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Abstract 


A general series method of generating
two-dimensional, inviscid, irrotational,
compressible flows for ducts with an axis
of symmetry, or with one plane wall, is
described, which starts from a specified
axial velocity distribution.

By judicious choice of this distri-
bution and selection of a suitable stream-
line as a boundary, two-dimensional, in-
finite duct shapes may be derived.

A remarkable property of the solution
enables us to specify a straight sonic
line.

It is demonstrated that the effects of
series truncation and of actual physical
truncation of the infinite portions of the
duct may be kept within acceptable prac-
tical limits.

1. Introduction 


The problem of converting an initially
uniform fluid stream in a duct to a higher
uniform velocity further downstream, whilst
ensuring that the pressure variation along
the wall of the duct is acceptable for
boundary layer control, is an important
one, particularly for wind tunnel design.
It is usually referred to as the 'contrac-
tion' problem and the pressure is usually
required to be monotonically decreasing as
we proceed downstream along the wall, or
at least regions of increasing pressure
must be restricted and the rates of in-
crease must be small in these regions.

The theoretical approach to this
problem has usually been to treat the flow
as inviscid axisymmetric or two-dimen-
sional, since most wind-tunnel contractions
approximate to one or other of these geom-
etries.

The axisymmetric incompressible case
has been considered by Tsien(1),
Szceniowski(2), and Bloomer (3) who use as
their starting point a specified distri-
bution of velocity along the duct axis.
This apprpach was extended by Cohen and
Ritchie(4), still in the incompressible
case, and by Cohen and Nimery(5) for the
case of axisymmetric compressible flow.
A different approach to axisymmetric
contraction design is that of Thwaites(6),
but this has so far been restricted to
incompressible flows only.

Two-dimensional incompressible contrac-
tion design has been considered by
Cheers(7), Goldstein(8), Lighthill(8),
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Whitehead, Wu and Waters(10) and Mills(11).
The last paper is a two-dimensional version
of Thwaites's work. For the case of a two-
dimensional contraction with compressible
flow, of particular importance in super-
sonic nozzle design, there has been a
considerable amount of material published,
some of the more important of which are
listed in references 12, 13, 14, 15 and 16.
Some of these, however, relate only to the
supersonic case.

In referPnce 17, mention is made of a
numerical solution to the prohlem of an
axisymmetric convergent cone with a plane
sonic exit obtained by Van Zhu Tsuan, but
it appears that this method cannot be used
to synthesise a plane sonic exit as part of
a design requirement. Ovsiannikov(lg) has
shown that for two-dimensional jets exhaust-
ing from a reservoir into a space with
sonic conditions, the sonic line across the
jet is straight and at a finite distance
from the outlet. He suggests that the

free-boundary shape can be used to design
the contraction part of a two-dimensional
subsonic-supersonic nozzle so as to give
the straight sonic line which is desirable
as a starting point for the design of the
supersonic effuser. However, the res-




ervoir inlet conditions arP impracticable
to simulate in a duct flow and the constant
pressure on the jet boundary is not ideal
for boundary-layer control on a duct wall.

Cohen and Nimery(1°)have shown that,
for axisymmetric ducts, their earlier
work(5) can, in fact, be used to design
contractions with subsonic inlet conditions
and a specified straight sonic line across
the outlet section.

The present paper contains an
extension of the work of references 5 and
19 to two-dimensional ducts with an axis
of symmetry. A method of design, exactly
analogous to that of reference 5, is
developed, starting from a specified axial
velocity distribution and it is demon-
strated that a straight sonic line may be
specified. A number of example designs are
given and discussed. It should be noted

that the present work applies unchanged to
half nozzles obtained by replacing the
axis of symmetry by a solid wall, if
boundary layer effects are negligible.

The authors wish to express their
thanks to Mr D. A. Nimery for writing the
computer programs for the present work and
for assistance in checking the lengthy
algebraic development of the series
coefficients.
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2. FundamentalEquations Using (3), and denoting differentiation
with respect to x by a dash, we get

Consider an ideal, irrotational, ,
compressible flow in a two-dimensional duct u = E fn(x)y2n (6a)
with an axis of symmetry, as shown in n=0
Fig.l. The fluid is transformed from a
uniform parallel flow at infinity upstream
to a uniform parallel flow at infinity
downstream. Axes are taken with origin 0
somewhere on the duct axis of symmetry, Ox
along this axis of symmetry in the flow
direction and Oy vertically upwards. The

fluid pressure and density are p and p
respectively, u and v are velocity compo-
nents parallel to Ox and Oy, respectively,
rendered non-dimensional by division by
the limiting velocity of the fluid, and
r = u2+v2 , the total,dimensionless
velocity magnitude.

	

v = 2 E nf (x)y2n-1

	

n=1 n

= 2y E (n+l)fni.1(x)y2n (6b)
n=0

The following derivatives are also
required:

= E fn (x)y2n

3x n=0 n

CO

(7a)

FIG. 1.

If subscript oo refers to reservoir
conditions we define in addition

P

-

= P/Poo ' P = P/Poo

The equations of mass and energy
conservation may now be written, respect-
ively, as

3(Fu) a(v) 
 - 0 (1)
3x Dy

and
2 +

-

= 1 . (2)

The requirement for irrotationality
means that we can define a velocity poten-
tial 0 such that

u = , v = (3)
Dx Dy


2 E n(2n-1 )fn(x)y2n-2

Dy n=1

Writing suffix o to refer to condi-
tions on the axis of symmetry we may assume
the following expansion for T,having the
required symmetry about y=0 :

=170(x)exp( E gn(x)y2n)
n=1

and from (4) it follows that

T To(x)expfy Xgn (x )y2n)

n=1
and

7 T,
= —= expf(y-1) E n (x)y2n)

-n
T To

n=1

	

= (1-r2)expf(y-1) E g (x)y2n) , (10)
n=1 n

where (2) has been used on the axis of
symmetry.

In Appendix 1 it is shown that (10)
can be expanded as

	

= = (1--(;){1+(y-1) E
(9n+cn-1 rg))Y2n)(11a)

n=1

n-1
io-1 i1- 1 ij-1-1

Gn_lfs] = T (y-1)- " E
j=1 i =j i =j-1

1 2
ij=1

Axis of
Sym.ostry 0

= 2 E (n+1)(2n+1
)f„1(x)Y2n (7b)

v t n=0

DimensionteSS
Velocity Componeots




where

and since the flow is homentropic  x

Et = 1 (4)
i cIi l i 2"' ij-1

3. The Series Expansions 


We now assume a series for 0, having
the required symmetry properties. This is

x g. g. .
9i1 -i.g.1(11h)

and i is to be identified with n, whilst
the +/glue of G-1J [g is taken as zero whenn 
n=1.

0 = E f (x)y2n .
n=0 n

(5) We also require the derivatives of
logp. From (8) these are

00
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_ 1aIT'oalog + E g (x)y2n
ax-r3o axn=1n

(12a)+E
,
Ifg +4m(n-m+l)fn-m4.1gm]) .

m=1 n-m m
(15b)

	

and The second set of recurrence relation-
ships is found by substituting (11) and (6)
alo — 2y E n gn(x)y2n-2 (12b) into the engrgy gquation (2), using the

	

ay n=1 fact that T4 = u I- v4. We obtain

4.The Recurrence Relationships 


Two sets of recurrence relationships
are now derived which form an interlocking
system from which the functions f (x) and
g(x) may be found in terms of th@ spec-
ified distribution of velocity along the
axis, Tn.

If equation (1) is expanded and divi-
ded throughout by p we obtain

(1-T2 )f1+(y- 1) E(gfl+Gn..,[g1)y211=
on=1"

1-( Ef'y2m) - (2 E mfmy2m-1)=
m

m=om=1

.In..
1-fo - E ffnfo + E (fn-mfm +

n=1m=1

4(n-m+1
)171fn-m+Ifm)}y2n

au Dv u alogo v alogp _ 0 .

ax ay ax ay

Using (6),(7) and (12) and at the same
time changing summation variables as nec-
essary to avoid confusion, we obtain

E [f"+2(n+1)(2n+l)fn+1J y2n +
n=o n

a75
' 2nr 1 o ' 2m]

+ E fny — + E gm y
n=o fT)oax m=1

+ 2y E (n+1 )fn+ly2n .2Y
E m gmy2m-2 = 0 .

n=o m=1

The forms of the relationships (15) and
(16) for y=1.4 and n=0 to 3 are given in
Appendix 2. These are the actual expres-




sions used in the present work.

It is readily seen that (15) and (16)
form an interlocking set of relationships
by means of which the functions fn and gn
may be found, starting from the specified
axial velocity distribution Tn. Thus,
knowing To , fi can he found from (15)

and so 91 can he found from the first of the

2
set (16). Enough inforation isrow avail-

17o = (1-To)Y-1
m

'
(14) able to calculate f, from (15) and so on.

At each stage we switch to therext equation
so that on substituting this in (13) of the other set and can evaluate the right
together with f(1)= T0 equation of the hand side by substitution of functions

coefficients of like powers of y yields the already found,and their derivatives (of the
following recurrence relationships:

2

(y+1)To - y+1

f1 -
2

To (15a)
2(y-1)(1-T0)

-1  f"
2fnTOT

fn+1 - f n 2
n>0

2(n+1)(2n+1) (y-1)(1-T0)

If the products of summations are re-
placed by double summations in which n is
then replaced by p-m we obtain, on revers-
ing the order of these double summations
and then replacing p by n,

rl  a
E 1— -- (Tinfn)+2(n+1)(2n+l)fn4.0 y2n +

n=0 T0 ax

n , ,
E E Lf g+4m(n-m+l)fn_m4.1gmjy2n =0.(13)

n=1 m=1 n-m
m

Now equations (2) and (4) applied on the
axis yield

1

the last line being derived after a manip-
ulation of the products of series similar
to that described previously.

Equating coefficients of y° yields a
resultiequivalent to

f =

	

o o

Equating coefficients of y2n+2 gives
the recurrence relationships

	

gn+1- _ 	
T
0 '

1  n>o
(Y-1)(1-T')

f0+1 —

— o

1 	
n+1 . .

	

2 E ff

	

(Y-1)(1-1-0) m=1
n+l-mfm +

4-4(n+2-m)rlf
' n+2-mfm) Grirgl • (16)

and

first order for the gn and up to the second
order for the fn).

Although this process is elementary,
the algebra involved rapidly becomes very
lengthy, so that the present work only
carries the calculations up to and includ-
ing the terms f4y8 in u, 8f4y7 in v and

g4Y
8 in (7),(8) and (9). It is found never-




theless, that this number of terms gives an
accuracy sufficient for practical purposes
in all cases examined so far. This point,

3



together with other aspects of accuracy,
are discussed later on (see Section 8).

Each of the fn, gn etc which was cal-
culated appears as a finite series of
terms involving products of derivatives of
To multiplied by coefficients which are
simple algebraic functions of To (but which
are, nevertheless, very lengthy expressions
for the larger values of n). The results

for a specific axial velocity distribution
To are obtained by substitution in these
general expressions.

5. Method of Duct Design 


Once the fn and qn are found for a
given axial velocity distribution To, the
basic parameters of the associated flow
field can be computed from equations (6),
(E) and (9) and other quantities derived
from them, such as speed of sound and Mach
number can be also found.

This process may be used to design
ducts to convert one uniform flow at
infinity upstream into another uniform flow
at infinity downstream. The duct must be

doubly infinite, since To has to be spec-
ified along the whole of the x axis.
However, by careful selection of To the
flow may be effectively converted, for
practical purposes, over a finite length
of duct.

The procedure is as follows. After

choosing a To, u and v are found at the
point x=0, y=1, say, using (6). Taking an

increment Ax, the next point on the stream-
line through (0,1) can be taken as being
the point (Ax, 1+(v/u)1 px) where subscript
1 refers to values at the first point

(0,1), and v and u can be found at this new
point so that the slope v/u may be ammended
for the next increment. Proceeding in this

way both upstream and downstream, the
streamline through (0,1)can be traced out
together with its velocity distribution
V(u4+v). When the velocity differs

from the value of To at the same x by an
acceptable tolerance we conclude that the
region of effectively uniform parallel flow
has been reached and the numerical inte-
gration is stopped. Other streamlines nay


be similarly mapped starting at points such
as (0,0.8), (0,1.2) and so on. Any one of

the streamlines may be selected as a duct
profile; the nearer the chosen strealline
is to the axis, the more slender will the
resulting contraction be and the fewer will
be the number of terms of the series
required. On the other hand, the further

out the chosen boundary streamline is, the
blunter will be the contraction, the more
will be the number of terms of the series
required for an acceptable accuracy (since
we move further away from the one-dimen-
sional flow, which is typified by the f(13
term in (6) only, with all other f and g
functions vanishing) and the more will be
the tendency for an adverse pressure
gradient to occur on the wall. There will

eventually be a streamline which just
avoids adverse pressure gradients, which

will represent the 'optimal',bluntest con-
traction for the given To,; streamlines out-
side this one being unacceptable as duct
shapes. It is, of course, possible that

this selection of streamlines further and
further out from the axis may be halted by
the inadequacy of our truncated series
hefore the optimal shape is reached, in
which case this could only he found by
extending the series further. However, in

the cases so far computed, the number of
terms specified previously has always
proved adequate.

It should be emphasised that the optimal
duct referred to above is only optimal in
the context of the specified T, distri-
bution. It right he possihle Tn any spec-




ific case to net a hetter optimal duct, i.e.
a hlunter, shorter one for the same veloc-
ity conversion by, starting with a differ-
ent To distribution.

'lathers connected with numerical
accuracy, adequacy of the number of terms
in the series,,convergence tests and so on
are discussed in Section 2 and the select-
ion of To distributions is discussed in
Section 7.

6. Semi-Infinite Ducts with Sonic 

Outlets - Designing for a


Plane Sonic Outlet

The method we have just described can
be used for designing ducts with purely
subsonic flov: and is particularly suited
to the design of contraction cones. These

contraction cones will be infinite in
extent in both the upstream and downstream
directions as lonn as the delivery condi-
tions downstrea,a are subsonic.

However, in the particular case of
SOAIC delivery conditions the cone can he
made only sei-irfinite, its finite sonic
end occurin,) in the finite region, hy a
sil-ple artifice; naely, to adopt an axial
velocity distribution which accelerates to
sonic conditions at 1301,12position x=x0.
along the duct axis and then decelerates to
some subsonic value at infinity downstream.
The subsonic 9IFFUSEP part of the nozzle is
of no interest on physical grounds hut once
the flow has hecorde sonic (even if i::,media-
tely afterwards it decelerates to subsonic
flow once more) the nozzle can he termina-
ted at the sonic line to form a semi-
infinite subsonic contraction with a sonic
outlet. The sonic outlet flow may then be

used as the starting point for desinning a
supersonic effuser by standard methods.

A very desirable condition at such a
sonic outlet is that the sonic line should
be straight and normal to the axis of
symmetry. In Appendix 3 it is proved that

if we select an apal velocity distribution
with derivative To zero at the sonic point
on the axis, such a straight sonic line,
producing uniform sonic exit flow from the
contraction cone, is automatically ensured.
This remarkable property enables us to

4



design contractions with plane sonic exits
which are thus eminently suitable as the
starting point for the supersonic effuser
design.

7. Selection of Axial 

Velocity Distributions 


The axial velocity distribution, T o ,
which is selected must be defined along
the whole of the x axis where all its
derivatives must exist, and it must satisfy
the conditions

dn To
Lim

dxn
- 0,n>0.(17)

In the case of infinite ducts the
value of T o must tend to the required inlet
value as x+--=.,(say) and to the required
exit value as x÷+.0.

For the semi-infinite ducts with
sonic outlet, we may arbitrarily choose the
outlet to be at x=0 and the inlet at x=-0. .
The T o distribution rust now have the
required inlet value as and the value
1/4q at x=0,for diatomic gases. If the

outlet is required to be a Vane sonic
surface we must also have T0 (0)=0. The T o

distribution to the right of the exit need
only be a bounded analytic continuation of
the distribution to the left and it must,
of course, satisfy condition (17).

In the present paper the following
velocity distributions have been used to
calculate examples.

(i) Distribution A
2 2

To = 0.05 + (— - 0.05)e-k x (18)

with k2 = 0.0016, 0.0036, 0.0064 and 0.01.
The value of k2 giving the bluntestcone
without adverse gradients is also found.

This distribution converts a subsonic
stream with value T, = 0.05 at -0. to a uni-
form sonic flow acrbss the line x=0 and
then returns it to T0 =0.05 at We are,

of course, mainly interested in the left-
hand half of the flow up to the plane sonic
throat.

Since T o is a function of kx it is
easily shown that the velocity components,
and hence the flow properties in general,
are functions of

X = kx and Y = ky

only. Thus, the different values of k2
really correspond to a simple scaling of a
single basic flow pattern,which we may
select as the one for k=1. It follows that

the optimal shape of contraction derived
for this basic flow is the same as the
optimal *apes which could be found for the
various k6 , apart from a scaling factor and
so only the one calculation is needed for
the complete set of values of k2.

The basic flow pattern is shown in
Fig.2 and the optimal cone is also shown
there.

RG.2.

(ii) Distribution R

1
T o = 0.05 + (— - 0.05)sech-kx

with k = 0.04, 0.03, 0.12, 0.16 and 0.2.
Also, as before, the optiral value of k is
found.

This distribution has the sare overall
properties as Distribution A and the pre-
vious remarks hold for it too, includinn
those concerning the basic flow pattern.

8. Converoence and Accuracy 

of t6 Solutions 


An examination of the complexity of
the recurrence relationships in Section 4
shows that it is very unlikely that a
formal proof of the convergence of the
series expansions (6), (7) and (P) is
possible.

In the circumstances a numerical
convergence check has been applied to the
limited number of terms calculated, to
provide at least some basis for the assump-
tion of convergence.

10 40010 5troomIgnos or

4,4"")
coftgrgictgOn Mopes

/
\

k'- o oo34 /
--• — —

k'. o MI 5 - APPROX. 'OPTII14k:  

)e-000g

N 8 These valiges of ---
I

correspond to contractions i

with y•1 at the sonic exit :1.7 rti Jt ,

-2

X - kx

05

4.

The results for the basic flow pattern
are shown in Fig..

k-0-12- APPROX
' OPTIMAL''coN

1

-z
X k

FIG 3

„

(19)
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The technique is based on a simple
comparison test and is developed in refer-
ence 5. It may be briefly stated as
follows. It has been found in all cases

examined that thefn and gn appear to be
oscillatory functions with damped amplitude
as x 4-co. The frequency increases and the

maximum amplitude decreases with increasing
n and it is reasonable to assume that these
are general characteristics of the func-
tions for velocity distributions such as we
are interested in, even though they are
only deduced from an inspection of the
behaviour of fn and gn for n<4 over a
finite range of x for a limited number of
To. We are therefore able to define func-




tions on(x) to be envelopes of the Ifn(x)f
functions,and it is then shown in reference
5 that if the condition

on(x) 	
y2(x) < 1

°11-1(x)

where y(x) is the y coordinate of the point
at x for which the test is being applied,
is satisfied for all n,then the series (5)
is absolutely convergent for that value of
x. The work in reference 5 refers, of
course, to the axisymmetric case but the
mathematical problem is the same, although
a slight change of symbols is made here.
In practice of course, we only apply this
test for n=1,2,3 and 4 at a finite number
of discrete values of x. This does, how-




ever, enable us to approximately delineate
the convergence boundary within the finite
region examined, although it is not prudent
in the circumstances to make use of stream-
lines which approach this boundary too
closely. A similar test is applied to the

g, to estimate the region of convergence
of (8), (9) and (10).

The above is reinforced by checking
the mass flow at a number of values of x
within the selected boundary streamline.
This also serves as a check on the effects
of truncating the series, and evidently we
are limited in our ability to approach the
convergence boundaries by the truncation
error, which gets worse as we move out from
the axis so that, in effect, we are forced
to work well within this boundary. Errors

in the mass flow at any station as compared
with the known exact throat mass flow were
kept to a maximum of 0.1%, for AX=0.001, so
that the duct ordinates are correct to the
same percentage.

Another factor to be considered in
assessing the accuracy is the effect of
step length AX. The calculations were done
for AX=0.01 and AX=0.001 and the error in
the ordinates calculated was reduced by an
order of magnitude, i.e. from 1% to 0.1%,
in the case of Distribution A.

The duct really extends to infinity at
inlet (and outlet, if this is not taken at
the sonic line). The infinite extension is

assumed to be replaceable by a parallel
channel beyond the point where the wall and


axis velocities differ by less than 0.1%.
This enables us to define the effective
length of the varying portion of the duct
or contraction and to define the slender-
ness ratio

Total inlet height 


Effective length

where total height equals twice the value
of y.

The optimal duct evidently has the
largest slenderness ratio without adverse

pressure gradients occuring on the wall,
for the particular To distribution selected.

9. Results and Discussion 


The results of the above calculations
are shown for Distribution A in Fig.2 and
for Distribution B in Fig.3.

For Distribution A the slenderness
ratios obtained with k2 = 0.0016, 0.0036,
0.0064 and 0.01 were respectively 1:6.74,,
1:4.04, 1:3.48 and 1:2.3. The value of k'

for the optimal duct was found to be 0.0025
and the corresponding slenderness ratio was
1:5.4.

Similarly for Distribution B the
slenderness parameters corresponding to
k = 0.08, 0.12, 0.16 are 1:5.9, 1:3.71 and
1:2 (estimated),respectively, and the
optimal duct has k = 0.12 with a slender-
ness ratio 1:3.71.

Consideration of the flow pattern
plots in Figs 2 & 3 shows that the isobars
(which can also be labelled as 'iso-Mach
Ao.' lines) seem to be showing a tendency to
crowd together as they move upwards towards
the line M= 0.4 where the iso-Mach-number
lines change their directions of curvature;
those to the left being curved one way and
those to the right, the other way. This

line at about M= 0.4 seems to be straight
and may be an asymptote for the other lines
which crowd towards it.

Appendix1


Consider the function
CO

Q(s)=exp{(y-1) E g sn} .
n=1 n

If Q can be expanded as

Q(s)= E h sn
n=0 n

we must have

ho = Q(0) = 1

hn = (2i1.1g.)

dsn s=0

(1.2)

6



Now from (1.1)

logQ = Or-1) Z gnsn
n=1

= ('r-1)Q ng sn-1
ds n=1 n

Differentiating t times using Leibnitz's
theorem:

+1 	 t-k ..,
1_tr4-(y-1)E	 ' (14(4,)Engnsn-1
ds"+ k=0(t-k):k: ds n=1

It follows, therefore, that the solution of
(1.4) is

hn = (y-1)(gn+Gn,1fg]) , (1.7)

n>1

so that the expansion of (1.1) is
CO

Q(s) = 1+(y-1) E (gn+Gn,l[gpsn , (1.8)
n=1

which can be used to expand (8), (9) or
(10).

Appendix 2


The expressions for G1[9], G2[g] etc.
may be evaluated directly from the

definition (1.5) or by use of the recur-
rence relationship (1.6). In either case

we find:

=(y-1) E 	 c14

k=0 (t-k):k: ds

E 	 n! 
 g sn-t+k-1 .
n=t-k+1 (n-t+k-1): n

G1[g] =
IL' Ig.

	

Putting s=0 and using (1.3) 2
2

t G2[g] = (y-1)9192 + (Y-1) 3
gl

h -1:1



t: 6

t;1-t0

2
2g2g1(Y-1)3. 4
 gl

2 24
This last expression is most conveniently etc.
expressed as

hi = (1.4a)
We can now write down the two sets of

recurrence relationships (15) and (16) for
n=1,2 and 3 and y=1.4.

ht+1 = (Y-1)gt+1 We find from (15) (replacing fO by To

t>1 when it occurs):

t
+ILL E (t a-k+l)

.-t-k+lhk
6T2-1(1.4b) f _ 	 o 	 T

(2.2a)t+1 k=1 1
2(1-q)

CO

t= ILL E (t-k+11a
'-t-k+lhk •

t+1 k=0

(t+1): k=0 (t-k):k! k
G3rg] = (1_1"„„

1J„ 1 ,21/13 2/
2

(2.1a)


(2.1b)

(2.1c)

The solution of the recurrence equation
(1.4) may be effected as follows. If we

define a function Gorgl by the statements

	

o-1 i1-1 i2-1
Gn[g]= E (y-1) E E  n>1j=1 E ...

il=j i2=j-1 13=j-2

i -1 •
j-1 f(i0-11)(i 2)-0J-1'J)-• r ,

i =1 L i0i1i2
". 1j-1

5 T0
10I

f 2 =T (fl „T 2 fl
0

+1*0g1 + 4f1g1) (2.2b)

5T T I

	

f =i(71 (f; f2 fol3
—T

+Tog2 + 8f2g1 + 8f1g2) (2.2c)

;

1

	

li
	

5T T • s
f4 = (f - f +f +f a +T a +

	

3 7--2— 3 2-1 1'2 o-3
56 i—To

	

+12f3g1 + 16f2g2 + 12f1g3) (2.2d)

x gio-ilgil-i2 	 9ij,1-ijgii),(1.5a)

where io is to be taken as n+1 and

Go [g] E 0 , (1.5b)
and from (16), using (2.1) and again re-

then it is readily shown that placing f(1)by To:

i n
a5

2
Gn[g]=ILL E (n-k+ll

	

n+1 k=1
'-n-k+1 (geGk-lfg]). (1.6) gl - T-7T7 (2f1 + Tof1)

n>1 o_

(2.3a)
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g2 = T:17 (1 fl2+Tof2+"1f2)-1 g
(2.3b)

l
. - T ... 5

gn+1(x0) = -111 nfu+1(ro) '
y-1

o
,

gn '+1(xo) = - 121 f" (x )n+1 o
g3 - -L-5-7(T0f13+f;f12+8f+12f1f3) -

1-T and
o I..  =

- y

y+1 fiv f x \
gni.1(X0) _i n+l'o' •

--i
If we use (3.8), with n in place of


n+1, in (3.4) we see that by virtue of(3.3)


fn+1(xo) = g
(3.11)

1 f'122

	

+- '2
2,
Ig2g1g3

255

2214

	

-2;- g192 -gl
375

Appendix3


(2.3d)

Using (3.9) with n in place of n+1,
(3.5) becomes

	

n+1(xo) = °(3.12)

Similarly using (3.10), (3.6) becomes


fn+1(xo) = g(3.13)

so that by virtue of (3.12),(3.13),(3.7)
and (3.8) become, respectively,

Let us consider the sets of functions g0+1(x0) = °
fn(x) and gn(x), which determine the flow,
at a position x = xo where the flow is and
sonic i.e.

0n+1(xo) = °

Since we can check that (3.3) is true
for n=1,2 etc hy direct computation, it
follows through (3.11),(3.12),(3.14) and
(3.15), hy induction, that

fn(x0) = f n(xo) = gn(xo) = gn(xo)
(3.16)

for all n.
and that we have determined by inspection
that under these conditions It also follows from (3.0) that

f V(X0) = fV(X0) = gV(X0) = 9V(X0) = °'
fn(xo) = 0 (3.17)

1<v<n . (3.3) for all n.

g1g 2
- -- gl

75

g4 - ---7 (T,f4+flf3+16f1f4+24f2f3 +
1-T0'

(2.3c)

(3.14)


(3.15)

T0 (X0 ) =IFEI
y+1

(3.1)

Let us suppose that it is stipulated
that

T (X ) = 0 (3.2)
o o

Using the recurrence relationships
(15) together with (3.1),(3.2) and (3.3)
it is now readily shown that

-1 

f f (x )
n+1(xo) -

(3.4)
o

,
2(n+1)(2n+1)

n



-1 ly-1
g"(xo ) +f'n+1(xo ) - n

2(n+1)(2n+1) y+1
1 I I

+fn (xo)) (3.5)

and
-1 


fn+1(x0)
OI!L g (x0) +

2(n+1)(2n+1) fy+1 n

_fivnix
0"„

(3.6)

Similarly, using (16) we can show that

gn+1(x
0)

= 'n+1 °of '
F-1 c.
y-1

We have thus shown that if the axial
distriution of velocity To is chosen so
that To = 0 at the sonic position, then,
by reference to equations (5),(F),(7),(8)(q)
and (10), there will be no variation of
flow properties with y at that positionand
v will he zero, u will equaljy-1W+1) and
9u/3x will he zero across that section of
the duct, i.e. a plane sonic surface,
(with 3u/3x = 0 everywhere on it in
addition) is obtained.

Finally, it should he remarked that for
the axisymmetric duct solution (9),(1q),
the proof given ahove applies in almost
exactly the same form, since the second set
of recurrence relationships (16) is the
same in that case and the first set only
differs slightly in the forms of the
coefficients of the various terms; the
differences being irrelevant to the above
proof.(3.7)
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Notation "0 subscript referring to conditions
on the duct axis.

fn(x) coefficient in the series for cp.
See equation (5).subscript referring to reservoir

Moo conditions.
G[g] see equation (1.5), Appendix 1.

()1 subscript referrinn to the starting
gn(x) coefficient in the series for logP. point of the numerical intenration

See equation (2). procedure.

hn see equations (1.1) and (1.2),
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