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Abstract

The aim of this paper is to determine local unsteady pressures
acting on a two-dimensional cascade made of an infinite number
of straight segments, placed in a uniform, subsonic, undeflected
flow, for low amplitude, harmonic vibrations., The technique aims
at solving an integral equation linking the local lift with the an-
gle of attack on a reference blade, in the configuration where all
the blades vibrate harmonically in the same manner, but for a
constant but undetermined outphasing from one blade to the next.
The kernel is expressed as a series of exponential functions.
The case is then treated where the segment s are replaced by
slightly cambered bl ades in a slightly deflected flow. To take ac-
count of these effects, on the first order, it is sufficient to modi-
fy the expression of the angle of attack in the first problem, the
modification corresponding to a velocity perturbation field whose
potential is defined by a convolution where the kernel is also ex-
pressed by a series of exponentials, Some computed results are
presented and these will later be compared with experiments
which are being carried out at Modane-Avrieux.

Résumé

On résout le probléme de la détermination des pressions loca-
les instationnaires s'exergant sur une grille bidimensionnelle in-
finie de segments, placés dans un écoulement uniforme subsoni-
que non dévié pour des petites vibrations harmoniques, La tech-
nique revient a résoudre une équation intégrale reliant la portance
locale a I'angle d'attaque sur une aube de référence, dans la con-
figuration ol toutes les aubes vibrent harmoniquement de fagon
identique, a un déphasage prés constant et quelconque d'une au-
be a la voisine, Le noyau est exprimé sous forme de série d'ex-
ponentielles, On traite ensuite le cas ol les segments sont rem-
placés par des arcs faibleme nt cambrés dans un écoulement fai-
blement dévié, Pour tenir compte au premier ordre de ces effets,
on montre qu'il suffit de modifier 1'expression de I'angle d'atta-
que dans le premier probléme, la modification correspondant a un
champ de perturbation de vitesse dont le potentiel est défini par
une convolution ol le noyau s'exprime également par une série
d'exponentielles, On présente des résultats numériques qui seront

confrontés avec l'expérience actuellement en cours 2 Modane-
Avrieux,

I - Introduction

Vibration problems arising in compressors are always of par-
ticular concern to engineers, These are complex because many
causes are involved, and some of them, such as flow separation
at high incidence, or in the transonic range, have not yet been sol-
ved theoretically. In the present paper, only the vibratory and ins-
tability phenomena in subsonic unseparated flow with a small-
pressure ratio are considered (fig. 1)

The kind of vibrations analyzed here affect the head-intake
stage of jet compressors and arise at rotational speeds slightly
lower than the normal running speed. These instabilities are, at
present considered to be the most dangerous by operators. They
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FIGURE 1

generally appear in the form of a well synchronized flutter all
over the rotor-stage, and the blades vibrate in either the first or
second flexural mode, or in the first torsional mode, In the pre-
sent theory a single rotor is considered and the interactions bet-
ween different stages are neglected because it is assumed that
these are not coupled but can be superimposed.,

Similar problems give rise to ideal theoretical modes in which
all blades vibrate harmonically at the same frequency, the same
amplitude, and with an equal phase angle & between two neigh-
bouring blades. These we shall call fundamental modes. It is
known that, for any fundamental mode (), an adequate criterion
for stability is when the aerodynamic forces lag behind the cor-
responding displacements. If we substitute any multiple of 27 /N
(N being the number of blades in therotor) for all values of(g g
this stability criterion also becomes necessary when the symmetry
of the N*P-order of the rotor is perfect, The first cricerion is the-
refore not too restricting and a structural dissymmetry offers har-
dly any protection against instability, This remark emphasizes
the theoretical interest of fundamental modes, even if unavoida-
ble dissymmetries exclude the possibility of flutter arising in
such modes. Therefore we adopt the following equivalent stabi-
lity-criterion for any blade mode : aerodynamic damping must be
positive for any fundamental configuration ( £ ) and for any reso-
nant mode,

We neglect the possibility of flutter involving several reso-
nant modes because of the usually high values of mass-ratios,
though such a case is hardly more difficult to treat,

Another aim in determining the aerodynamic damping for any
value of & is to permit the analysis of the forced excitation on
the rotor blades produced by either an anisotropic intake flow or



by the hub supporting arms, at a multiple of the rotation-frequency
near a resonant mode, It is clear that the greater the damping
coefficient related to the phase angle & = 2nin/ N (n being the
order of the harmonic), the less is the amplitude of deflection.

II - Theoretical model

The blade-thickness is neglected, and at first, the camber
angle and pitch are assumed negligible ; their effects will be
considered later, The independence between the unsteady flows
in coaxial cylindrical annuli is assumed. Steady flow as seen
from the machine is supposed axial and uniform, Thus, the linea-
rized problem is to find a two-dimensional perturbation potential,
which, in any elementary annulus, is independent of the radius.
The curvature of the annuli is assumed to have little effect when
N is large and the radii-ratio approches unity, which is a condi-
tion already implied in the assumptions. Finally every elemen-
tary annular blade-row is replaced by an infinite straight cascade.
For any fundamental vibration, a local lift-coefficient calculated
in a straight cascade correspond to every blade-section.

In order to take into account the camber-angle and pitch ef-
fects, the relative steady uniform flow at infinity downstream is
considered to be uniform all over the plane, and the blades are
supposed in line with it, Camber angle and pitch induce a steady
perturbation flow expressed by a vortex-distribution along the
corresponding airfoils, which are responsible for the flow devia-
tion andfor a curl in the three-dimensional velocity-field, The
only unsteady coupling of these phenomena in a fundamental mo-
de (with® # 0) results from relative displacements of the atta-
ched vortices which keep their intensities during the vibration,
They induce an additionnal perturbation velocity-field which on-
ly arises in the expression for the downwash, but the local lift-
coefficient always remainsthe same functional of the downwash,
Therefore, except for a modification of the expression for the
downwash, the linearized problem is the same as without camber
and incidence effects,

The problem of the straight two-dimensional cascade without
deviation effects was first solved by Woodston and Runyan ,
In that paper, T>>1 ; Y=0; & =0, where :

T is the reduced blade-spacing refered to the semi-chord ¢
¥ is the stagger angle.

The authors have chosen the Possio doublet-method which is
also used in the present paper. )

L.V. Dominas'?) has calculaced the general case with nei-
ther camber nor incidence, by extending the Haskind method for
a single airfoil(3), The latter method is cumbersome and proba-
bly not very accurate ; moreover only a few results are given. '
No published work refering to this problem for compressible sub-
sonic flow with camber and pitch effect has been found. Howe-
ver for incompressible flow, research carried out in Japan by
J. Shioiri’*? and later by Hanamura and Tanaka (5} must be men-
tioned, The approach in the present paper is analogous tothatof
Shioiri,

11l - The determination of the unsteady pressure field

1. Case without deviation :

We consider a fundamental mode (@) of angular frequencyw.

We use reduced coordinates x and y, the origin of which is
at the middle of the reference blade, If ¥ and y denote dimen-
sional coordinates, then :

(see fig., 2)
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U is the speed of the undisturbed flow and we define the redu-
ced frequency as : k - w.c

U
Let UC‘P(x g) ed?” WE e the perturbation velocity-
potential, The accelération potential ¥ , or the pressure, is de-
termined by :

w(:z,;) = % +;'/r?’ (1

The local lift is thus expressed by :

BLas0lflohet
P U*

P being the density of air,

4
If ‘/’{x ’D) denotes the potential of an unit harmo-
I‘lC source placed at (§ h ), we have, according to Green's theo-
rem :

¢’[:x,;) =j Cr{uj Z
L4 nz=o0

where, to satisfy the Sommerfeld condition :

M (x-£) (3
Ye-t g-9)- /jie H( Ly

M is the Mach number, and /5‘= 4-M*

C},{'x) ¢(x +0) - Y (x,-0)

nﬂ-"

V’[x (usn,), iy - rn:,]afu. (2)

Let {[a: 61 be the deflection function of the refe-
rence-blade, Then the boundary condition is expressed by :

=
/ Ty 5)df @
=a

After substituting (2) in (4), we eliminate
the equation defining s
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where we recognize the form of the linear potential equation in
the left handside. Thus, we find :




K (x) * G (x) = ©

o (x)

where :
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In order to respect the Sommerfeld condition, the indefinite
integrals in (4) and (7) must be chosen such that ¥, doesnot
contain any periodic terms in x of x, common at infinity down-
steam and upstream, It will be seen that expressions (4) and (7)
can be other than zero at infinity upstream., Making ¥ , @, or ¢
zero at infinity upstream, in this case, would mean that we have
superposed a periodic solution such as A e #"for any range
of x, which is irrelevant because of the Sommerfeld condition.
The form (7) of the Kernel function indicates the singularity
which is the same as in the single airfoil problem, Numerical
computation makes use of this point which also shows that the
form of equation (6) isthat of a Cauchy integral. However, expres-
sion (7) cannot be used for numerical computation because the
series in the right handside converges very slowly,

with : ;

In applying the Poisson-formula to (7), we fortunately obtain
a series of exponentials in x_ which is very convergent for any
value of x whose modulus is not too small, and for values of ©
not too large. An additional term such as A e #*%e arises
when x> 0. It must be noted that this term, periodic in x, is
absent upstream, The coefficient A is a simple series of a
rational function of the index.

For example, apply Poisson-fcrmula to the serie :
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4,m = .2r|'m + Q

2 "2
A, = /8, - ()
Expression (7) is, in fact, a similar series, only a little more
complicated.,

2
When : @,’ e
with argument equal to (+)7/2). Expression (8')shows that
S(xo,ﬂ') becomes infinite when @ and m are such thatq_n =0,

It is always possible to find a range of & va'ues for which there
exists at least one value of m such thatA is imaginary. Thus,
S(xg, 61 ) is not zero far upstream. These are also properties of

2
_.(/g'c-') <0 , A, must be chosen imaginary

K(x,, @ ) expressed in equation (7).

If a is the speed of sound, 61 and 92 , the two critical values
for which K(xo,ﬂ) is infinite, then, when aucr.'/a< r(ﬂ K(xo,ﬂ')
0<8 << Gear

is equal to zero far upstrean only for :

(fJI/ x,- ﬂf}*@ﬂ )

Outside these conditions, the acceleration potential ¥ |
turbation pressure, tends to two different plane wave potentials
far upstream and downstream (see fig. 3).
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These waves move upstream in front of the blade-row and down-
stream behind it. The propagation direction is the same only
when @ is critical, For these critical values, the solution of
(6) shows that the contribution of the finite terms in K(xD,U) is
of the same order of magnitude as that of the single term, This
implies that C_(x) is not identically zero for critical values of &,
However, when & takes on a critical value, a sudden step appears
in the variation of the aerodynamic coefficients. For flexural
modes, the coefficients become nearly zero at critical values of
@, but for torsional modes, it may happen that the imaginary part
of the moment at the rotational axis becomes positive, and then
there is an instability near a critical value of @ . It must be
noted that this very sharp instability disappears in the strip-
theory applied in the spanwise direction,

It is interesting to note that the possible excitations of the

harmonic of the rotor frequency have a phase angle between
two neighbouring blades determined by : @ = 2jyn/ N which may
easily cofncide with a critical value for a particular elementary
annulus. Thus, it is sometimes possible to increase the damping
by a slight modification of the critical valuesof & which are
expressed by :

- “-“-'-‘-fM/J:‘mJ':
aﬂ’

Solution

7 = Mes’F), mod.2 (9)

The solution for Cp(x) is required in the form :

[4- o
6];(2}= 1+x

which takes into account the Kutta condition. Qi(") denotes the
sequence of orthonormal polynomials on (-1, +1) with the weigh-

Q: (=) (10)

ting function ‘f d-x . Equation (6) is discretized by projecting

+3€
the downwashb{(x) on the polynomial sequence Q( x) with the

weighting function ‘/_—H_n: » Therefore, with the dumb index
-z

convention,

/ /4+a: Q (—x)d{x)dx
_<|/__%{.z) K(:x)*l/ CL_(x))d

(1D




which is of the form :

(11"
dd = M"a d‘.

The matrix M;; reducestoa diagonal in the correspon-
ding problem where the cascade is replaced by the single refe-
rence airfoil, and also when the reduced frequency tends to
zero, In the resent case, it isthe relative importance of the
diagonal terms that permits to rest rict the rank of M to a value
only slightly higher than the degree of the polynomial represen-
tation of & (x). The generalized Gauss method is used for the
two integrations expressed in (11). If the same number of points
R is chosen for the two sets of integration-points, these become
interwoven and respectively symmetrical to the origin, With
this c)hoice, Cauchy's singularity is automatically accounted
for (82,

For R = 10, the logarithmic singularity and terms like x log x,
can be taken out and these are easily integrated analytically.
The smallest value of x considered, does not generate really
large numbers so that there is no loss of precision in differencing
large numbers when integrating numerically.

2. Case with pitch and camber :

The linearized steady flow problem must first be solved.

By using the Prandtl-Glauert transform, the potential equation
becomes the Laplace equation, let :

te) = [ Gp(8) G (x-6,0) 4

where C 0(g) represents the steady local lift coefficient at

(12)

the point(g ) of the abscissa (€ ). G(x-ﬁ,g) denotes the poten-
tial, before the Prandtl-Glauert transform, of a train of vortices
of unit intensity having the reduced spacing T and moving in the
blade-row direation with one vortex on the reference blade at
(€, 0) In order to maintain a zero velocity at infinity upstream,
a uniform perturbation velocity field must be added to this. Thus,
the equation (12) becomes :

ofx)= (12")
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where J (x) denotes the angle between the x-axis and the normal
to the blade-row (see fig. 4)."
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¥ is a computed term representing the stagger angle of the equi-
valent b_l_ade-row without camber (it is a kind of mean value of
¥ (x) ; of denotes the pitch angle with respect to the normal to
the blade-row ; q' = _:‘;l-‘:_, where : T = T 4im ¥
t‘,f&ﬂtz 'C.: . T COFSE
The fluctuating flow is then linearized with respect to the
downstream steady flow. The basic problem is to define the y-
component along the reference-blade of the fluctuating velocity
induced by an infinite train of equal vortices vibrating as if
each one is attached to its respective moving blade, and this in
any fundamental mode. In the same way as the contribution of a
bound vortex on its blade is of the second order, an error of the
same order is introduced when these vortices are replaced by near
by vortices still having their true vibrational amplitudes, but
now bound to straight segments near their cor responding blades
and parallel to the downstream flow (see fig. 5).

FIGURE 5

The linearized fluctuating field is the same as that induced
by an infinite train of harmonic vortex-doublets normal to the
downstream flow, whose intensities are propor tional to the pro-
duct of the steady vortex intensity and the amplitude of deflec-
tion. To determine such a potential, we differentiate the multi-
form potential induced by a harmonic vortex with respect to (y).
A harmonic vortex is defined here as a vortex whose intensity is
a circular function of time. It is not usual to consider the per tur-
bation associated with such a singularity because no uniform
pressure corresponds to it ; but when differentiating with res-
pect to (y), uniformity returns. Let % be the potential of a unit
harmonic vortex placed at the origin. ¢ is antisymmetric in (y)
and increases by a unit every time the origin is circumscribed,

Therefore, according to Green's formula, and respecting the
Sommerfeld condition, we have :

3 méf!i:‘u' 2 ? 2 2
Plaxy) = - 4‘% f e’ f aj H }(f’./@c—*M ) (13

We can then deduce the expression F(x-g, } for the poten-
tial of an infinite train of vortex-doublets parallel to the blade-
row containing the point (§, 0), having equal phase angle (&)
between two neighbouring doublets. For y = 0, putting :

Xyi=m €= Z
we obtain by.differentiating :
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The prece ing remark concerning the integrals
applies here, It must be noted that

B,/ F s

is zero l °< 0, and discontinuous and equal to 32]/3 if x,> 0

J;f"

(14)

and y = 10, Thls dlsconnnuuy is just equal and opposed to that

uf[a]ﬂ/ e ,; S(u} 9)du . By transforming

(14) wu:h the Paisson-formula, we obtain a new exponential series
in.x,  When'xy » 0, an extra term which is independent of X, and
is expressed by a series of rational fractions is added to it, Le:
&, (x) be the additional perturbation downwash relating to the
camber and pitch effects, This term is equal and opposed to the
y-component of the induced velocity, and thus, is expressed by :

4 (2)s - [ 48R Fat, 4) dE
&(8)=- G, (%)

The integrals are computed by the Gauss method with respect
to the weighting function /4-& | since, in order to satisfy

+E
the Kutta condition, C o['E) is found from (12") in the form :

n . * + 2+
C;’°CE)='/:'~_E (4 +8,&+8E%.)

‘Finally, when they are moderate, camber and pitch effects can
be taken: 1nto account by modifying only the second part of (6) ;
:hus f

(15)

where :

(16)

_K(cr-) * Cf,(m) = o(x) + O () (6"
Only Gauss values of x ne=d to be considered in the integral of
(15), Here, we can repeat a preceding remark concerning accu-
racy and that is that the smallest considered value of (:1:-& )is
sufflcmntly large not to become a special case in series calcu-
lations, -

IV - Theoretical results

In order to allow an easy comparison to be made, we have
treated the vibratory configuration where only the reference
blade vibrates, the other blades being fixed. For such a mode,
the potential is dbtaiqed by integrating the fundamental poten-
tials ‘with respect to (@), giving the mean potential over the
range (0,27 ), the phase origin being taken at the reference-

blade,

Some precaution must be taken in integration because of the
existence of the two critical values of (& ). The mtegrauon is
carricd out by the Gauss method in three ranges : (0, 9

( 8, t9 ) ( &, 277

From the experimental point of view, the principal interest
of the chosen vibratory configuration is that the requirements are
much simpler, especially in the excitation procedure, ‘As for the
measurements, the amplitude of vibration is imposed by a forced
excitation and measured with a velocity transducer, Local uns-
teady pressures on every blade are obtained by means of a suffi-
ciently large number of miniaturized pressure transducers, The
effects of an unavoidable limitation of N'and the presence of
the walls are expected to be small for the chosen vibratory mode,
Experiment s are carried out in a blow-down wind-tunnel especial-
ly built ar Modane-Avrieux for pressure fluctuation measurements
on blade-rows. The blow-down wind-tunnel and measuring equip-
ment and techniques will be described.and a comparison of the
theory with the experiment will be discussed in a future publica-
tion in 'La Recherche Aérospatiale’.

In order to illustrate the method which has just been descri-
bed, we shall only give three examples of graphs showing typi-
cal results, In these figures, the mode considered is always a
rotation about the point : X = 0,042, Blades are supposed straight
and the blade-row is defined by : , .

¥ =0,785 rad, T = 1,964
Mach number is M = 0,512, and the reduced frequency is :

k =0,215

L. Results for the case where only the central blade is moving

In figure 6, the central blade pressure coefficient at the upper

and lower surfaces is represented against the position along the
chord.
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() N is the total number of blades in the tested cascade



Figure 7 represents the lift coefficient of blade No (-1).

2
Co=8p/pU BLADE N°(-1)
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2. Results for the fundamental modes with and without incidence

Let: M = M + jk M"  be the moment coefficient of

the aerodynamic forces about the axis, Figure 8 represents M™

with respect t o the phase angle (@), The incidence considered
is +5° (pressure ratio > 1), Instability region corresponds to .
positive values of M"',
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