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Abstract

Heat transfer rates in separated, two-
dimensional and axisymmetric, base type flows
are investigated theoretically and experimentally.
The theoretical evaluation is obtained by an
extended Crocco-Lees integral method. An improved
solution of the non-similar boundary layer flows
is obtained by a finite difference-differential
solution using the shooting method and leading
to a prediction of the separation point by an
interpolation procedure. Empirical correlation
relations are presented for the effects of the
Mach and Reynolds numbers, initial boundary layer
thickness and model geometry on the maximum heat
transfer at reattachment and its location.

I. Introduction

Flow separation may be caused either by the
boundary layer retardation by an adverse pressure
gradient or by an abrupt drop of the geometrical
boundary. The first type of separation may be
defined as the boundary-layer interaction-type
separation while the second may be defined as the
base type separation. The separated flow field is
composed of the flow upstream of separation, the
separation point, a separated region (which
includes a mixing layer and a recirculating "dead
water" zone), the reattachment region and the flow
downstream of the reattachment. It is well known
that due to the intimate interaction between the
viscous shear layer and the external flow these
separated flows are extremely complex for theoreti-
cal analysis and also extremely difficult for
comprehensive experimental investigations. Methods
for the analyﬁi? of these flows were suggested by
Chapman et al xorst (2) , Crocco and Lees(3)
and followed by many others, some of which are
listed in the present references list (e.g. Refs.
(4) to (8) ).

It is evident that this complex problem be-
comes much more complicated when the heat transfer
in the separated region is also considered. It
was shown by chapman(?) and also measured
experimentally{10+11:12%hat the heat transfer rates
to the boundaries of the "aead water" zone are
greatly reduced as compared to the attached flow
case. However, very high heat transfer rates are
measured at reattachment and beyond(10,12) . such
high heat transfer rates at reattachment were also
estimated by Chung and Viegas(13). This local
increase in the heat transfer rate could easily
outweigh the reduction in the heat transfer in the
"dead-water" zone. The need for a theoretical

Israel.

evaluation of the local heat transfer rate distribu-
tion was thus clearly indicated since the pre-
viously mentioned methods evaluated mainly the
average rate in the constant pressure regions (2,13),
Local heat transfer rates are obtained, rather
inaccurately, primarily by the use of momentum
integral methods (6) or similar moment methods (14) .
Notably the best results are obtained by

Holden (15) and Klineberg and Lees(16). These works
extended the Lees-Reeves method (6) by adding the
integral energy equation and using a two parameter
family of velocity and enthalpy profiles. In

order to obtain a simpler and faster method for

the evaluation of the heat transfer rates in a
laminar supersonic separated boundary layer the two
senior authors proposed a momentum and energy
integral correlation method (17) that is an
aextension of the Crocco-Lees method. This method
and its results are briefly outlined in Section
III. The attractive feature of this method is

that the velocity and enthalpy profiles do not have
to be specified, and the non-uniformity of the
actual velocity and enthalpy distribution across
the dissipative flow is accounted for only
approximately by defining appropriate velocity and
enthalpy shape parameters, (k ) and (x )respective-
ly. This method, instead of directly satisfying
the local momentum and energy equations, intro-
duces integral conservation equations, relating

the average boundary layer properties (represented
by the shape parameters) to a mixing rate para-
meter.

The integral-correlation method derives the
necessary correlation functions from "similar"
boundary layer solutions, although the separated
flow is definitely non-similar. When separation
is caused by an adverse pressure gradient (e.g.
shock-wave boundary-layer interaction) even the
flow that approaches separation is non-similar.
The similar solutions cannot correctly describe
such flows and cannot predict the separation point.
In order to obtain a better prediction of the
separation point and a better heat transfer rate
distribution in the separating flows the authors
introduced an improved approximate numerical
method for the solution of the non-similar boundary
layer equationtla) This method, described
briefly in Section III, is a difference-differen-
tial method, where the streamwise gradients are
replaced by backward finite differences schemes.
The similar solutions are described as "memory-
less" (as are also the "locally similar"
solutions) and the "exact" solutions as having a
full "memory". It will be shown that the present
method has a "limited memory" and can therefore
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overcome some numerical difficulties of other non-
similar methods in the calculation of heat trans-
fer rate up to the separation point and the pre-
diction of its position. Numerical solutions,
like this method, are being applied to the
separated zones and it is hoped that such
solutions will enhance the calculations of local
heat transfer rates in additional zones in the
separated flow.

In addition to these two theoretical works, an
experimental program was conducted over several
years, in which the heat transfer data was accu-
mulated in order to improve the understanding of
the separated flow phenomena and in order to find
correlations for the heat transfer rates. Measure-
ments of heat transfer rates in various separated
flow configurations are presented in references
(10-12) and (19-22). From these results one may
correlate the peak heat transfer rate that occurs
at reattachment with the location of this peak.

It is also found that the unit-Reynolds number is
the governing parameter in the separated. flow heat
transfer. The most interesting conclusion is that
the peak heat transfer rate in transitional re-
attachment is not only very much higher than the
one found in laminar reattachment, but is also
much higher than the peak found in the turbulent
case. A possible explanation for this effect may
be found in relating the large increase in the heat
transfer to streamwise disturbances that are
associated with the transition mechanisms and may
be responsible for a very large increase in the
heat transfer rate as shown in reference (23).
These results are discussed in Section IV.

II. Phenomenological Description of Heat Transfer
in Separated Flows

Investigations of heat transfer rates in
various separated flows indicate several general
features. These features must be accounted for in
the models used for the analytical studies of these
problems.

Ahead of separation, the heat transfer rate
variation is governed by the usual boundary layer
flow relations. Therefore the heat transfer rate
in this region depends on the following flow
characteristics: the state of the boundary layer
(laminar, transitional, turbulent), Mach number,
pressure gradient and the wall and the free stream
conditions. The heat transfer rates in the flow
far upstream of the separation point, or upto the
separation point (when the flow separates abruptly
because of a geometrical discontinuity), can be
calculated by using the similar boundary layer
solutions of Cohen and Reshotko(24), The
separating and separated boundary layer in the
viscous-inviscid interaction zone can be calculated
by the non-similar method (18)

In base type separated flows, the heat trans-
fer will be equal to the undisturbed flow value
practically up to the separation point at the base
shoulder. Beyond separation, in the "dead water"
zone, very low heat transfer values are obtained.
The heat transfer rate tends to increase as the re-
attachment zone is approached. At reattachment
one can distinguish between the purely laminar flow
case at low Reynolds numbers where the heat trans-
fer rate increases slowly and asymptotically to-
wards the attached flat plate value, and the high-
er Reynolds number flow case where a peak in heat

transfer rate is observed. This peak increases as
the Reynolds number is increased and the flow be-
comes transitional. Values of up to seven times
the attached laminar flow value are observed in
this case(12,17), It is interesting to note that
at turbulent flow conditions peak heat transfer
rates of only two to three times the atta?hgézs)
turbulent heat transfer rate are measured

Downstream of reattachment the heat transfer
rate is found to decrease towards the attached flat
plate value. At transitional conditions the heat
transfer rate reduction is only partial since the
flow becomes turbulent further downstream of re-
attachment .For the turbulent case the heat transfer
is reduced towards the attached turbulent flow
values.
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Figure 1.

These variations of the heat transfer rates
in the various separated regions are shown in Fig.
1. The important parameters that characterize
these heat transfer rate variations are: the value
of the peak heat transfer rate , the
position (Ax/h)_ of this maximum neat €rgnsfer.
the minimum valﬁe of heat transfer at separation
(qmi / ), the asymptotic value of heat trans-
fer Pate geyond reattachment; the average heat
transfer rate in the separated region (q ).
All these are functions of the flow paramegers p-
Reynolds and Mach numbers, stagnation to wall
enthalpy ratio, the state of the boundary layer
ahead of separation and transition effects in the



separated flow. The flow and model geometries as
well as the boundary conditions in the separated
region (cooling, heating, mass injection,suction
etc.,) are the additional parameters that are
required to define the problem.

Theoretical Evaluation of the Heat Transfer
Rate.

III.

Two methods for the theoretical evaluation of
the heat transfer rates in the separated flow field
are used by the authors. One is an integral-
correlation method that solves the complete inter-
action field satisfying the conservation equations
on the average. It will be shown that its results,
though qualitatively good, have to be improved by
the use of better correlation functions. TlLe
second, differences-differential method solves the
local differential equations of the non-similar
boundary layer. This method may furnish these
required correlation functions and can also be
used in an interaction program.

The Integral Correlation Method

The integral method proposed by the two
senior authors in Ref. (17) is very briefly
described here. Since this method is an extension
of the well known Crocco-Lees method (3) and uses
essentially the same notation and many of its
equations, the detailed derivation of the method
will not be repeated here. Only those details of
the theory proposed in Ref. (17) that are essential
for the discussion of the results are given here.
The interested reader is advised to consult
references (3) and (17) for further details.

ISENTROPIC FLOW

WALL
The Crocco-Lees Flow Model.

Figure 2.

The Crocco-
A total energy

Basic Equations and Relations.
Lees flow model is used (Fig. 2).

[
flux H= [ hs pudy is defined in addition to the
o
previously defined(lT) average fluxes of mass, (m),
and momentum (I), (hs is the local total
enthalpy). With these definitions, the integral
conservation equations for mass and momentum are
used with the addition of an integral energy con-
servation equation

dH/dx = hse(dm/dx) +q, (1)
where h is the edge total enthalpy and is

the heatsgranafer rate from the wall into the
boundary layer. When an average total enthalpy

h = H/m, is added to the previously defined

s
1

average velocity u,, density Py and temperature

one can relate these average properties to the

boundary layer thickness &, the displacement and

momentum thicknesses, 6* and &** respectively,

and a newly defined enthalpy thickness

Ty

ek k 6
8 = J [(pu)/(peue)][(hs/hae) - 1]dy =
o

*
-[H/(peuehse)] -8+ 6

&he relation for u /ue = Ku and for (pl/p ) =
(T /T.) can be founé in Ref. (3) and the adadftional
refation for the average total enthalpy is:

B *  hak »
ho/h, =T /T =K, = (6=6 +8 )/(8-6) (2)

Ka is a velocity shape parameter. It is always
smaller than one =ven in the case of the velocity
overshoot experienced with a hot wall and a
favorable pressure gradient. « is a total-
enthalpy-profile shape parameter and indicates the
heat transfer conditions. For an adiabatic wall

K. = 1 (irrespective of the Prandtl number), for

a hot wall k, > 1, and for a cold wall «kp < 1. A
dimensionless velocity w = u/a e (where ag is
the free stream stagnation speeg of sound) and
several auxiliary quantities and functions are now
defined:

2
$ =(T /T ) (1/yw ) = {1-[(7-1)/2]we}/(vwe);

2
8=y /T ) (L/ywy) = (1/2)p uge,s 4, = h o u e,

m=ma_ ; pua

se’ "e e se = (pwe)/¢e°

2
P/#e. Pl

c, and c¢_ are the friction and heat transfer co-
egficiantsqrespectively. Utilizing these defini-
tions, the equations of motion are rewritten as
dm/dx = p u.a [(daé/ax) - 6]=(p/¢,) [(aé/ax)- 0]
(3a)
(d/dx)(mtuws)-we(dm/dx)-ﬁ(dp/dx)-[(pwe)/¢e](cf/Z)
(3b)

(d/dx)(mnh) = dm/dx + (p/¢e)cq (3c)

(Egs. 3a and 3b are taken from Ref.
was added in Ref.
are introduced:

(3) and Eq. 3c
(17)). Three additional relations

The reduced mass flow m = (pG)/O1 (4a)
The Bernoulli equation and the Prandtl-Meyer
relation in the outer flow
ap/p = - (dw /¢ ) (4b)
0= Btwe) (4c)
Eliminating p and © by the use of Egs. (4b) and

(4c) one obtains four independent relations for
the eight unknowns; 6, m, «_, Kpt Wor Cgr 0 ¢1.
Four additional relations afe raqui?ed Eor ghe
solution of the problem. The Crocco-Lees mixing



rate K is used as the fifth relation
dm/dx = Kpu —or K= (d§/dx) -0 (5)

This relation, however, adds the mixing coeffi-
cient K as a new unknown. A complete mathemat-
ical formulation of the problem can therefore, be
obtained only if Cgr $1, K and ¢ are related
directly to the other five unknowns. the Crocco-
Lees method“’, being adiabatic, proposed such
correlations only for the first three quantities.
An additional correlation for ¢ is suggested
here. These correlations betweert the various
unknowns are the main disadvantage of the Crocco-
Lees method as well as the Present method since
they must be obtained independently either from
theory or experiment. When applied to separated
flow the required experimental information is in-
sufficient and the correlations that are used are
based on similar solutions of the boundary layer
equations.

Solution for a Constant Pressure Region:; When
the pressure is assumed constant (as in the dead
water region in a separated flow field) it was shown
in Ref. (17), that the equations, once the necessary
correlations are introduced, can be solved in a
closed form. It is also found that both shape para-
meters, which are the main variables of the present
formulation of the problem, can be evaluated
directly from the thicknesses of an equivalent in-
compressible boundary layer (that is obtained by a
Dorodnitsyn type transformation) through the same
relations as in the compressible flow (Eq.2). It
is therefore concluded that the required correla-
tions for K, c and c can be obtained from
known incompressible solgtions. The correlations
for K and Cg were already given in Ref. (3).

In the same way it can be shown that

cq = q"/(hseoeue) = (ue/uo)cqi (6)
wWhere the subscript i denotes the equivalent in-
compressible conditions and o designates the
transtormation reference conditions. From the flat
plate incompressible boundary layer solution we
know that mass and heat fluxes are related to the
Reynolds number (based on the length § )

m = 1/2 T
mi/uo Cl(Reg) (7)

-2/3 1/2
- (gl =%
(8a)

cqi = CZ(PI) (Res)

where r is the recovery factor and C, and

C are constants.

In other laminar bouhdary

1§yer solutions Egs. (7) and (B8a) retain the
same form and only the values of C, and C
vary as functions of
form of equation (8a) will be

cqi =

-2/3
B(xu) (Pr)

K

. Thus the general

“hu/hse) = r](u/m,) (8.b)

where the heat transfer correlation function
B(Ku) is equal to C_/C,.
pressible relation is %btained from Eq. (6).

The equivalent com-
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Table 1 Comparison of Flat Plate Present Results with Blasius and Cohen-Reshotko Data

Present results oy kel ke
Ka K results results
Blasuis Cohen- Blasuis Blasuis Cohen-
e dara Reshotko data data Reshotko K '
(4] data Pr=1 Pr =0,723 data

[24]) Pr=1
-=1.0 0.693 0.7024 0.689%0 0.6716 0.7024 0.693 0.7167 0.7142
—0.8 0.693 0.7037 0.7512 0.7488 0.7€29 0.693 0.7165 0.7673
=04 0.693 0.7059 0.8756 0.9033 0.8824 0.693 0.7157 0.8873
0 0.693 0.7070 1.0000 1.0578 1.0000 0.693 0.7195 1.0000
1.0 0.693 0.7071 1.3110 1.4440 1.2929 0.693 0.7165 1.2810




When the correlation functions B(k ), C(k )
and D(k ) are known (where C(x ) and (x.) a¥e
the Crocco-Lees mixing rate and the skin friction
correlation functions) the flow equations (Egs. 3a,
3b, 3c and 5) can be integrated. The solution can
be obtained in a closed form for a constant wall
temperature, flat plate flow. This was done both
for the Blasius flow and for the Cohen-Reshotko
flows (24) for several values of the wall enthalpy
ratio S = (hw/h ) = 1. The values of the
correlation functions in both flows are shown in
Fig. (3) and the resulting shape parameters are
compared in Table (1) and Fig. (3). Agreement is
very good. The small differences in the results
based on the Cohen-Reshotko data are due to in-
sufficient accuracy in the graphical presentation
of the data in Ref. (24).

Solution for a Varying Pressure Region. In
this case the compressible boundary layer
equations are transformed using the Stewartson
transformation into the incompressible boundary
layer equations except for the pressure gradient
term in the momentum equation which is now preceded
by the coefficient hs/hse # 1. It is still
possible to use approximate parameters obtained
from an equivalent incompressible boundary layer
since the momentum equation is solved here in its
integral form and the average value of (hs/hsa)
does not differ too much from unity. However
better values for the correlation functions can
be obtained from the Cohen-Reshotko similar
solutions (24) since they solved the same trans-
formed momentum equation. When the Stewartson
transformation is applied to the present equations
and relations, the shape parameters and the mixing
rate and skin friction correlation functions are
again evaluated directly from any equivalent in-
compressible boundary layer. Only the heat trans-
fer correlation function B(k ) must be evaluated
from the equivalent Cohen-Reshotko flow, otherwise,
for a general incompressible flow an error of 10%
in c¢_ can be expected.
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Wnen the correlation functions are known Egs.
(3a,3b,3c and 5) can again be integrated. The
results of a solution of an attached similar flow
are found to agree with the corresponding Cohen-
Reshotko solution (Fig. 4) .

Application to Separated Flow. The present
method can now be applied to separated flows once
the proper correlation functions are known. Out

of several attempts at solutions of backward
facing step separations, with various correlation
functions the best results were obtained with the
Cohen-Reshotko attached flow parameters in the
flow up to the separation point and again down-
stream from reattachment, and with the Cohen-
Reshotko "lower branch" (backflow) solutions in
the separated region. These correlation functions
are shown in Fig. (5) (for S = - 0.8). It was
observed, however, that the mixing rate calculated
from the Cohen- Reshotko results was too low to
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Figure 5. The Correlation Functions for the

Separated Flow Solution. Sw = -0.8

initiate reattachment. An average, constant value
of C = 15 was therefore used in the separation
zone as suggested by Glick (4) and confirmed by
rom‘'29) who found also a high value of k_ = 0.85
immediately behind the step. This value is in
good agreement with the Cohen-Reshotko backflow
values for «k . Detailed solutions for the
previously defined unknowns for several com-
binations of Mach and Reynolds numbers are
presented in Ref. (17), and compared with the
experimental data of Ref. (12). Several com-
puted heat transfer rate distributions in the
separated flow behind a backward facing step, for
various Reynolds numbers are presented in Fig.
(6). The comparison of these results with the
experimental data of Ref. (12) presented in Fig.
(7) indicates good qualitative agreement. The
main quantitative differences are that the
calculated heat transfer rate distributions are
"stretched", or longer, compared with the measured

ones. Apparently a better correlation function
B(zl) would improve the calculation.
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The Finite Differences-Differential Method.

The need for a non-similar solution of the
boundary layer equations was demonstrated in
Section I. Since the authors intend to use the
solution as part of a viscous-inviscid interaction
method preference is given to the simplest method.
By far the simplest methods were the "locally
similar" solutions that neglected the non-similar
terms in the equations at every station(30) | The

flow is not similar since the solution varies along

the streamwise direction because of the external
pressure gradient (except for the Falkner-Skan

flows or the comgr3351b1e equivalent Cohen-
Reshotko Flows (24))sowever,these "locally similar”
solutions are obtained locally and have no
"memory" since they are independent of any up-
stream flow field characteristics. The full non-
similar equations have therefore to be solved,

and the relatively simple difference-differential
method is chosen for the solution. This method
reduces the partial differential equations to
ordinary differential equations by replacing the
streamwise derivatives with backward finite
differences schemes that carry over the memory
from the preceding stations. This method was
introduced by Hartree (31) and later was extended
in the many works by Smith and his co-workers.
The authors generally adopted Smith's approach
that has been described in many papers(e,g.32).0Only
the improvements on this method are briefly out-
lined here while the full details can be found in
Ref. (18).
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Figure 7. Measured Heat Transfer Rates Behind a
Backward Facing Step in the Shock Tube
(12).

Outline of the Method. The method was
applied to the momentum and energy boundary layer
equations, written for the stream function f=u/u,
and the total enthalpy ratio function g = H/H '
in the Illingworth transformation field:

2
[cr, 1.+ c Bl(p /o) - (F +1) “J4c_[(B+1) /2] (P+m)F | =

= c,E[(Fnu) Fre~Fonf (9)

n El

{(C/Pr)G +(u? o/H )C[(Pr-l)/Pr](F +1)an}n

+ C [(B+1)/2] (F4m)G = CLE[(F +1)G.-G F ] (10)
where (£,n) are the transformed coordinates;

F = f-n; G =g-1; C is the compressibility
index C = (pu)/(p /u_); and B is the external
flow pressure gradfenﬁ B = (E/u ) (du /dE). The
boundary conditions are:

F(£,0) = £ (E) (or = 0); Fn(E.O) il

G(E,0) = g =3 (or Gn(E.O) =0); F(E,») = 0;

G(E,») =0 (11)
' g
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Figure 8. Typical Convergence of the Velocity
Solution.

Following Smith, the streamwise derivatives
are first replaced by backward finite differences
schemes( two and three points differences). Then
the two point boundary value problem is redefined
as an initial boundary value problem using a
modified version of the "shooting method" employed
by Smith. Determination of the boundary layer
"edge" location is improved using the Nachtsheim-
Swigert method (33), and the iteration process for
the correct initial conditions at the wall is
facilitated by the uncoupling of the energy
equation from the momentum equation and perturbing
them separately by small variations in the initial
conditions. A typical convergence of the
iteration process is shown in Fig. (8).

The programmed equations were first checked
by comparison with Smith's adiabatic results (32,
An optimum step size is determined to be: 0.0l
in the n direction (100 grid points per station)
and of Ax/L = 0.0l in the streamwise direction.
It is found that the accuracy and the machine
time are greatly in favor of the present method.
For the nonadiabatic case the method is compared
with the Chapman-Rubesin solution(34). The
calculations of the heat transfer and skin
friction (presented in Fig. 9) are in good agree-
ment with the Chapman-Rubesin data. The relative
magnitude of the various similar and nonsimilar
terms in the energy equation (Eq. 10) in the
Chapman-Rubesin case are shown in Fig. (10). It
is seen that it is important to include the non-
similar terms in this case in order to obtain
realistic heat transfer rate estimates.

Prediction of the Separation Point in Pe-
tarded Flows. When the nonsimilar formulation
is applied to retarded flows the difference-
differential methods have the following inherent
problem. Once the finite differences scheme is
introduced, the streamwise derivatives in the non-
similar terms on the righthand side of Egs.(9)
and (10) are replaced by differences of the form
of (F,), = (1/88) (F -F__,), thus the righthand
side of the equations 19 preceded by a (£/AE)
factor.
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Figure 9. Comparison of Heat Transfer and Skin

Friction Results with Ref. (34).

When this factor becomes too large (typical values
are between 40 to 60) the numerical solutions of
the equations do not converge due to a strong
amplification of errors in the non-similar terms.
This difficulty usually prevents the application
of these methods over long flow lengths (large £)
and also does not allow the refinement of the
solution by cutting down the step size A£, which
is required in a retarded flow when tle separation
point is approached. The result is that the
solution has to be stopped some distance upstream
of the separation point and the location of the
separation point can be estimated only by a rough
extrapolation. To overcome this problem it is
suggested in Ref. (18) to transform the streamwise
coordinate £ by a simple translation

€ = (x-x,..¢)/L. The momentum and energy equations
Egs. (9) and (10) are not changed except for the

p 'ﬂ“"'l'a""'mﬂ'“h'h’
v
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Figure 10. The Various Terms in the Energy
Equation (Eq. 10).

coefficient of the non-similar terms. When

x, o= O one gets again the full non-similar case,
and when X ef = X one gets the locally similar
case. Such a shift of X, of Can prevent the
appearance of the numerical problems when (£/A%)
becomes too large. Several methods of application
of this technique were investigated. The technique
that was finally chosen is to solve the non-similar
equations upto a certain value of (£/AE) (which
indicates the number of stations computed) and
then continue the solution with this constant value.
A constant value of (£/AE) means that Xpef 18

($)' shifted at every station. The first part of the

solution is thus fully non-similar while the rest
has an intermediate memory, i.e. it carries the
same upstream information with a reduced weight
which can be described figuratively as a

"shortened memory". The "length of the memory",

or the constant value of (£/Af) should be carefully
chosen so as to prevent numerical instability and
yet minimize the deviation from the full non-
similar solution.

o8 09 M0 M a2

o o1 0z 03 04 05 08 07
Figure 11 . Effect of the "Memory Length" (£/A£)
on the Skin Friction Distribution.

This "shortened memory" is applied to the

Howarth retarded flow defined by the external

flow distribution (ue/u ) =1 - (x/L). The
separation point posit?on which is generally
estimated at (xg . /L) ¥ .125 is shown to move, in
a fully non-similar solution, between the values
(x/L) ep = 0.127 and (x/L)se = 0.1264 with de-
creasfng step size in the streamwise direction
from .01 to .001. The effect of the "length of
the memory", or of the weight of the non-similar
terms, on the skin friction distribution is
investigated (Fig. 11). It has to be noted that
the present method can always cross the separation
point (divergence of the solution is prevented
when necessary by translation of £) and the
separation point can be determined by interpolation
for zero skin friction. The locally similar
solution predicted the location of the separation
point at (x/L) = .08765 and the fully non-
similar solution predicted (x/L)s = ,12682. All
the other "shortened memory" solugfons are shown
between those two. At a "memory length" of
approximately 2/3 (the constant value of E/AE is
about 2/3 of the full length of the non-similar
solution) the separation is located at

(x/L)Be = .12625. This value is a very good
approxlgation of the 'exact' value. The variation
of (x/LJs with the length of the memory (£/AE)
{which is*ERe length of the flow that was solved
from the fully non-similar equations) is shown in
Fig. (12). The location of the separation point
is seen to approach its final value asymptotically
so that the "shortened memory" method is justified.
Finally the solution of the Howarth-retarded flow
is repeated with a smaller streamwise step size
Ax/L = .001. With this value the fully non-
similar solution diverges at (x/L) ¥ .114 and the
separation point cannot be reached. However if
the "memory length" of the solution is restricted
to (E/AE) = 110 the solution can be continued past-
the separation point which is then obtained by
interpolation (Fig. 13). The solutions with
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Variation of (x/L) with the "Memory

Figure 12.
Length". (4x/L) = 05682.

"shorter memories" are also shown in Figure (13).
The average machine time for these calculations
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Figure 13. Convergence by "Shortened Memory"

(Ax/L) = 0.001.

was less than .l seconds per station on an I.B.M.
370/165 computer. These results compare favorably
with the other solutions of the Howarth flow:
a)smith's extrapolated (x/L)_ ¥ .1197 with a
rachine time of 25 seconds per gtation on an
I.B.M. 7090 computer(32). b) The Sparrow et al(BS)
solution that was stopped far short of separation
(x/L ¥ .095) and the separation point was estimat-
ed at (1:,/1.).e .12. ¢) The lower v?lu? of
(x/L) L .1f267 obtained by Keller 38) ina
full fggite differences method with a very large
step size in the x direction.

The results that were presented here indicate
that the proposed method is efficient and has a
sufficient accuracy. Since this method can solve
the non-similar boundary layer with any prescribed
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Figure 14. Separated Flow Heat Transfer Models.

pressure gradient it will be used, in conjucture
with the measured pressure distributions of the
separated flow field, to compute improved correla-
tion functions for the integral method. The
difference-differential method will also be coupled
with an outer inviscid solution to provide an
interaction method for the solution of the separated
flow field. |
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IV. Correlation Relations for Heat Transfer in

Separated Flow.

Previous investigations of the flow field and
of the pressure variations resulted in a number of
semi-empirical relations for the pressure distribu-
tions in the base type separated flows such as
those of Refs. (5) and (29). The base pressure
there is assumed to depend on the Mach number and

the boundary layer thickness at separation. There-
fore relations of the type
(e, /p,) = p /p [M, (b Re}/?/1)] (12)
b’ F=' laminar - e L



1/5
(P/Py) turbulent™ Pi/Few (b Rey" /L)

(13)
are obtained. Explicit expressions for various
flows such as backward facing steps and blunt bases
are presented in reference (29). This represent-
ation is equivalent to that obtained in the "divid-
ing streamline" formulation presented by Korst (2)
as shown by Levi and Rom in Ref. (7). The pressure
distributions presented by these correlations can
be used in the calculations of heat transfer rates
by the integral method presented in Part III.
However, in the case of heat transfer rate
variation even semi-empirical correlations of the
type obtained in the pressure case are not
available at this time.
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Table 2.
and Zero Boundary Layer Thickness

measurements of the heat transfer rates on the
models shown in Fig. (14). Heat Transfer rate
variations on these models are presented in
Reference (21) and several typical results are
shown in Figs. (7,15,16). It is shown that the
peak heat transfer at reattachment can be presented
by the relation

1/2
Ly ™ A(hReL/ /"
for cases with finite boundary layer thickness at
separation and
=BRem

qmax/qf.p. h

for cases with zero boundary layer thickness at
separation. Values of A,n and B,m are present-
ed in Table 2 for the various cases. The
variation of the maximum heat transfer at reattach-
ment can be correlated by the length of the mixing
zone, i.e. the distance from the base to .the
position of this maximum. This variation is given
by the relation

qmax/qf.p. - C(AX/h)-l

Results of a large number of investigations
correlated by this relation (as shown in Fig. 17)

(14)

(15)

(16)

do support this observation. |® TWO-DMENSIONAL STEP
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Figure 17. Variation of the Peak Heat Transfer

Rate with its Location.

Average and Maximum Heat Transfer Rate Parameters for Cases with Initial Boundary Layer
qa = A(hRe 1/2/L)"qg o

= m
q = BiBey) 9. p.

Qave/qf.p. qmax/qf.p.

A A n
Two-Dimensional Backward
Facing Step 0.02 1:2 0.0465 13
Axially Symmetric Backward
Facing Step 0.037 1.0 0.068 1.0
Two-Dimensional Blunt Base 0.018 0.77 0.034 0.7

B B m
Sharp Protruding Leading
Edge 0.04 0.27 0.057 0.34

Heat Transfer Rates at Reattachment to a Surface.

The heat transfer correlations are based on
the measurements performed during a number of
investigations in the Technion-Aeronautical
Engineering Laboratories, reported in References
(12, 19-22). These investigations included

The effect of the unit Reynolds number on the
heat transfer rate distribution is shown in Fig.
(18). The heat transfer rate parameter, (Nu,/Pr)/cm,
for an axially symmetric backward facing step is
plotted as a function of Re/cm for each of the ten
gage positions behind the step. This data is



representative of the heat transfer measurements
obtained in our tests. The results illustrate
the presence of the low heat transfer rates in the
dead water region and the high rates in the re-
attachment region. It is interesting to note the
variation of the heat transfer rate at the different
positions behind the separation point. In the
dead water regions the heat transfer rate rises
slowly at the lower values of Re/cm and rapidly
at the higher values of Re/cm, beyond reattach-
ment the opposite trend is observed. This results
in a "concave" variation in the dead water region
and a "convex" variation in the reattachment
region. The region in which the curve shape
changes, that is, where an approximately linear
variation is observed, marks the differentiation
between the zone of "unattached" heat transfer and
that of the "reattached" flow. In the present
model this occurred at gage 3 position (approx-
imately 4.45 mm from the separation point). It
should be mentioned that this is not the point at
which the maximum heat transfer rate occurred.

The range of Re/cm which applies to the shock
tube tests and that which applies to the shock
tunnel tests is also indicated on Fig. (18). It
should be noted that in the shock tunnel experi-
ments the flow Mach number is 5.5, while in the
shock tube the flow Mach number is about 2. The
Re/cm is varied in these tests by varying the
stagnation pressure. The fact that the heat trans-
fer rate measurements which are obtained in the
shock tube and those obtained in the shock tunnel
match each other, does justify the conclusion that
the heat transfer rate is mainly a function of unit
Reynolds number and depends only slightly on the
flow Mach number. This fact is well illustrated
by the variation of the maximum heat transfer rate
on the axially symmetric backward facing step
presented in Fig. 19. 1In this figure the heat
transfer rate is plotted as a function of step
height, using the Re/cm as a parameter. Here
again, the predominant effect of the unit Reynolds
number is clearly seen. The value of

[ (Nu_/Pr) /cm] increases with increasing Re/cm.
The Values of héat transfer rate for the case of
zero step height are indicated on this figure show-
ing that for all except the lower value of Re/cm
(2.5 x 103) the maximum value of the separated
flow reattachment heat transfer rate is higher
than for the equivalent nonseparated flow.

Examination of the heat transfer data obtained
both in the separated flows and in the zero step
height cases indicate that as the flow Reynolds
number is increased the heat transfer rate
increases above the expected laminar, rel
variation. It seems plausible that this increase
is due to effects of streamwise disturbances which
are generated by the streamline curvature in the
mixing and reattaching fiows. The effects of
streamwise disturbances on local heat transfer te
the cylindrical surface of a cone-cylinder model
with attached flow is presented in Ref. (23). This
effect of the streamwise vortices is shown to
increase the heat transfer according to the follow-
ing relation:

q= qf_p.(l + NReL) (17)
where N is determined by the flow characteristics
or its value can be obtained from the experimental
data.
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Heat Transfer Rate to a Blunt Base

The heat transfer to the blunt base for laminar
and transitional flows was measured in the shock



tube and the results are presented in Ref. (20).
In this case the reattachment of the separated
shear layer to a solid surface which dominates the
heat transfer distribution in the previously
described step configuration is eliminated. It
is found that in a completely laminar wake flow
a peak in heat transfer rate is found at the base
center and the heat transfer rate is decreasing
towards the base edges. This peak in heat trans-
fer is found to depend on the boundary layer
thickness parameter (hnelfz/L) similar to the
relation (14) and the corresponding values of the
correlation coefficients are included in Table 2.

This regular heat transfer rate distribution
is distorted at higher Reynolds numbers as effects
of transitional disturbances appear. As the higher
Reynolds numbers additional off-center peaks are
observed as indicated in Fig. (20). It is interest-
ing to note that qualitatively similar heat
transfer rate distributions were observed by Gardon
and Akfirat(37) in the impinging jet heat transfer
measurements when transition was artificially
induced. Apparently the flow in the base region
near the base stagnation zane is somewhat like the
impinging jet flow. It can be also expected that
in the near wake flow, three dimensional disturbances
will be induced when the Reynolds number is in-
creased. This should affect the heat transfer rate
similar to the effects found in the impinging jet
case. The experimental results indeed support
this analogy.
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Figure 20. Heat Transfer Rates to a Blunt Base.

V. Discussion and Conclusions

The measurements of heat transfer in separated
flows indicate that the heat transfer rate distri-
bution is dominated by the high rates which are
encountered at and near the impingement of the re-
attaching mixing layer or at the rear stagnation
region for the blunt base configuration. The
highest increase is found for the transitional
case. It is further observed that the height of the
peak in the heat transfer rate at reattachment is

11

inversely proportional to the length from the
separation point to the position of this peak.
is interesting to note that the base pressure is
found to decrease as the length of the mixing zone
is decreased (Ref. 5,29). Furthermore, the base
pressure has it lowest value at transitional re-
attachment, that is, when transition occurs in the
mixing layer between the separation point to the
reattachment point. We find that at these con-
ditions the heat transfer peak at reattachment is
probably at its highest value.

It

Since the heat transfer is determined by the
interaction of the separated flow field (including
the external rotational flow and the mixing layer)
with the viscous layer generated on the solid
boundaries two methods of analytical formulation
are studied.

A momentum and energy integral formulation is
shown to enable the evaluation of the heat transfer
rate variation in the separated flow provided that
the proper correlation functions are known. It
is shown that by reasonable arguments, a set of
correlation parameters can be selected and the
results of the calculations can be accepted to be
at least in qualitative agreement with the measure-
ments.

A more promising method for a theoretical
solution is introduced in this paper. Using a
finite difference-differential solution of the
boundary layer equations, a solution for the non-
similar flows is obtained. The problem of the
numerical convergence of the solution is solved by
the introduction of a reference length. It is shown
that this reference length, in essence, defines a
"limited memory" of the solution to the non-similar
boundary layer equation. A proper choice of a
"memory" length, enables a solution such that on
one hand the non-similar nature of the boundary
layer is preserved and on the other hand the
numerical solution still converges. The present
solution can be included in an iterative calculation
with the external rotational supersonic character-
istics solution and thus this synthesis will define
a reasonably complete theoretical solution of
separated flow with heat transfer.
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