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HEAT TRANSFER IN SEPARATED REGIONS IN SUPERSONIC AND HYPERSONIC FLOWS

** *** **** ****
J. Rom , A. Seginer , R. Ariely and M. Green

Technion - Israel Institute of Technology,

Haifa, Israel.

Abstract

Heat transfer rates in separated,two-
dimensionaland axisymmetric,base type flows

are investigatedtheoreticallyand experimentally.

The theoreticalevaluation is obtained by an

extendedCrocco-Lees integralmethod. An improved

solutionof the non-similarboundary layer flows

is obtained by a finite difference-differential

solutionusing the shooting method and leading

to a predictionof the separationpoint by an

interpolationprocedure. Empiricalcorrelation

relationsare presented for the effects of the

Mach and Reynolds numbers, initial boundary layer

thicknessand model geometry on the maximum heat

transfer at reattachmentand its location.

I. Introduction


Flow separationmay be caused either by the

boundary layer retardationby an adverse pressure

gradientor by an abrupt drop of the geometrical

boundary. The first type of separationmay be

defined as the boundary-layerinteraction-type

separationwhile the second may be defined as the

base type separation. The separated flow field is

composedof the flow upstream of separation,the

separationpoint, a separated region (which

includes a mixing layer and a recirculating"dead

water" zone), the reattachmentregion and the flow

downstreamof the reattachment. It is well known

that due to the intimate interactionbetween the

viscous shear layer and the external flow these

separated flows are extremely complex for theoreti-

cal analysis and also extremelydifficult for

comprehensiveexperimental investigations. Methods

for the analylf of these flows were suggestedby

Chapman et al' ' Korst(2) , Crocco and Lems(3)

and followedby many others, some of which are
listed in the present references list (e.g. Refs.

(4) to (8) ).

It is evident that this complex problem be-

comes much more complicatedwhen the heat transfer

in the separated region is also considered. It

was shown by Charman(9) and also measured

experimentally(10,11,121--chatthe heat transfer rates
to the boundariesof the "aeaa water" zone are

greatly reduced as compared to the attached flow

case. However, very high heat transferrates are

measured at reattachmentand beyond(10,12) . Such

high heat transfer rates at reattachmentwere also

estimatedby Chung and Viegas(13). This local

increase in the heat transfer rate could easily

outweigh the reduction in the heat transfer in the

"dead-water"zone. The need for a theoretical

evaluation of the local heat transfer rate distribur

tion was thus clearly indicatedsince the pre-

viously mentioned methods evaluated mainly the

average rate in the constant pressure regions(9,13).

Local heat transfer rates are obtained, rather

inaccurately,primarily by the use of momentum

integral methods(6) or similar moment methods(14).

Notably the best results are obtained by

Holden(15) and Klineberg and Lees(16). These works

extended the Lees-Reevesmethod(6) by adding the

integral energy equation and using a two parameter

family of velocity and enthalpy profiles. In

order to obtain a simpler and faster method for

the evaluation of the heat transfer rates in a

laminar supersonic separatedboundary layer the two

senior authors proposed a momentum and energy

integral correlationmethod(17) that is an '


extension of the Crocco-Leesmethod. This method

and its results are briefly outlined in Section

III. The attractive featureof this method is

that the velocity and enthalpy profiles do not have

to be specified, and the non-uniformityof the

actual velocity and enthalpy distribution across

the dissipative flow is accounted for only

approximatelyby defining appropriate velocity and

enthalpy shape parameters, (K ) and (Kh)respective-

ly. This method, instead of airectly satisfying

the local momentum and energy equations, intro-

duces integral conservationequations, relating

the average boundary layer properties(represented

by the shape parameters) to a mixing rate para-

meter.

The integral-correlationmethod derives the

necessary correlation functions from "similar"

boundary layer solutions, although the separated

flow is definitely non-similar. When separation

is caused by an adverse pressure gradient (e.g.

shock-wave boundary-layerinteraction)even the

flow that approaches separation is non-similar.

The similar solutions cannot correctly describe

such flows and cannot predict the separationpoint.

In order to obtain a better prediction of the

separation point and a better heat transfer rate

distribution in the separating flows the authors

introduced an improved approximatenumerical

method for the solution of the non-similarboundary

layer equation(18). This method, described

briefly in Section III, is a difference-differen-

tial method, where the streamwisegradients are

replaced by backward finite differences schemes.

The similar solutions are described as "memory-

less" (as are also the "locallysimilar"

solutions) and the "exact" solutions as having a

full "memory". It will be shown that the present

method has a "limitedmemory" and can therefore
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overcome some numericaldifficultiesof other non-
similar methods in the calculationof heat trans-
fer rate up to the separationpoint and the pre-
diction of its position. Numerical solutions,
like this method, are being applied to the
separated zones and it is hoped that such
solutions will enhance the calculationsof local
heat transfer rates in additional zones in the
separated flow.

In addition to these two theoreticalworks, an
experimentalprogram was conductedover several
years, in which the heat transfer data was accu-
mulated in order to improve the understandingof
the separated flow phenomena and in order to find
correlationsfor the heat transfer rates. Measure-
ments of heat transfer rates in various separated
flow configurationsare presented in references
(10-12)and (19-22). From these results one may
correlate the peak heat transfer rate that occurs
at reattachmentwith the locationof this peak.
It is also found that the unit-Reynoldsnumber is
the governing parameter in the separated flow heat
transfer. The most interestingconclusion is that
the peak heat transfer rate in transitionalre-
attachment is not only very much higher than the
one found in laminar reattachment,but is also
much higher than the peak found in the turbulent
case. A possible explanationfor this effect may
be found in relating the large increase in the heat
transfer to streamwisedisturbancesthat are
associated with the transitionmechanisms and may
be responsible for a very large increase in the
heat transfer rate as shown in reference (23).
These results are discussed in Section IV.

II. PhenomenologicalDescriptionof Heat Transfer

in SeparatedFlows


Investigationsof heat transfer rates in
various separated flows indicate several general
features. These featuresmust be accounted for in
the models used for the analyticalstudies of these
problems.

Ahead of separation,the heat transfer rate
variation is governed by the usual boundary layer
flow relations. Therefore the heat transfer rate
in this region depends on the following flow
characteristics: the state of the boundary layer
(laminar,transitional,turbulent),Mach number,
pressure gradient and the wall and the free stream
conditions. The heat transfer rates in the flow
far upstream of the separationpoint, or upto the
separationpoint (whenthe flow separates abruptly
because of a geometricaldiscontinuity),can be
calculated by using the similar boundary layer
solutions of Cohen and Reshotko(24). The
separating and separatedboundary layer in the
viscous-inviscidinteractionzone can be calculated
by the non-similarmethod (18)

In base type separated flows, the heat trans-
fer will be equal to the undisturbed flow value
practically up to the separationpoint at the base
shoulder. Beyond separation,in the "dead water"
zone, very low heat transfervalues are obtained.
The heat transfer rate tends to increase as the re-
attachment zone is approached. At reattachment
one can distinguish between the purely laminar flow
case at low Reynolds numbers where the heat trans-
fer rate increases slowly and asymptoticallyto-
wards the attached flat plate value, and the high-
er Reynolds number flow case where a peak in heat

transfer rate is observed. This peak increases as
the Reynolds number is increasedand the flow be-
comes transitional. Values of up to seven times

the attached laminar flow value are observed in
this case(12,17). It is interestingto note that
at turbulent flow conditionspeak heat transfer
rates of only two to three times the attached
turbulent heat transferrate are measured(25-28)

Downstreamof reattachmentthe heat transfer
rate is found to decrease towards the attached flat
plate value. At transitionalconditionsthe heat
transfer rate reductionis only partial since the
flow becomes turbulentfurther downstreamof re-
attachment.Forthe turbulent case the heat transfer
is reduced towards the attached turbulent flow
values.

EXPANSION FAN

HEAT TRANSFER RATE DISTIBUTION X


Figure 1. Heat Transfer Rates in the Various
SeparatedFlow Fields.

These variationsof the heat transfer rates
in the various separatedregions are shown in Fig.
1. The importantparameters that characterize
these heat transferrate variationsare: the value
of the peak heat transfer rate

	

qmax/clf
, the

position (Ax/h),of this maximum neat tiRAsfer,
the minimum valfieof heat transfer at separation
(qmin/qi ), the asymptotic value of heat trans-




fer rateleyond reattachment;the average heat
transfer rate in the separated region (q /qf ).
All these are functionsof the flow pararaers'?'
Reynolds end Mach numbers, stagnationto wall
enthalpy ratio, the state of the boundary layer
ahead of separationand transitioneffects in the
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separated flow. The flow and model geometries as
well as the boundary conditionsin the separated
region (cooling,heating, mass injection,suction
etc.,) are the additionalparameters that are
required to define the problem.

III. Theoretical Evaluation of the Heat Transfer 

Rate.

Two methods for the theoreticalevaluationof
the heat transfer rates in the separated flow field
are used by the authors. One is an integral-
correlation method that solves the complete inter-
action field satisfying the conservationequations
on the average. It will be shown that its results,
though qualitativelygood, have to be improved by
the use of better correlationfunctions. TLe
second, differences-differentialmethod solves the
local differential equationsof the non-similar
boundary layer. This method may furnish these
required correlation functionsand can also be
used in an interactionprogram.

The Integral Correlation Method 


The integral method proposed by the two
senior authors in Ref. (17) is very briefly
describedhere. Since this method is an extension
of the well known Crocco-Leesmethod(3) and uses
essentiallythe same notation and many of its
equations,the detailed derivationof the method
will not be repeated here. Only those details of
the theory proposed in Ref. (17) that are essential
for the discussion of the results are given here.
The interestedreader is advised to consult
references (3) and (17) for furtherdetails.

WALL

Figure 2. The Crocco-LeesFlow Mbdel.

Basic Equations and Relations. The Crocco-
Lees flow model is used (Fig. 2). A total energy

6
flux H = I hs pudy is defined in addition to the

previouslydefined(17) average fluxes of mass,(;),
and momentum (I), (hs is the local total
enthalpy). With these definitions,the integral
conservationequations for mass and momentum are
used with the addition of an integral energy con-
servationequation

dH/dx = hse(d3M/dx)+ qw (1)

where h is the edge total enthalpy and 4w is
the heatETransferrate from the wall into the
boundary layer. When an average total enthalpy

h = H/it, is added to the previously defined
si

average velocity 1.11,density pl and temperature
Tl' one can relate these average properties to the
boundary layer thickness 6, the displacementand
momentum thicknesses, 6* and 6** respectively,
and a newly defined enthalpy thickness

6***
6 . f [(pu)/(peue)][(hs/hse) - l]dy =

=[11/(Peuehse)]- 6 + 6*

The relation for u1/ue = K u and for (P1/Pe)=
(T /T1) can be found in Ref. (3) and the additional
releation for the average total enthalpy is:

* ***

hsl/hse= Tsl/Tse= Kh = (6-6 +6 )/(6-6 )
(2)

K u is a velocity shape parameter. It is always
smaller than one even in the case of the velocity
overshoot experiencedwith a hot wall and a
favorable pressure gradient. Kh is a total-
enthalpy-profileshape parameter and indicates the
heat transfer conditions. For an adiabaticwall
Ku = 1 (irrespectiveof the Prandtl number), for
a"hot wall Kh > 1' and for a cold wall Kh 1• A
dimensionless velocity w = u/a e (where asc is
the free stream stagnationspee3 of sound) ana
several auxiliary quantities and functions are now
defined:

0e=(Te/Tse)(1/Ywe)= {1-[(y-1)/21w2e}/(ywe);

2
(1/2)psuscf;4w =4)1=(T1/Tse)(1/Yw);Tlw = hsepeuecq

- 2m =ma ;pua = p/0 ; Pu= (pw )/0 •
se e e se e e e e e

cc and c are the friction and heat transfer co-
etficientsgrespectively. Utilizing these defini-
tions, the equationsof motion are rewritten as

dm/dx = peuease[(d6/dx)- 0]=(p/Oe)[/dx(d6)- 0]

 

(d/dx)(mKewe)=we(dm/dx)-6(dp/dx)-[(pwe)/Oe](cf/2)




(a's.3a and 3b are taken from Ref. (3) and Eq. 3c
was added in Ref. (17)).Three additional relations
are introduced:

The reduced mass flow m = (1)6)/01 (4a)

The Bernoulli equation and the Prandtl-Meyer
relation in the outer flow

dp/p = - (dwe/0e) (4b)

0 = 0(we) (4c)

Eliminating p and 0 by the use of Eqs. (4b) and
(4c) one obtains four independentrelations for
the eight unknowns; 6, M,K,K

' ,
W c,c,u he f 91,Four additional relations are requi nred ror be

1

solution of the problem. The Crocco-Leesmixing

(d/dx)(mich) dm/dx + (P/ee)cq
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rate K is used as the fifth.relation

dii/dx= Kpeue Or K = (c115/dx)- 0 (5)

This relation, however, adds the mixing coeffi-
cient K as a new unknown. A complete mathemat-
ical formulationof the problem can therefore,be
obtainedonly if of, 01, K and co are related
directly to the other five unknowns."The Crocco-
Lees method(3), being adiabatic,proposed such
correlationsonly for the first three quantities.
An additionalcorrelation for c is suggested
here. These correlationsbetweeg the various
unknownsare the main disadvantageof the Crocco-
Lees method as well as the present method since
they must be obtained independentlyeither from
theory or experiment. When applied to separated
flow the required experimentalinformationis in-
sufficientand the correlationsthat are used are
based on similar solutions of the boundary layer
equations.

Solution for a Constant Pressure Region; When
the pressure is assumed constant (as in the dead
water region in a separated flow field) it was shown
in Ref. (17), that the equations,once the necessary
correlationsare introduced,can be solved in a
closed form. It is also found that both shape para-
meters, which are the main variablesof the present
formulationof the problem, can be evaluated
directly from the thicknessesof an equivalent in-
compressibleboundary layer (thatis obtained by a
Dorodnitsyntype transformation)through the same
relations as in the compressibleflow (Eq.2). It
is therefore concluded that the required correla-
tions for K, cf and cq can be obtained from
known incompressiblesolutions. The correlations
for K and cf were already given in Ref. (3).
In the same way it can be showm that

cq = V(hsepeue) = (Pe/Po)cqi
(6)

where the subscript i denotes the equivalent in-
compressibleconditions and o designates the
transformationreference conditions. From the flat
plate incompressibleboundary layer solution we
know that mass and heat fluxes are related to the
Reynolds number (basedon the length E )

m/1.1o= C1(ReE)1/2

cqi = C2(Pr)-2/3(Re )-1/2 f(hw/hse)- r ]


where r is the recovery factor and C1 and
C2 are constants. In other laminar boundary
layer solutions Eqs. (7) and (8a) retain the
same form and only the values of C1 and C2
vary as functionsof K . Thus the general
form of equation (8a)will be

cqi = 13(xu)(Pr)-2/3[(hw/hse)- r](1.1
o/m.)

where the heat transfer correlationfunction
B(Ku).is equal to C2/C . The equivalentcom-Lpressible relation is obtained from Eq. (6).
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Figure 3. Flat Plate Solution and Correlation
Functions.
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Table 1 Comparisonof Flat Plate Present Results with8lasius and Cohen-ReshotkoData




Present results
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Cohen-Reshotko

results
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S. Blasnis
data

Cohen-
Reshotko

Blasuis
data

Blasuis
data

Cohen-
Reshotho K. K. K,,




C41 data

[241

Pr - I Pr -- 0.723 data

Pr = 1





-1.0 0.693 0.7024 0.6890 0.6716 0.7024 0.693 0.7167 0.7142

-0.8 0.693 0.7037 0.7512 0.7488 0.7629 0.693 0.7165 0.7673

- 0.4 0.693 0.7059 0.8756 0.9033 0.8824 0.693 0.7157 0.8873

0 0.693 0.7070 1.0000 1.0578 1.0000 0.693 0.7195 1.0000

1.0 0.693 0.7071 1.3110 1.4440 1.2929 0.693 0.7165 1.2810
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When the correlation functions B(K ), C(K )
and D(K ) are known (where C(K ) and li(K) ae
the Crocco-Leesmixing rate anduthe skin friction
correlationfunctions)the flow equations (Eqs. 3a,
3b, 3c and 5) can be integrated. The solution can
be obtained in a closed form for a constant wall
temperature,flat plate flow. This was done both
for the Blasius flow and for the Cohen-Reshotko
flows(24)for several values of the wall enthalpy
ratio Sw = (hw/hse)- 1. The values of the
correlationfunctions in both flows are shown in
Fig. (3) and the resulting shape parameters are
compared in Table (1) and Fig. (3). Agreement is
very good. The small differencesin the results
based on the Cohen-Reshotkodata are due to in-
sufficientaccuracy in the graphicalpresentation
of the data in Ref. (24).

Solution for a Varying Pressure Region. In
this case the compressibleboundary layer
equationsare transformed using the Stewartson
transformationinto the incompressibleboundary
layer equations except for the pressure gradient
term in the momentum equation which is now preceded
by the coefficient hs/hse 1. It is still
possible to use approximateparametersobtained
from an equivalent incompressibleboundary layer
since the momentum equation is solved here in its
integral form and the average value of (hs/hse)
does not differ too much from unity. However
better values for the correlationfunctionscan
be obtained from the Cohen-Reshotkosimilar
solutions(24)since they solved the same trans-
formedmomentum equation. When the Stewartson
transformationis applied to the present equations
and relations,the shape parametersand the mixing
rate and skin friction correlationfunctionsare
again evaluateddirectly from any equivalent in-
compressibleboundary layer. Only the heat trans-
fer correlationfunction B(K ) must be evaluated
from the equivalent Cohen-ResHotkoflow, otherwise,
for a general incompressibleflow an error of 10%
in c can be expected.

When the correlation functionsare known Eqs.
(3a,3b,3cand 5) can again be integrated. The
results of a solution of an attached similar flow
are found to agree with the correspondingCohen-
Reshotko solution (Fig. 4) •

Applicationto Separated Flow. The present
method can now be applied to separated flows once
the proper correlation functionsare known. Out


of several attempts at solutions of backward
facing step separations,with various correlation
functions the best results were obtained with the
Cohen-Reshotkoattached flow parameters in the
flow up to the separationpoint and again doom-
stream from reattachment,and with the Cohen-
Reshotko "lower branch" (backflow)solutions in
the separated region. These correlation functions
are shown in Fig. (5) (for Sw = - 0.8). It was
observed, however, that the mixing rate calculated
from the Cohen- Reshotko results was too low to
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Figure 5. The CorrelationFunctions for the

Separated Flow Solution. Sw = -0.8

initiate reattachment. An average, constant value
of C = 15 was thereforeused in the separation
zone as suggested by Glick(4) and confirmedby
Ron029) who found also a high value of K = 0.85
immediatelybehind the step. This valueuis in
good agreement with the Cohen-Reshotkobackflow
values for K . Detailed solutions for the
previously dained unknowns for several com-
binations of Mach and Reynolds nunbers are
presented in Ref. (17),and compared with the
experimentaldata of Ref. (12). Several com-
puted heat transfer rate distributionsin the
separated flow behind a backward facing step, for
various Reynolds numbers are presented in Fig.
(6). The comparisonof these results with the
experimentaldata of Ref. (12) presented in Fig.
(7) indicates good qualitativeagreement. The
main quantitative differencesare that the
calculatedheat transfer rate distributions are
"stretched",or longer, compared with the measured
ones. Apparently a better correlation function
B(Ku) would improve the calculation.

b
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A
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Figure 6. Computed Heat Transfer Rate Dis-

tributionsBehind a Backward Facing
Step.

o
is u a u n ( n
Figure 4. Attached CompressibleBoundary Layer

Solution with Pressure Gradient and
Heat Transfer. Sw = -0.8; a= 0.5
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The Finite Differences-DifferentialMethod. F(,0) = fw(E) (or = 0); F (&,C)) = - 1;

The need for a non-similar solution of the
boundary layer equations was demonstrated in
Section I. Since the authors intend to use the
solution as part of a viscous-inviscid interaction
method preference is given to the simplest method.
By far the simpiest methods were the "locally
similar" solutions that neglected the non-similar
terms in the equations at every station(30) . The

flow is not similar since the solution varies along

the streamwise direction because of the external
pressure gradient (except for the Falkner-Skan
flows or the comRressible equivalent Cohen-
Reshotko Flows(2)).However,these "locally similar"

solutions are obtained locally and have no
"memory" since they are independent of any up-
stream flow field characteristics. The full non-
similar equations have therefore to be solved,
and the relatively simple difference-differential

method is chosen for the solution. This method
reduces the partial differential equations to
ordinary differential equations by replacing the
streamwise derivatives with backward finite
differences schemes that carry over the memory
from the preceding stations. This method was
introduced by Hartree(31) and later was extended
in the many works by Smith and his co-workers.
The authors generally adopted Smith's approach
that has been described in many papers(e,g.32).Only
the improvements on this method are briefly out-
lined here while the full details can be found in
Ref. (18).

LS U U 1.3 U U II 17 LS 1.11 LS U U 13
XA.

Figure 7. Measured Heat Transfer Rates Behind a

Backward Facing Step in the Shock Tube
(12).

Outline of the Method. The method was
applied to the momentum and energy boundary layer
equations, written for the stream function f=u/ue
and the total enthalpy ratio function g =
in the Illingworth transformation field:

[CFnn]n C0[(oe/o)-(Fn +1)2]+c.[(8+1)/2](F+n)Fnn=

= C.“(Fn+1)Fn&
-FnnFO

(9)

{(C/POG +(u2/H
e)C[(Pr-1)/Pr](F n+1)F nn}n

+
n e 


+ C.[(8+1)/2](F+n)Gn = C.&[(Fn+1)G(GnF](10)

where (&,n) are the transformed coordinates;
F = f-n; G = g-1; C is the compressibility
index C = (PP)/(0e/11 ); and 8 is the external

flow pressure gradienE,8 = (E/ue)(due/dE). The
boundary conditions are:

G(E,O) = gw - 1 (or Gn(E,O) = 0); F(&,,o) = 0;

0 (1 1)

Figure 8. Typical Convergence of the Velocity
Solution.

Following Smith, the streamwise derivatives
are first replaced by backward finite differences
schemes( two and three points differences). Then
the two point boundary value problem is redefined
as an initial boundary value problem using a
modified version of the "shooting method" employed
by Smith. Determination of the boundary layer
"edge" location is improved using the Nachtsheim-
Swigert method(33), and the iteration process for
the correct initial conditions at the wall is
facilitated by the uncoupling of the energy
equation from the momentum equation and perturbing
them separately by small variations in the initial
conditions. A typical convergence of the
iteration process is shown in Fig. (8).

The programmed equations were first checked
by comparison with Smith's adiabatic results(32).
An optimum step size is determined to be: 0.01
in the n direction (100 grid points per station)
and of Ax/L = 0.01 in the streamwise direction.
It is found that the accuracy and the machine
time are greatly in favor of the present method.
For the nonadiabatic case the method is compared
with the Chapman-Rubesin solution(34). The
calculations of the heat transfer and skin
friction (presented in Fig. 9) are in good agree-

ment with the Chapman-Rubesin data. The relative
magnitude of the various similar and nonsimilar
terms in the energy equation (Eq. 10) in the
Chapman-Rubesin case are shown in Fig. (10). It

is seen that it is important to include the non-
similar terms in this case in order to obtain
realistic heat transfer rate estimates.

Predictionof the Separation Point in re-
tarded Flows. When the nonsimilar formulation

is applied to retarded flows the difference-
differential methods have the following inherent
problem. Once the finite differences scheme is

introduced, the streamwise derivatives in the non-
similar terms on the righthand side of Eqs.(9)

and (10) are replaced by differences of the form

of (Fr)n = (1/AU(Fe-Fn_l), thus the righthand
side of the equations is preceded by a (&/(1E)
factor.

Ma=
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(*' shifted at every station. The first part of the
solution is thus fully non-similarwhile the rest
has an intermediatememory, i.e. it carries the
same upstream informationwith a reduced weight
which can be described figurativelyas a
"shortenedmemory". The "length of the memory",
or the constant value of (E/AE) should be carefully
chosen so as to prevent numerical instabilityand
yet minimize the deviation from the full non-
similar solution.

When this factor becomes too large(typicalvalues
are between 40 to 60) the numerical solutionsof
the equationsdo not converge due to a strong
amplificationof errors in the non-similarterms.
This difficulty usually prevents the application
of these methods over long flow lengths (large E)
and also does not allow the rfinement of the
solutionby cutting down the step size 1, which
is required in a retarded flow when the separation
point is approached. The result is that the
solutionhas to be stopped some distance upstream
of the separationpoint and the location of the
separationpoint can be estimatedonly by a rough
extrapolation. To overcome this problem it is
suggested in Ref. (18) to transformthe streamwise
coordinate E by a simple translation
E = (x-xref)/L. The momentum and energy equations
Eqs. (9) and (10) are not changed except for the

coefficientof the non-similarterms. When
xref = 0 one gets again the full non-similar case,
ana when xref = x one gets the locally similar
case. Such a shift of xr f can prevent the
appearanceof the numericaT problems when (E/AE)
becomes too large. Several methods of application
of this technique were investigated. The technique
that was finally chosen is to solve the non-similar
equationsupto a certain value of (E/AE) (which
indicatesthe number of stations computed) and
then continue the solution with this constant value.
A constant value of (E/AE)means that xref is

This "shortenedmemory" is applied to the
Howarth retarded flow defined by the external
flow distribution (ue/u0)= 1 - (x/L). The

separation point posqlon which is generally
estimated at (xsep/L)= .125 is shown to move, in
a fully non-similar solution, between the values
(x/L)pep= 0.127 and (x/L)sep= 0.1264 with de-
creasing step size in the streamwise direction
from .01 to .001. The effect of the "length of
the memory", or of the weight of the non-similar
terms, on the skin frictiondistribution is
investigated (Fig. 11). It has to be noted that
the present method can always cross the separation
point (divergenceof the solution is prevented
when necessary by translationof E) and the
separation point can be determined by interpolation
for zero skin friction. The locally similar
solution predicted the location of the separation
point at (x/L)sep= .08765 and the fully non-
similar solution predicted (x/L)se = .12682. All
the other "shortenedmemory" soludons are shown
between those two. At a "memory length" of
approximately 2/3 (the constant value of E/AE is
about 2/3 of the full length of the non-similar
solution) the separation is located at
(x/L)seP=.12625. This value is a very good
approximation of the 'exact'value. The variation
of (x/L)s with the length of the memory (UAE)
(which is ERe length of the flow that was solved
from the fully non-similarequations) is shown in
Fig. (12). The location of the separation point
is seen to approach its final value asymptotically
so that the "shortenedmemory" method is justified.
Finally the solution of the Howarth–retardedflow
is repeated with a smaller streamwise step size
Ax/L = .001. With this value the fully non-
similar solution diverges at (x/L) -4.114 and the
separation point cannot be reached. However if
the "memory length" of the solution is restricted
to (E/A) = 110 the solution can be continued past-
the separationpoint which is then obtained by
interpolation (Fig. 13). The solutions with
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Figure 12. Variation of (x/L) with the "Memory
Length".(Ax/L)= e882.

"shortermemories" are also shown in Figure (13).
The average machine time for these calculations

Figure 13. Convergence by "ShortenedMemory".
(Ax/L) . 0.001.

was less than .1 seconds per station on an I.B.M.
370/165 computer. These results compare favorably
with the other solutions of the Howarth flow:
a)Smith's extrapolated (x/L)se 1..1197 with a
1:.achinetime of 25 seconds per gtation on an

7090 computer(32). b) The Sparrow et al
solution that was stopped far short of separation
(x/L .095) and the separationpoint was estimat-




ed at (x/L)se 1".12. c) The lower value of
(x/L).,.fl 1?267 obtained by Keller(36) in a

full fifiite'differencesmethod with a very large
step size in the x direction.

The results that were presented here indicate
that the proposed method is efficient and has a
sufficientaccuracy. Since this method can solve
the non-similar boundary layer with any prescribed


pressure gradient it will be used, in conjucture
with the measured pressure distributionsof the
separated flow field, to compute improvedcorrela-
tion functions for the integral method. The
difference-differentialmethod will also be coupled
with an outer inviscid solution to provide an
interactionmethod for the solution of the separated
flow field.
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IV. Correlation Relationsfor Heat Transfer in

Separated Flow.


Previous investigationsof the flow field and
of the pressure variationsresulted in a number of
semi-empiricalrelations for the pressure distribu-
tions in the base type separated flows such as
those of Refs. (5) and (29). The base pressure
there is assumed to depend on the Mach number and
the boundary layer thicknessat separation. There-
fore relations of the type

(Pb/P.)laminar = Pb/P.[14,(h
Re1/2/D)] (12)
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(pb/p=)turbulent=pb/p=(M,h Re/5/L) (13)

are obtained. Explicit expressionsfor various
flows such as backward facing steps and blunt bases
are presented in reference (29). This represent-
ation is equivalent to that obtained in the "divid-
ing streamline"formulationpresentedby Korst(2)
as shown by Levi and Rom in Ref. (7).The pressure
distributionspresented by these correlationscan
be used in the calculationsof heat transfer rates
by the integralmethod presented in Part III.
However, in the case of heat transferrate
variation even semi-empiricalcorrelationsof the
type obtained in the pressure case are not
availableat this time.

Figure 16. heat Transfer Rate Distributions
Behind a ProtrudingSharp Leading Edge.

measurements of the heat transfer rates on the
models shown in Fig. (14).Heat Transfer rate
variations on these models are presented in

Reference (21) and several typical results are
shown in Figs. (7,15,16). It is shown that the
peak heat transfer at reattachmentcan be presented
by the relation

q /clf.p.
= A(hRe1/2/L)n (14)

max 


for cases with finite boundary layer thickness at
separation and

qmax/cif.p.
= B Reh (15)

for cases with zero boundary layer thicknessat
separation. Values of A,n and B,m are present-
ed in Table 2 for the various cases. The
variation of the maximum heat transfer at reattach-
ment can be correlatedby the length of the mixing
zone, i.e. the distance from the base to .the
position of this maximum. This variation is given
by the relation

2 3 711110 2 3 6 58 7112
Figure 17. Variation of the Peak Heat Transfer
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a large number of investigations ,
by this relation (as shown in Fig. 17)
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Table 2. Average and Maximum Heat Transfer Rate Parameters for Cases with Initial Boundary Layer
and Zero Boundary Layer Thickness q = A(hReL1/2/L)neff.p. q = B(Reh)mqf.p.




4aveAlf.p. qmax/c1f.p.
A n A n

Two-DimensionalBackward
Facing Step 0.02 1.2 0.0465 1.3

Axially Symmetric Backward
Facing Step 0.037 1.0 0.068 1.0

Two-DimensionalBlunt Base 0.018 0.77 0.034 0.7

Sharp ProtrudingLeading
Edge

B m B m

0.04 0.27 0.057 0.34

Heat Transfer Rates at Reattachmentto a Surface.

The heat transfer correlationsare based on
the measurementsperformed during a number of
investigationsin the Technion-Aeronautical
EngineeringLaboratories,reported in References
(12, 19-22). These investigationsincluded

The effect of the unit Reynolds number on the
heat transfer rate distribution is shown in Fig.
(18). The heat transfer rate parameter, (Nux/Pr)/cm,

for an axially symmetric backward facing step is

plotted as a functionof Re/cm for each of the ten

gage positions behind the step. This data is

9



representativeof the heat transfermeasurements
obtained in our tests. The results illustrate
the presence of the low heat transfer rates in the
dead water region and the high rates in the re-
attachment region. It is interestingto note the
variation of the heat transfer rate at the different
positions behind the separationpoint. In the
dead water regions the heat transfer rate rises
slowly at the lower values of Re/cm and rapidly
at the higher values of Re/cm, beyond reattach-
ment the opposite trend is observed. This results
in a "concave" variation in the dead water region
and a "convex" variation in the reattachment
region. The region in which the curve shape
changes, that is, where an approximatelylinear
variation is observed,marks the differentiation
between the zone of "unattached"heat transfer and
that of the "reattached"flow. In the present
model this occurred at gage 3 position (approx-
imately 4.45 mm from the separationpoint). It
should be mentioned that this is not the point at
which the maximum heat transfer rate occurred.
The range of Re/cm which applies to the shock
tube tests and that which applies to the shock
tunnel tests is also indicatedon Fig. (18). It
should be noted that in the shock tunnel experi-
ments the flow Mach number is 5.5, while in the
shock tube the flow Mach number is about 2. The
Re/cm is varied in these tests by varying the
stagnation pressure. The fact that the heat trans-
fer rate measurementswhich are obtained in the
shock tube and those obtained in the shock tunnel
match each other, does justify the conclusionthat
the heat transfer rate is mainly a functionof unit
Reynolds number and depends only slightlyon the
flow Mach number. This fact is well illustrated
by the variation of the maximum heat transfer rate
on the axially symmetricbackward facing step
presented in Fig. 19. In this figure the heat
transfer rate is plotted as a functionof step
height, using the Re/cm as a parameter. Here
again, the predominant effect of the unit Reynolds
number is clearly seen. The value of
[(Nux/Pr)/cm] increaseswith increasing Re/cm.
The values ofmRgat trahsfer rate for the case of
zero step height are indicatedon this figure show-
ing that for all except the lower value of Re/cm
(2.5 x 103) the maximum value of the separated
flow reattachmentheat transfer rate is higher
than for the equivalent nonseparatedflow.

Examination of the heat transfer data obtained
both in the separated flows and in the zero step
height cases indicate that as the flow Reynolds
number is increased the heat transfer rate
increases above the expected laminar, Rel./2
variation. It seems plausible that this increase
is due to effects of streamwisedisturbanceswhich
are generated by the streamlinecurvature in the
mixing and reattaching flows. The effects of
streamwise disturbanceson local heat transfer to
the cylindrical surface of a cone-cylindermodel
with attached flow is presented in Ref. (23). This
effect of the streamwisevortices is shown to
increase the heat transfer according to the follow-
ing relation:

q = q
f.p.

(1 + NRe ) (17)

where N is determined by the flow characteristics
or its value can be obtained from the experimental
data.

Figure 18. Heat Transfer Rate (Nux/Prcm) vs.
Re/cm.

For large values of Reynolds numbers, the increase
of heat transfer rate above the laminar flat plate
heat transfer can be large12,22,23.
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Heat Transfer Rate to a Blunt Base
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and transitionalflows was measured in the shock
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tube and the results are presented in Ref. (20).
In this case the reattachmentof the separated
shear layer to a solid surfacewhich dominates the
heat transfer distributionin the previously
describedstep configurationis eliminated. It
is found that in a completelylaminarwake flow
a peak in heat transfer rate is found at the base
center and the heat transfer rate is decreasing
towards the base edges. This peak in heat trans-
fer is found to depend on the boundary layer
thicknessparameter (hRq,/2/L)similar to the
relation (14) and the correspondingvalues of the
correlationcoefficientsare included in Table 2.

This regular heat transferrate distribution
is distorted at higher Reynoldsnumbers as effects
of transitionaldisturbancesappear. As the higher
Reynolds numbers additionaloff-centerpeaks are
observed as indicated in Fig. (20). It is interest-
ing to note that qualitativelysimilar heat

transfer rate distributionswere observed by Gardon
and Akfirat(37) in the impingingjet heat transfer
measurementswhen transitionwas artificially
induced. Apparently the flow in the base region
near the base stagnation name is somewhat like the
impinging jet flow. It can be also expected that
in the near wake flow, three dimensionaldisturbances
will be induced when the Reynolds number is in-
creased. This should affect the heat transfer rate
similar to the effects found in the impinging jet
case. The experimentalresults indeed support
this analogy.
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Figure 20. Heat Transfer Rates to a Blunt Base.

V. Discussion and Conclusions


The measurements of heat transfer in separated
flows indicate that the heat transfer rate distri-
bution is dominated by the high rates which are
encounteredat and near the impingementof the re-
attachingmixing layer or at the rear stagnation
region for the blunt base configuration. The
highest increase is found for the transitional
case. It is further observed that the height of the
peak in the heat transfer rate at reattachmentis

inverselyproportionalto the length from the
separation point to the position of this peak. It
is interesting to note that the base pressure is
found to decrease as the length of the mixing zone
is decreased (Ref. 5,29). Furthermore,the base
pressure has it lowest value at transitionalre-
attachment, that is, when transitionoccurs in the
mixing layer between the separationpoint to the
reattachmentpoint. We find that at these con-
ditions the heat transfer peak at reattachmentis
probably at its highest value.

Since the heat transfer is determinedby the
interaction of the separated flow field (including
the external rotational flow and the mixing layer)
with the viscous layer generated on the solid
boundaries two methods of analytical formulation
are studied.

A momentum and energy integral formulation is
shown to enable the evaluationof the heat transfer
rate variation in the separated flow provided that
the proper correlation functions are known. It
is shown that by reasonablearguments, a set of
correlationparameters can be selected and the
results of the calculationscan be accepted to be
at least in qualitativeagreement with the measure-
ments.

A more promising method for a theoretical
solution is introducedin this paper. Using a
finite difference-differentialsolution of the
boundary layer equations, a solution for the non-
similar flows is obtained. The problem of the
numerical convergenceof the solution is solved by
the introductionof a reference length. It is shown
that this reference length, in essence, defines a
"limited memory" of the solution to the non-similar
boundary layer equation. A proper choice of a
"memory" length, enables a solution such that on
one hand the non-similarnAture of the boundary
layer is preserved and on the other hand the
numerical solution still converges. The present
solution can be included in an iterative calculation
with the external rotationalsupersoniccharacter-
istics solution and thus this synthesiswill define
a reasonably complete theoreticalsolution of
separated flow with heat transfer.
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