's analysis but to
allow all the stages to be different and
to make an empirical crossflow factor
unnecessary. Additionally, as numerical

calculations show, the method is relatively
insensitive to computational rounding errors
which using the method described in (2) can
dominate the solution in the case of very
large axial clearances within the compress-
or.

II. Outline of the Theory

1. Mathematical Model

It is required to determine the press-
ure and velocity perturbations upstream,
between the stages and downstream of a
multi-stage axial compressor with a high
hub-tip ratio. For this purpose an anal-
ytical model is suggested which replaces
the stages of the compressor by actuator
discs as shown in Fig. 1.

The restriction to compressors with
high hub-tip ratio means that radial var-
iations in flow properties are negligible
and reduces the problem to a two-dimension-
al one. It may also be assumed that the
flow outside the discs is steady, inviscid
and incompressible.

A 3-stage compressor has been chosen
as an example to demonstrate the method.
The procedure is easily extended to a
larger number of stages.

1..1 12'1

<1, 1

IV
m 3rd st.

ji 2nd st.
1ststage

I = Flow region upstream of compressor

II = Flow region between 1st and 2nd disc


III= Flow region between 2nd and 3rd disc


IV = Flow region downstream of compressor

FIG. 1 MATHEMATICAL MODEL OF
3-STAGE COMPRESSOR
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2. The Flow Outside the Actuator Discs


With the above assumptions and with
the axial coordinate normalized using the
mean compressor radius the equations of
motion reduce to (t)

ce.575— C
ac 3c

	

x ax P ao
= — —1 12 (1)

ac
x

acx 1 2.2
= — —ce 30 ' cx ax p ax (2)

and the continuity equation becomes

ace + acx
=030 6x (3)

The axial and tangential velocities
and the static pressure may be separated
into mean values and superimposed per-
turbations.

cx = cx-+ cx (x,0)

ce = ce

-

+ co (x,0)

p = 17,+ p' (x,o)

Assuming the mean flow to be purely axial
everywhere in the flow regions I-IV

co

-

= 0
and if

CX << Cx

co' «

substitution of equations (7) in (1), (2)
and (3) gives after neglecting terms of
second order in small quantities

6c6'
- 1 ap'
c - 
x ax p a® (8)

ac '= - 1 ap'
x -x -TTir p ax (9)


Equation (13) introduced into (8) and (9)
yields:

	

x Dx
_ __x_

	

ace, ac

x 30 p
1 apt'	

(14)

aPt' o (15)

ax

Equation (15) demonstrates that the total
pressure perturbation within each individ-
ual flow region is a function of 0 only
and hence does not change along the mean
streamlines.

The inlet distortion as such may now
be specified infinitely far upstream of the
compressor by a given axial velocity dis-
tribution of the form

cx = cx-+ En cos nO (16)

n=1

and a uniform static pressure, p=17)which
implies that p' = 0 at x = - co. Equation
(16) may be abbreviated to

c = c

-

+ c (17)

It will prove useful to separate the axial
velocity perturbation cx' in equation (4)
into two further parts, namely into the
givenjar upstream axial velocity perturba-
tion c and a compressor induced velocity
perturgation cx* whose solution has to be
sought in the flow regions I to IV. Then

cx* = 0 at x = - (18)


since here the compressor is too far away
to affect the flow. Equation (4) now be-
comes

cx = cx-+ cx (0) + cx* (x,0) (19)

Introducing

cx' = cx•+ cx* (20)

(7)

a0 ax

into equations (10) and (14), we have
(10) ac * 1pac ' — x t' (21)

x 8 — c x
Dc

x =

	

x ao p 303x DO

	

ac '3c *

	

0+ x= 0

	

30Dx

.(22)

Differentiating equations (21) and (15)
with respect to x and 0 respectively and
adding gives

Equations (8) and (9) may also be ex-
pressed in terms of the total pressure
perturbation. Since

Pt = P 7 (cx2 ce2) (11)

writing

Pt = 17)-t Pt
(12)

and applying equations (4), (5), (6) and
(7) gives

P' = Pt' - (3xcx'
again neglecting small terms.

t Nomenclature see Appendix C.

a2c * 32c 16 = 0
pop x T-)77-




A solution may be attempted in the form

(13) cx* = y S(x) cos nO

n=1
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with Sn an as 'et unknown function of x.

Using equ. (24) in connection with equ.(22)
the tangential vElocity perturbation in
its general form can be determined:

1 dSn(x)c = -' 1 sin nO (25)
n=1 dx

Introducing equ. (24) and equ. (25)
into equ. (23) gives an ordinary differen-
tial equation for Sn.


where GnII? Gn12 and G
n13 are constants to

be determined from the boundary conditions
described in a later chapter.
Thus with eqns. (24), (20) and (25)

cx* = (G11
I2

+ G e- 13
nx+ G enx)cos no

n n n
n=1

(34)

cx' = 7 n + Gnll + Gn12e-nX + Gn13enX)

x cos no(35)•
d3Sn(x) dSn(x) -nx

- G enx)sin nO- n2 - 0 (26)dx cO' = (Gn12e n13dx n=l

3.Solution in Flow Region I (Upstream)

The difference in total pressure per-

turbation across a stage (see Appendix A)
is found to be

(36)

The solution for Sn in flow region I
is found from equ. (26) ast = pUbIpscx - POb ce

S (x) = A + B e-nx + Unenx (27)

where An' Bn' Un are constants to be deter-

mined from the boundary conditions. As
stated above, c * = 0 at x = - = .
Hence from equ.x(24) it follows that An
and Bn are zero.

Thus, with eq/la. (24), (20) and (25)

cx* = Unenxcos nO
n=1

(28)

cx' = (cn + Unenx)cos nO (29)

n=1

c0 ' = - Unenxsin nO (30)
n=1

The total pressure perturbation up-
stream of the compressor is found from
equ. (13), which may be rewritten in the
following form.

—
pt' = p' + pcx(cx + cx*)

At x = - = c * = 0 and p = 0 so that
equ. (31) bec6mes

—,  - p
Pt

_
CxCx

As mentioned above, the total pressure per-
turbation does not change along mean stream-
lines and consequently equ. (32) holds in
the entire upstream flow field.

The static pressure perturbation in
flow region I is found from equ. (13) with
cx' given by equ. (29).

4. Solution in Flow Region II (1st gap)


Equ; (26) is again applied in the flow
region II and the solution is


(37)

In this equation 11,'is the slope of the un-
distorted stage characteristic at the mean
flow rate under consideration (see Fig. 2).

c ' and c6 ' are the axial and tangential
velocfty perturbations immediately upstream
of the stage.

With the notation shown in Fig. 3 and
ignoring the effect of the tangential vel-
ocity perturbation on the pressure rise
across the disc, the total pressure pertur-
bation downstream of the first stage (and
hence in the entire first gap) is found
from equ. (37).

( Pt1)04- = (Pti)o- PUb //jo"cx')x=c, (38)

The total pressure perturbation immediately
upstream of the stage is given by equ. (32).

=APt 

Ug = stage pressure

rise

dWr
dO

LX_
Ub

ub

FIG. 2 SCHEMATIC DIAGRAM OF
STAGE CHARACTERISTIC




+ G e-nx + G enxSn(x) = G(33)
n11n12n13 (39)
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Introducing equ. (39) into equ. (38) yields The static pressure perturbation is
— found by using eqns. (13) and (44)(ptI)o+ = pcxcx + pUbo'(cx')o (40)

(ptI)1+ '

	

where cx' at x = o is found from equ. (29). = - c (48)

The static pressure perturbation in
the first gap is then determined from the
known total pressure perturbation and the
axial velocity perturbation given by
equ. (35)

p' = (Pt') - pcXc
o+

For 0 x

5. Solution in Flow Region III (2nd gap)


The same procedure as for the flow
field in the 1st gap applies here. The so-
lution of equ. (26) is

For x Z2

Any further stages and gaps may be
treated by the methods described above for
the flow regions II and III. Although the
equat4on for the total pressure perturbation
acquires an extra term as each successive
gap is encountered, an examination of eqns.
(40) and (47) shows that this may be written
down at once as

pU
b n-1

(cx')n-1 for the nth gap.

6. Solution in Flow Region IV (Downstream)


Solving equ. (26) for the downstream
flow field gives

S (x) = D + N e
-nx + P enx (49)

Introducing equ. (49) into equ. (24) it
is found that for x = + = the compressor
induced velocity perturbation becomes in-
finite. It follows that Pn = O.

It is also assumed that the flow is
purely axial at exit from the final stage,
so that c ' = 0 at x = 12,2.Introducing

Sn(x) = Dn + Nne-nx (50)

into equ. (25) it is apparent that can
only be zero at the exit of the compr.essor
if Nn = O.

FIG. 3 CROSS-SECTION OF
COMPRESSOR MODEL

(41)

-nxnxS(x) = Gn+ Ge+ Ge
21 n22n23

(42)The remainder of equ. (50) introduced
into equ. (24) yieldswith G

,n2, n22
G and Gn23 constants again to

be determined from the boundary conditions.
With eqns. (24), (20) and (25) the axial
and tangential velocity perturbations are
given by

cx* = (G + G e
-nx

n=1 n2I n22 n23

	

+ G enx)cos nO

(43)
c = ic e-nx+G enx)cos nO

n n2Ir.o2 n23
n=1 (44)

c' = (G e-nx- G enx) sin nO (45)
n=1 n22 n23

The total pressure perturbation down-
stream of the 2nd stage (and hence in the
entire second gap) becomes

(pt"1+ = (pt')1,-+pUbtPl'(cx"x =12.1 (46)

Since (ptI),_ = (pt')01. equ. (46) with

equ. (40) yields

(Pt1)1+=Pxx+PliblP0'(cx')0+PUbtP1'(cx')I (47)

c * =
n=1

Dn cos nO

cx = (cn + Dn) cos nO
n=1

Further use of equ. (25) shows that ce'
is not only zero at x = 22 but in the en-
tire downstream flow field

ce' = 0 for 122<3(< . (53)

From equ. (8) together with equ. (53),
and from equ. (9) together with equ. (52)
it follows that

30
= 0 (54)

ax
= 0 (55)

Eqns. (54) and (55) can only be satis-
fied if p' = const. Assuming that p' = 0
at x = +co,it becomes clear that p' = 0
everywhere downstream of the last stage.
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pt = 0 for Z2 < x ( + (56)

The total pressure perturbation down-
-tream of the third stage (and hence
everywhere in flow region IV) is found
with the help of equ. (37).

= (Pti)2- QUO'2'(cx')x=2,2 (57)

Since (pt1)2_ = (pt1)11. equ. (57) with

equ. (46) yields

(Pt')2+=PA+PUbtPo"cx"o+PUbl'I'(cx"I

+ DPU,I2 XP1(c 1)2 (58)

The total pressure perturbation down-
stream of the compressor can also be de-
termined from equ. (13). With p' = 0 it
is found that

( pt ') 2+ = f,),( x( c ') 2

where (cx1)2 is given by equ. (52).

7. Boundary Conditions 


Equations (29), (35), (44) and (52)
show that for each harmonic number there
remain 8 unknown constants to be deter-
mined.

The first boundary condition requires
that the axial velocities match at each
actuator disc. By using equ. (19) this
leads to the following set of conditions:

(c *) = (cX 4-*)0x 0-

(c *) = (cX*)1+x I-

(c *) = (c* )2+X 2 X—

Introducing equ. (28) and (34) with x = 0
into equ. (60), equ. (34) and (43) with
x = El into equ. (61) and equ. (43) with
x = Z2 together with equ. (51) into
equ. (62), three equations for the deter-
mination of the unknown constants are ob-
tained. The equations are listed in
Appendix B.

The second boundary condition results
from the assumption that the stator rows
belonging to each stage are heavily bladed.
Hence c,1 = 0 at the exit from each disc.
Since fbirthe third disc this boundary con-
dition has been used above, two equations
remain:

(c01) 0+ = 0

(c01)1 = 0 (64)+

Introducing equ. (36) with x = 0 into equ.
and equ. (45) with x = 9.1into equ.
two further conditions for the


determination of the unknown constants are
obtained (see eqns. (4) and (5) in Appen-
dix B).

The last boundary condition involves
the total pressure perturbation at the exit
from the last disc. By working from up-
stream through the various stages of the
compressor, the total pressure perturbation
at exit of the last disc was established by
equ. (58). On the other hand the total
pressure perturbation downstream of the
compressor (and hence at the exit from the
last disc) was also given by equ. (59).
Therefore,




$(cx1)2=cp

-

c x+11,01(cx1)0+4,11(cx1.)1+021(cx1)2


or, alternatively, by writing cx'=C'x+c *
x

11,

(c *) +—(c *) +(-L- - 1) (c *)T x0Tx1 T x 2

e •

U)0 4)2'x (66)

Introducing the appropriate expressions
for the compressor induced axial velocity
perturbations one further equation is ob-
tained for the determination of the unknown
constants. It is listed as equ. (8) in
Appendix B.

8. Supplementary Conditions 


The boundary conditions established in
the previous chapter lead to the equations
(60) to (65), giving 6 equations for the
determination of the 8 unknown constants.
Two further equations are therefore re-
quired. These are derived by observing
that the solutions obtained for the veloc-
ity perturbations and total pressure per-
turbations in the flow regions I-IV must
satisfy equations (15), (21) and (22).
Eqns. (15) and (22) are immediately satis-
fied in all flow regions; similarly for
equ. (21) upstream and downstream of the
compressor. The requirement that equ. (21)
is also satisfied in the 1st and 2nd gaps
however leads to two further conditions for
the determination of the unknown constants.

Consider first flow regiRn II (first
gap). Introducing (c ') = c + (c *)

	

x o x x o
into equ. (40) and taking the partial der-
ivative with respect to 0 it is found that

,
ac a

aPti - x „
x o(30 ) "x 30 ' 13'bw.o.D0 p'13'oo+ ao

With this expression, equ. (21) yields

	

°co'acx + qjoia(cx"o
+ (3c' ac *xao - 30 3x ao ) = o

(68)For 0 ( x ( ti

(59)

(63) (67)
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Introducing equ. (34) and (36) into the Assuming initially that the mean flow
bracketed term of the last equation and has an average swirl angle Tiit follows
integrating with respect to 0, we have from Fig. 4 that

Iljo'1Pol
c + ---(c *)Gcos nO = 0 (69)- x-x onil

	

0nFl

,Ec
tan(a + a) - -

cx + cx' (71)

With the appropriate velocity perturbations
introduced one further equation is ob-
tained. This is listed in Appendix B as
equ. (6).

The same procedure as above applied
to the second gap produces an expression
which corresponds to equ. (69).

*
qi01 -0) '

c + ---(c *) + -I-(c *)x - x
0 - x

G cos nO = 0 (70)n21
n=1

Again introducing the appropriate expres-
sions for the velocity perturbations the
last equation for the determination of the
unknown constants is derived (see Appendix
B, equ. (7)).

9. Flow Angle Perturbations


Having determined the axial and tan-
gential velocity perturbation at a certain
axial location x the corresponding flow
angle perturbation may easily be derived.

Introducing






c '0a' = arc tan 	
cx + cx'

giving the required flow angle perturbation.

III. Comparison Between
Experiment and Theory


Interstage traverse data for comparison
with the analysis has been obtained from a
low speed 4-stage axial flow compressor
consisting of inlet guide vanes; 4 identi-
cal stages and outlet guide vanes. The com-
pressor, which is shown schematically in
Fia. 5, has a hub/tip ratio of 0.8 and a
mean radius of 6.3 inches. The 50% reac-
tion constant section blading has a circu-
lar arc camber line 8nd stagger and camber
angles of 20 and 40 respectively. The
space/chord ratio at blade mid-height is
0.88 and the chord length is 0.7 inches.
All gaps between the blade rows have the
same width of 0.54" exceptthat between the
TE of the last stator and che LE of the
OGVs which is 3.30". The distance between
plane 10 and 11 is 2.0.

The instrumentation consists of a Kiel
probe in plane 1 1.9" upstream of the LE of
the IGVs, 5 cylindrical 3-hole probes be-
hind the IGVs and each stator and a wedge
probe in plane 11. All probes measure the
flow at annulus mid-height.

The instrumentation consists of a Kiel
probe in plane 1 1.9" upstream of the LE of
the IGVs, 5 cylindrical 3-hole probes be-
hind the IGVs and each stator and a wedge
probe in plane 11. All probes measure the
flow at annulus mid-height.

FIG. 4 VELOCITY AND FLOW ANGLE
PERTURBATIONS

2 4 6 8 10 11

pr-pgunuriu Irr
IGV Rotor Stator OGV

FIG. 5 SCHEMATIC DIAGRAM OF
TEST COMPRESSORPRESSOR

(74)
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The static pressures were obtained
from outer wall tappings except in plane
11 where the pressure was taken from the
wedge probe.

The flow angles were measured by bal-
ancing the instrument static pressures.
No flow angles could be measured in plane
1 since only a Kiel probe had been in-
stalled. Therefore the total velocity
(and not its axial component) is presented
for this plane.

The overall pressure rise character-
istic of the undistorted compressor is
shown in Fia. 6. It is based on the total
pressures and an arithmetic average of the
axial velocities obtained from the Kiel
and wedge probes in plane 1 and 11 respec-
tively. All tests, including that with a
distorted flow were performed at a com-
pressor speed of approximately 2980 r.p.m.

A characteristic with the flow coef-
ficient based on measurements obtained
from the calibrated airmeter toaether with
further information concerning the com-
pressor and its instrumentation is given
in (4).

A 120°-square wave inlet distortion
was generated by attaching a gauze segment
to a uniform support screen located 5" or
0.8 compressor mean radii upstream of the
IGVs. The relative positioning of gauze
segment and instrumentation was obtained
by rotating the support screen.

A mean flow coefficient was derived
by averaging the perturbed velocity pro-
files at stations 1 and 11, and averaging


in turn the values obtained at these two
stations. The final value calculated was

= 1.251. (The flow coefficient derived
from airmeter measurements was 1.042).
The slope of the overall characteristic at
71,= 1.251 is then measured from Fig. 6 as
2.52. Assuming all four stages to be

identical, the slopes of the stage charac-
teristics are therefore tp'-=-0.63.

Fig. 7 shows the mathematical model
representing the experimental compressor.
The IGV and OGV blade rows are treated as
'stages' with zero slopes since losses in
these rows are neglected (see also the top
row of Table 1). The dimensions in Fig. 7
are normalised using the mearfcompressor
radius.

The experimentally obtained total pres-
sure distortions are presented in Fig. 8a.
The dashed line approximates the total
pressure profile measured in plane 1 and
together with the dimensions in Fig. 7, the
mean flow rate and the stage slopes serves
as an input to the analysis. The required
relationship between the axial velocity
perturbation at x = - = and the given inlet
total pressure distribution is established
by equ. (32). To aid clarity in the pres-
entation of the analytical results, the
calculated total pressure perturbations are
superimposed on the mean experimental pres-
sures obtained by circumferentially averaa-
ing the appropriate curves. (The same pro-
cedure has been applied to the static pres-
sure, flow angle and axial velocity pertur-
bations).

2.0- Yov

1.8

1.6

1.4

1.2






°01,






Compressor
distortion

120°-square
distortion

wave

without





0•91.01.1121.3
FIG. 6 OVERALL TOTAL PRESSURE

RISE CHARACTERISTIC

IGV OGV

x11=4.089—
xio= 0-771—

x8

1 plane

	 x6

	 x4

4-x I2 4
10 11

14—

11=
12=
13=
14=
15=

0.171
0.343
0.514
0686
1.209

x =
x12=
x4=
x6=
xe=

15
-0.302
0.086
0.257
0.429
0.600

FIG. 7 ANALYT. MODEL REPL. TEST COMPR.
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' FIG. 8b

- 120°- SQUARE WAVE DISTORTION
TOTAL PRESSURE PROFILES (THEOR.) _

-1.2 •

11

1.6
••

1.4

1.2

1.0

0.8

0.6

0.4

ND

 I•

plane 1,2

a* 300

0.2

0.0
circumf. loc. +

-0.2

-4••••

direction of
rotat ion -

-0.4

-0.6

-0.8

FIG. 8a

1200- SQUARE WAVE DISTORTION
TOTAL PRESSURE PROFILES (EXP.)

I I I
dmumf.

P P •
gu6 •
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Fig. 8b shows the theoretically deter-
mined total pressure disturbances.

The theory clearly predicts the atten-
uation of the distortion as the flow passes
through the compressor, although the dis-
turbances in plane 10 and 11 are slightly
lower than demonstrated by the experiment.
Difficulty in obtaining the correct slope
of the stage characteristics may be res-
ponsible for this.

The experimental profiles are shifted
in the direction of rotation as the flow
passes from station to station. This is
thought to be mainly due to the swirl of
the mean flow downstream of the blade rows,
contradicting the assumption of axial mean
flow made in the analysis.

The theory is also unable to predict
the gradual decrease in slope of the lead-
ing and trailing edge of the experimental
total pressure profiles, an effect probably
caused by viscosity and turbulent mixing.

The static pressure perturbations are
compared in Figs. 9a, b.

The theory demonstrates the amplifica-
tion of the disturbance from plane 1 to 2.
The predicted uniform static pressure in
planes 10 and 11 is in reasonable agreement
with the experiment and a further improve-
ment might possibly be achieved by including
losses for the outlet guide vanes.

A large discrepancy arises between the
theoretical and experimental profile shapes.
The experimental curves show a strong asym-
metry whereas the corresponding theoretical
curves are symmetrical throughout. A bet-
ter prediction may be obtained by the fol-
lowing means:

1) The inlet total pressure disturbance
can be more appropriately specified by add-
ing terms in sin nO to equ. (16). The
analysis can easily be extended to allow
for these terms.

8
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1.6- FIG. 9a

- 1200- SQUARE WAVE DISTORTION
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8  -
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0.0 	 1 I
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FIG. 9b

- 1200- SQUARE WAVE DISTORTION
_ STATIC PRESSURE PROFILES (THEOR.)

11

10 _

8

6-

4

-1.2-

The effect of the tangential velocity

perturbations on the pressure rise across
a disc could also be accommodated in the
present theory, but the number of simul-
taneous equations to be solved increases
and the solutions lose their simplicity.
The method described in (2) with the ex-
tension developed in (3)would then be
preferable to the method described here.

All theories mentioned in this paper

assume the rotor blades to respond in a
quasi-steady manner to the changes in in-
cidence which occur when the blades pass
through the distorted flow. An extension
to include an unsteady blade response
could therefore improve the prediction.

The experimental and theoretical flow
angle perturbations are presented in Figs.
10a, b. The sharpopeaks inthe experimen-
tal profile at 120 and 2400 in plane 2
are at least partly caused by the strong
total pressure gradients, which lead to a
systematic error in flow angle measure-
ments.

The axial velocity perturbations are
compared in Figs. lla, b. The agreement
between the experiment and theory is good,
particularly in the first three planes.
In the planes further downstream the ex-
perimental curves smooth out while the
theoretical ones retain their square-wave
shape. It is believed (as for the total
pressure profiles) that viscosity and turb-
ulent mixing are mainly responsible. As
indicated by both the experiment and theory
only a little crossflow occurs within the
compressor.

IV. Further Numerical Examples 


1. Influence of Varying Stage Character-
istics

The analysis has been used to study the
effect of variable stage characteristics on
the attenuation of the distortions. The
compressor model used is the same as in the
previous chapter and is shown in Fig..7.
If the amplitude of the first harmonic of
the total pressure distortion far upstream
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is y and at any other axial location Ipt'l,
then the solid line in Fig. 12 shows
the ratio Iptilas a function of axial dis-

Y
tance fcr slopes of the stage characteris-
tics given by the top row in Table 1.

TABLE 1 SLOPES OF STAGE CHARACTERISTICS

Stages

IGV 1st 2nd 3rd 4th OGV T.

O -0.63 -0.63 -0.63 -0.63 0 -2.52

0 -0.756 -0.672 -0.588 -0.504 0 -2.52

0 -0.504 -0.588 -0.672 -0.756 0 -2.52

The stages of the compressor are then re-
matched. The two front stages are more
lightly loaded (the slope is made more neg-
ative) and the two rear staaes are more
heavily loaded than for the previous case.
The sum of the stage slopes is the same as
before. The dashed line in Fig. 12 shows
that the attenuation of the total pressure
distortion is higher in the front and lower
in the rear stages than for the equal stage
slopes. As miaht be expected the reverse
happens when using stages with slopes given
by the last row in Table 1 (see dashed-dot
line in Fig. 12). The somewhat surprising
result, however, is that for all three
cases the amplitudes of the total pressure
distortion at compressor exit are precisely
the same. Real flow effects such as separ-
ation and turbulent mixing will modify this
conclusion for a real machine. In (5)it is
recommended that the mean loading on the
earlier stages is reduced in order signifi-
cantly to improve the distortion tolerance
of the entire compressor.
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The effect of varying stage character- 2-stage compressor with a large axial
istics on the static pressure perturbation clearance between the stages (see Fig. 15).

is shown in Fig. 13. Upstream and down-
stream of the IGVs there is very little The same total pressure disturbance as
difference between the three patterns of given by the dashed line in Fig. 8a is as-
stage matching. Downstream of the follow- sumed to exist upstream of the 2-stage com-
ing stages the static pressure distortions aressor. The flow rate is chosen to be
behave in a similar manner to the total = 1.251 and the slopes of the stage char-
pressure disturbances. acteristics to be twice those for the

4-stage compressor.
The axial velocity perturbations are

presented in Fig. 14 in the form of the
ratio of the amplitude of the disturbance
at any x to that at x = --c0.The three
ways of stage matching have so small an
effect that the differences do not show in
the figure.

2. Flow Redistribution in Large Axial

Gap


The present analysis is used to deter-
mine the pressure and velocity perturba-
tions upstream, within and downstream of a

As Fig. 16 shows, the attenuation of
the total pressure disturbance is consider-
ably lower in the rear stage than in the
front stage. This is due to the decay of
the axial velocity distortion within the
compressor as shown in Fig. 18.

The development of the static pressure
perturbation as the flow approaches the com-
pressor face is presented in the lower part
of Fig. 17. There is little change from
x = - 0. (where the static pressure is uni-
form) to x = -2.0, but then the distortion

11
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builds up at an increasing rate to the max-
imum perturbation at inlet to the first
stage. A large attenuation takes place in
the first stage itself, then in the clear-
ance between the stages the distortion
grows once more in the same way as in the
upstream flow field. This is illustrated

IP' I 1-0

0.9 n = 1
T = 1.251

s. Table 1
Ratio of
amplitudes 0.8
of static
pressure n.?


to upstream '
total
pressure
distortions
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FIG. 15 ANALYTICAL MODEL REPRESENTING
2-STAGE COMPRESSOR
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3. Inlet-distorted 10-stage Compressor

A 10-stage compressor with the same

axial clearances between the stages as for

the previous 4-stage compressor is sub-




jected to the 1st, 2nd, 4th and 8th har-




monic components of an inlet flow distor-




tion. The mean flow rate is 4) = 1.251 and

all stages have identical stage slopes of

= - 0.63.

In Fig. 19 the total pressure pertur-
bation ratios are presented. As illus-
trated, the high harmonic total pressure
disturbances attenuate much more strongly
in the front stages than the ones of lower
order, but in the rear part of the com-
pressor the situation is reversed. The
explanation is embodied in Fig. 21. The
higher order axial velocity distortions
are of considerably greater magnitude at
the compressor face than the lower harmon-
ics but they then attenuate so rapidly
that at the compressor exit their magni-
tudes are smaller than those of the lower
order distortions.

The static to total pressure perturba-
tion ratios are shown in Fig. 20. As dem-
onstrated in Section IV.2, the static
pressure disturbances grow as the flow
crosses the gaps between the stages. This
applies particularly to the higher harmon-
ics.

It should be mentioned that the differ-
ent behaviour of the various harmonic com-
ponents within the compressor is due to
the presence of axial clearances between
the stages. For zero gap length all curves
in Figs. 19, 20 and 21 would reduce to the
same one except in the upstream flow reg-
ion.

134 Within compressor

by the upper part of Fig. 17. As expected,
the static pressure is uniform downstream
of the second stage.
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It may be of interest to compare the
axial velocity disturbance in the 4-stage
compressor (Fig. 14) with that for n = 1
in the 10-stage compressor. It is apparent
that little crossflow occurs in the first
case but that it is significant for the
10-stage compressor, and should therefore
not be neglected in a real machine with
many stages.

V. Conclusions


The overall attenuation of a distortion
in a multi-stage compressor has been found
to be independent of the way the stages are
matched provided that the sum of the stage
slopes is fixed and that real flow effects
(viscosity, separation, turbulent mixing
etc.) may be neglected.

In axial clearances between the stages,
the flow behaves in a similiar manner to
the flow upstream of the compressor, i.e.
the total pressure distortion remains un-
changed, the static pressure perturbation
grows and the axial velocity disturbance
attenuates as the flow crosses the gap.
This phenomenon can be observed particular-
ly clearly for the higher harmonics of a
distortion.

Both experiment and theory show that
crossflow within a 4-stage compressor is
small. For a 10-stage compressor, cross-
flow is more significant and therefore
should be taken into account in an axial
machine with many stages.

	

IP'I 1.0-
Y

0-9-

r
6.51-,, .I

n=1 0;4%.

	

, ••

;
/0.2-

	

. . ;

4 ,

Stages: 1 2 3 4 5 6 7 8 9 10
Axial distance

FIG. 20 EFFECT OF HARMONIC NUMBER ON
STATIC PRESSURE DISTORTION
IN 10-STAGE COMPRESSOR

Compressor

Name....41 =we

1.•

T = 1.251

14



Appendix A

Total Pressure Rise Across a Stage


Consider a stage as shown in Pig. 22
operating in an undistorted flow. The
losses in the stator blade row can be de-
fined as

Pt3H = = f(a )
1/2pcx • 3'

The total pressure at the stator outlet
then becomes

1  Pt4= Pt3 -
Pcx Hs2 (A-2)

Correspondingly, the losses in the rotor
row can be defined as

nr= p 0tlo pt2 = f(6 )

x2

(A-3)

where ptl and pt2 are the total pressures

in the relative system upstream and down-
stream of the rotor row. From (A-3) after
some manipulation the total pressure at the
rotor outlet is found:

pt2 = ptl+0Ub(ce2-cei) -15pcx2Hr (A-4)

With 1) = pt2 it follows from (A-2) and

(A-4) niat

Pt4-PtI=PUb(cE12-c61)-15pcx2(11r+11s)(A-5)

With,1
and = cxpUb

equ. (A-5) becomes
2

11)= 1-0tan 62-0tana1 -1/20(Hr+Hs) (A-6)


Assuming that 62and al are independent of
the flow rate 0, equ. (A-6) differentiated
with respect to 0 yields the slope of the
stage characteristic

= = -tan e2-tan al -4)(n + H )
S

dfl-1/2(D2(dlir s)
d0 d0

With the definitions

nr =,
 d(tanand n's=r

a)
d tana3)

dns

it may be shown that

dp  _ &I
--E - -nri 1- and

s = , 1 (A-9)
dcp 02 d 0 ns• 7

Equations (A-9) introduced into (A-7) yield

= k(Hr'+ffs')-0(Hr+11s)-tanal-tan a2

 

Equ. (A-10), which was also derived by
Dunham ;2) in a somewhat different way, es-
tablishes the connection between the stage
and blade row characteristics.

Now consider the stage to operate with
a circumferentially distorted flow. Using
equ. A-5 the difference in total pressure
across the stage is given by

2
pt

4
-p, =pUb(U10-cxtana2kpcx Mr+Hs)

-1
 

where all flow properties (apart from p and
Uh) are functions of the circumferential
16cation 0. It may, however, be assumed
that the rotor is heavily bladed so that 132
does not vary with 0.

By taking the total differential of
equ. (A-11) the difference of the total
pressure perturbation across the stage (as
a function of the axial and tangential vel-
ocity perturbation immediately upstream of
the stage) is derived.

6pt4-opti=pUb(-tan1326cx-oced-p6c(HIl +x x r s )

-1/2pE2011 +611) (A-12)x r s

(SITsmay now be expressed as

6H = Vis 

6(tana3)=11516(tana3) (A-13)15(tana3)

With
Ub

tana3 = tana2 = - tan 62 (A-14)

which includes the assumption that the rot-
or is followed closely by the stator, equ.
(A-13) becomes

Ub
611 -H 1

s - 2 dcx (A-15)cx

1
rotor

2 34 stator

Notation


1 rotor inlet 3 stator inlet
2 rotor outlet 4 stator outlet

FIG. 22 TOTAL PRESSURE RISE ACROSS STAGE

(A-1)

(A-7)

(A-8)
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A similar expression is derived for 6IIr• Assuming now that equ. (A-10), which was
derived for a stage operating in undistort-




1 -ed flow, also holds for the mean flow in
6n = n ' --r(-U+tan(TtiX6cX)r r - b x x el the case of a circumferential distortion,

	

cx (A-16) equ. (A-17) can be written as

Substituting eqns. (A-15) and (A-16) into
equ. (A-12) (and writing dcx as cx' etc.)
it is found that

Apt'=pUbcx'f1/2(nr H'+s')-T(HrIl+s)-tan31

-tan82}+pUbtan3lcx'(1-1/2TUr')-(DUbcell

x(1-1/2TTIr') (A-17)


Apti=pUb{tp1+tan31(1-1/2-0-HrI)}cx'-fpUb

x(1-1/2THr ')cei' (A-18)

For the special case when flr'= 0 and the
mean flow is purely axial, i.e.tanal= 0,
equ. (A-18) reduces to

Apt' = PUbVcx' Pubc81'
(A-19)

Appendix B


The boundary conditions and supplementary conditions lead to 8 simultaneous linear equa-




tions for the determination of the 8 unknown constants. The equations are listed below.
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Appendix C


Nomenclature


velocity
distance from compressor face to a
disc replacing a stage
number of harmonic
static pressure
total pressure, identical with pt
compressor mean radius

Ub blade speed

axial distance normalised using the
compressor mean radius

aabsolute flow angle
e. relative flow angle
yamplitude of upstream total pressure

distortion
dtotal differential
Adifference between inlet and outlet of

stage or compressor




( B-3)




 

(8-7)

(B-8)
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amplitude of far upstream axial vel-
ocity distortion
angle in circumferential direction

Rs loss coefficient for stator,equ.(A-1)
Er loss coefficient for rotor, equ.(A-3)

density
flow coefficient
slope of undistorted stage character-
istic

Subscripts


number of harmonic
rotor
stator
total
axial

ov overall
0 tangential

Superscripts


perturbation
compressor induced
far upstream perturbation

o in the relative system
average
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