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Abstract

A method for calculationof the natural

vibrations of an elastic aeroplanetaking

into account all the rigid body degrees of

freedom and additionaldegrees of freedom,

due to e.g. free controls, is presented.

Contrary to commonly used methods the pro-

posed procedure leads to an eigenvalue

problem of a positive definite symmetric

matrix of degree equal to the total number

of coordinatesused for the descriptionof

the vibrationmodes minus the number of

rigid degrees of freedom. The basic data

for calculationsconsist of matrices des-

cribing the rigid degrees of freedom as

well as of the mass and flexibilityin-

fluence coefficientsmatrices.For the re-

duction of matrices and calculations,only

numericallystable methods were used.

I. Introduction

The well known, described in several

papers, computationalmethods for deter-

mination of the natural vibrationof a

free - free body use the flexibilityin-

fluence coefficientsmatrix for the struc-

ture prevented from rigid displacementby

introducingadditional,staticallydeter-

minate constraints.In this approach,the

equation of natural vibration has been ob-

tained from the equation of vibration of

the body with no rigid degrees of freedom

with an additionalvector which describes

the displacementsof the supports.This

vector has been determinedfrom the equa-

tions expressingthe conditionsthat the

momentum and moment of momentum of the

body are equal to zero. The equationof

natural vibration obtained in this way,

determinesan eigenvalueproblem for an


unsymmetricmatrix in the case of a system

with a finite number of degrees of free-
(1)dom , and an eigenvalueproblem for an

integral operator with unsymmetrickernel

in the case of a continuoussystem
(2)•Aftersome formal transformationsit is

possible to obtain an equivalenteigen-

value problem for a symmetricmatrix too.

In the presented approach, these as-

sumptions are preserved.However, after

interpretationof one of the operators as

a projection, considerablesimplification

and unifying of the procedure has been

obtained. The procedurepresented is based

only on numerically stable transformations

and concerns a structurewith an arbitrary

number of nrigid" degrees of freedom (as

e.g. an aeroplane with free controls).The

restriction on the free choice of the

staticallydeterminateconstraintsby de-

terminationof the influencematrix is

also considered.

II. The computationalmethod

Let us suppose that by means of p4y-

sical considerationsor mathematicalsim-

plifications,the real structure with an

infinite number of degrees of freedom was

replaced by an approximateone with n de-

grees of freedom. The position of that

structure with respect to an inertial re-

ference frame can be describedby a n- di-

mensional vector (u) . The coordinates

of this vector expressusually the dis-

placements of selectedpoints of the

structure and the rotationsof elements

in their neighbourhood.For example, if

the lumped masses and inertia concept was

used for the idealisationof a real struc-

ture, then the displacementof each lumped
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mass - inertia element is determinedby

six parameters

ru(i)

1

na)
-3

(eld)

(v)

whereu(i) u(i) u(i)1 ' 2 ' 3 are the components

of the displacementvector of the point
(Oi (Fig.1) and , (pi)2,q3 are thouse

of the rotation vector in the coordinate

system xi , x2 , x3 . The integerk de-

notes the number of lumpedmass elements

Figure 1. A lumped mass - inertiaelement

that constitutethe structure.If some of

the coordinatesare dependent,then their

number may be reduced and thereforewe

will assume that all the n coordinatesof

the vector fu) are independent.

Rith the degree of approximationcon-

sidered, the inertiapropertiesof the

structuremay be describedby a mass

matrix [161]of degree n • In the case

when the lumped mass concept was used,

the mass matrix is a direct sum of the

inertiamatrices of all elements

[1'1]= Ng . Y1J
where (in the general case)

0 0 0 S3 - S2ii) (i)

M(i) 0 S4i)
(i)

0 M (i) -Sii) 0

(i) (i) (i) (i)0 -S3 s2 I1 -112 -I13

61-) 0-61i)-Ig Ig)

(i) (i) ki) ki) (i)-S2 S1 0 -I31 -I32 13


m (i)isthe mass of the i-th element, I.,
ii12 , I;3 are its moments of inertia with

;i) ki:
respect to the axes xi , x2 , x3 ; 112 ,

123 , 131 - the deviationmoments and

= jr x(i)dm (j = 1, 2, 3) - the
M U) j

static moments. If for the descriptionof

displacementsof the i-th element less

than six coordinateswere used, then the

degree of the matrix [hdj]is subjected

to an appropriatereduction.As a conse-

quence of the independenceof coordinates,

the mass matrix is always positive definite

The elasticpropertiesof tne struc-

ture considered,may be describedby a

flexibility influencecoefficientsmatrix

[C]of degree n for the same structurein

which rigid degrees of freedom have been

eliminatedby means of additionalsta-

tically determinateconstraints.The ele-

ment c. . of the matrix [C] express theij
change of the i-th coordinateof the vec-

tor tu) produced by the generalized

force appropriateto the j-th coordinate.

If the structureconsistsof several

elastc parts that can undergo relative

displacementswithoutdeformationtnen

the influencematrix [C] must be deter-

mined after suppressionof the rigid

motion by introducingadditional,arbi-

trary staticallydeterminateconstraints.

In order to make the problem of natu-

ral vibration unique, we must have a num-

ber of additionalrelationsbetween the

{u ( ")

(2)

and (u) = :L

u

u (k)

(1)

(2 )
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coordinatesequal to the number of rigid

degrees of freedom. It is convenientto

suppose, that the generalizedmomenta for

the rigid degrees of freedom_areequal to

zero. Let us suppose that the structure

has N degrees of freedom for the rigid

displacementsand, if all their elastic

parts become rigid, its configurationcan

be describedby means of generalizedco-

ordinates ql, q21..., qN . Now, if we

define the ,rigid modes" of the structure

by the relations

uaD.(19
(13

for j = 1, N , then the condition

of nullity of the generalizedmomenta may

be representedin the form

IThtl]01=0 ,for j = 1,2,..,N, (3)

where (1) denotes the transposedmatrix

and M is an arbitraryvibrationmode.

Let us denote by L the n - dimensional

vector space containingall vectors fui
(andM).Thevectors { .(j = 1,2,..,N)49

constitutea basis of a N - dimensional

subspaceR of the space L. If we suppose

that the metric in the space L is defined

by the mass matrix [M] , then the re-

lations (3) indicatethat each vibration

mode is orthogonalto the subspaceof ri-

gid displacements,that isMI R . A

vector tuIEL can be, in a unique manner

representedas a sum of two components

{12}= {uR} + fuEl where fualER and

fuElIR . This expressiondeterminesa

decompositionof L into a direct sum

where to) is a matrix, the elements of

which are all zero. Determinationof the

projection matrices Ad and [PI is

not difficult.

Let us introducea nxN matrix [R] ,

the columns of which are the rigid modes,

that is

[R] = [41 412:  :L PN]•

The projection matrix on R in L has

the form

[pR] = [IR][A]-1 [ [Mi

where

[A] = [RI T [m] [R] .

The projection matrix on E in L can

be obtained as

[] = [I ] - [PR) ( 5)

where [I] denote the unity matrix. How-

ever, for numericalpurposes, a direct

determinationof the matrix [13]is more

covenient.Let us consider a nx(n-N)

matrix defined by the condition that its

columns constitutean orthonormalbasis

of the n-N - dimensionalsubspace E .

We have then

[EuT
[-ICE] = [I]

and therefore

[131= {E [E] Di]

{%1 =

L = R E (where El R). The equation of natural vibration may
be expressed in the form

Let us denote by hiand [PE] [P] the

projection matrices on R and E respecti-

velly in the space L. Now, the orthogona-

lity conditions(3) may be expressed in

equivallentforms

[P121{0}= (0) or [P](CP)= ((1))


14)R114))=c')2[c] [Ad]4) (6)

where WER . The vector PN) depends

on the manner in which the structure was

supportedby determination[01, and has

different forms for differentvibration
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modes. It can be determinedby the ortho-

gonality relations (3). This is the usual

way of deduction of the vibration equations

However the projection of (6) on the sub-

space E lsads to the same result

1.45)= [P] [c] [u] (7)

The commonly used equationof vibra-

tion is equal to (7) with the form (5) of

the projection matrix. Using the second

relation of (4) we may derive from (7)


where

[b]=[P][•]

The transformations(9) determinea space

isomorpnicwith L , the metric being

defined by a unity matrix. At the same time

the N - dimensionalsubspaceR corresponds

to the subspace R generatedby UR] .

Similarly, the subspace E corresponds

to the subspace 2 generatedby [2].
is a projectionmatrix on E in the space

also an equation with a symmetric (in the f,.
space L)operator:

Let us introducethe notation

(40 = [E]T* and [DJ = NT[] poi)

On multiplying (10)by [E]T and bearing

in mind the relations (11) it is seen that

we obtain an equationof vibration with a

positive definitematrix of degree n-N

(1)1 = c,)2[DDIlfb1. (12)

The n- N dimensionalvectors ftD contain

all informationon the vibrationmodes,

since those belong to the n-N dimen-

sional subspace E. from (11)weobtain

1E]fci)D1 = [ElT [E]{431 = [P] 41= (di)).

Finally, the determinationof vibration

frequenciesand modes may be divided into

the following steps:

Choice of a set of coordinatesto des-

cribe the displacementsof a given

structure.

Determinationof the mass matrix [M]

and the flexibilitycoefficientsmatrix

[c].
Definitionof the possibly rigid dis-

placements of the structureand thus

determinationof the matrix [R] .

Performanceof the Banachiewicz-

Cholesicydecompositionof the mass

matrix

[m] = [t] [r.]ir

f(0= (02 [D]41 (8)

where

[D] = [ID][c] [id] [ID].

To obtain, on the basis of (8), an equa-

tion with a symmetricmatrix we can per-

form the Banachiewicz- CholesIcydecom-

position of the positive definitematrix

[M]= EL][L]T

where EL]is a lower triangularmatrix.

Bearing in mind the particularstructure

(2) of the matrix [Mi, this operationcan

be carried out separatelyfor each matrix

[M).1 of degree six at most. Let us now

introducethe notations

41= [L]T(4)1,
[R] = [L]'2[R] and [E] . [LIT[E](9a)

and also

[C]= [LIT[C][L],

ffl= [LITIP][L]-1T = [R][]T. (9b)

On multiplying (8) by the matrix [L]Twe
obtain the following eigenvalueproblem

for a symmetricmatrix

(01= w2 1.15]fifl (10)
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Computationof the products

[17i]= [R] and [-O]= [LIT [c] [L].

Determinationof any orthonormalbasis

of the n- N dimensionalsubspace E .
Computationof the eigenvaluesco-2

and eigenvectors (q5D) of the symme-

tric, positive definitematrix (of

degree n-N) :

[DD]= [E]T[a] [E].

Inversionof the triangularmatrix [L].

Calculationof the vibrationmodes from

the relations:

((H.( [L]-1)T 1E]f0D).

The data of the particular structure

considered,are involved in the steps

1 - 3 only. All the remainingsteps can

be performed by universal , stable numeri-

cal methods. The computationmethod con-

sisted of reducing the matrix [DI)]to the

tri - diagonalform by the Householder

method with subsequentdeterminationof

eigenvaluesby the bisectionmethod and

the determinationof eigenvectorsby the
(3)Wielandt inverse iterationmethod

which is particularyconvenientto solve

the eigenvalueproblem for the matrix [DJ.

The natural vibration frequenciesand

modes are determinedby the matrix [D] .

The influencecoefficientsmatrix [C] in-

cludes some additional informationon the

way the structure is constrainedwhicn is

of no use in the analysis of the natural

vibration and eliminatedfinallyby the

projectionmatrix [P] . In practical ap-

plications we are often concernedwith

structurescomposed of severalparts con-

nected by staticallydeterminatecon-

straints. In such cases we may introduce

further simplificationsfor the deter-

mination of the matrix [JD]by replacing

the matrix [C] with a sum of influence

coefficientsmatrices, constructedin a


manner analogous to [C], but for the struc-

ture in which all their parts except one

are rigid, and the constraintsfor fixing

each of these may be different.As an

example of such a procedure, let us con-

sider an aeroplane,whose wings and tail

planes are connected to the fuselage by

staticallydeterminateconstraints.

141

Figure 2. Determinationof the influence


coefficientsmatrix

In this case we may determine the ma-

trices [C1]to [C,4]independently,assu-

ming the shaded (in Fig.2) parts of the

aeroplane as rigid and obtain the matrix

[C] as a sum

[ c] = [ci] + 1c2} + + [c:j

III. Determinationof the

matrices [E] and [DI;

From the above considerationit fol-

lows, that the centralproblem in the

estabilishmentof the equation of natural

vibration is that of setting up the ma-

trix [2] . Bearing in mind that the ma-

trix [E] is arbitraryto a considerable

degree, we can choose for its determina-

tion methods particulary convenientfrom

the point of view of simplicityand nu-

merical stability.Below we shall des-

cribe a method based on the application

of elementaryhermitianmatrices and

analogous to the Householdermethod, of

reducing a symmetricmatrix to the tri-

diagonal form.
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Let us suppose that the matrix [2]con-

stitutes the first n-N columns of an
r iorthogonalmatrix 'AiT of degree n

N1=[HIT [-(1 •
From the condition [2]T = [0] it fol-

lows that

[B][R] = (13)

where [T] is a nonsingularmatrix of de-

gree N .

The matrix [1-1]is sought for in the

form of the product

N is a lower triangularmatrix of the

degree N-r • Ne have, of course,[1 141=

and [Goli= [T]. If the matrix N]is se-

lected in the form

[gi =

[I] - 2 (vr}fvr1T

r




0

(where (vr1T(yr) = 1), we obtain

= [QTJ [in] = - 2 (vr)vr} [Frl 1.
Br :G I

In this connectionthe matrix [Fr] is the

only one to be modified.Let us denote it

last column by (arl. The elementsof the

matrix (vr) shouldbe selected in such a

manner that

[H] = 1Q.11[Q,2] kl T] (14) ( [I] 2 (vrl(yr})Car} = sr ,

every factor of which, [r] , is an ele-
mentary hermitian orthogonalmatrix set

up according to the scheme

= [T]- 2 (wr)(wriT

where (wrIT(wrl= 1 (15) 


where fer is a column matrix, the last

element of which is unity and the remai-

ning ones zero. If the last elementof

("ar is the only one differentfrom zero,

we have, of course, [,r]= [I] . In the

opposite case we find

From (13) we obtain the following condi-

tion for the determinationof each par-

ticular matrix kr]
Let us denote

= ( ar iT far).

( [4( [Q2]• • ( [qi T][R] ) • • •)) = I

ol
 (16)Ti

furl =

Then, we obtain

(17)

The matrices (wN) , (wr_l) (wil are

selected in such a manner that if multi-

plication is performed in the order deter-

mined by the parenthesesin (16), the

elements above the diagonalof the block

[T] become zero at each stage. This means

that the matrix [T1 is assumed to be in a

lower triangularform. Let us consider the

result of multiplicationby the matrix[(3c].

As a result of the preceding steps, the

matrix [RI has been transformedto

[y =

where [Fr] is a (n - N + r) X r matrix and

2 vnl fvrIT = Ur }furlT /(2 Kr2) ,

where

2 r T 1 - 22 K = (LI ta = - 6r (er1Tr r r tn

The sign of the number Sr must be deter-

mined, in order to preserve numerical sta-

bility in such a manner that Sr (er) T(ari‘O

(the product (er)T(ar1 is equal to the

last element of the matrix (ar)).

The transformedmatrix

( - 2 (vr)(vr}T ) [Fr]

7r. 0
•
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Bearing in mind the form (19) of the matrix
, it sufficies,according to the for-

mula (20) to determineonly the elements
belonging to the submatrixof degree
n- N+r- 1 of the matrix ICIJI]and, for

the matrix (qr
)
to calculatethe first

n- N+r elements only.

is convenientlydeterminedin two steps.

-odeobtain first the auxiliarymatrix

PrlT = ur}T [Fr] (2-K2r) '

and then

([1]- 2 (yr)(yr}T)[Fr-I [Fri- fur)(Pr}T•
IV. Example of calculations

For further calculationsthe matrices (urI
with n-N+r elements,and the coef-

2ficients 2 Kr (r = 1, 2,...,N) are the

only quantitiesnecessary,because

2 iwrl(wrIT= (Wrlfw;IT/(2Kf.) where

,u71

(wr) = t-- •

In view of the method for the determina-
tion of the matrices fur/ (17),it is
convenientto store them in the same space
of the computer memory, in which columns
of the matrix RI] which are no more
needed were located. The Householder
method describedabove is numerically
unconditionnalystable (3)

After N steps

P3r-1]= kr1[Cr]kr],(r = N,N-1,..,1)

(i8)
we obtain on the basis of (14)and (11)

. [1 ] 0]
,

,(N]=[0]).(19)

Taking into considerationthe form (15) of

the matrix every transformation(18)

is carried out according to the scheme

[cr-1]= [Cr]- tw;.}(cIrIT- (qrlfw;} (20a)

where

In order to demonstratea practical
applicationof the previouslydiscussed
method, an example of natural vibration
calculationfor a glider is presented. Ma-

king use of the particularfeatures of
glider (and partially aeroplane) struc-
tures, we can introducefurther simplifi-
cations to the proceduredescribed above.

Symmetricmodes

Antisymmetricmodes

((IA= (Pr}- (1c)(fw;e(pr) /(2 14))(20b) Figure 3. Computationalscheme of a glider

and

(Prl = [Cr](w;)/ (2 Kr2)• (20 c)

Because of the symmetryof mass and
stiffness distribution,the symmetric.and
antisymmetricmodes may be calculated

separatelly.The slendernessof the elements
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allows the structureto be replacedby an

approximatemodel consistingof beams as

shown on Fig.3 . Wings and'tailsmay be

treated as rigid in their planes which

implies that with satisfactoryaccuracy

we can take into considerationonly the

displacementsindicatedby arrows in Fig.3.

Direct replacementof the structureby

lumped masses and inertia is not conve-

nient. Better accuracy can be acaievedby

taking into account the continuousmass

distributionand using numerical integra-
Figure 4. Smoothing of the mass


distribution
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Fig.6 Antisymmetricvibration modes
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tion methods to determinethe lumped mas-

ses. However, we can get good accuracy
this way, only if the mass distributions

are smooth enough. In the case of irre-

gular distributionsas on Fig.4 , we may
obtain sufficientlysmooth distributions

by introducinga concentratedmass with a

value equal to the shaded field on Fig.4 ,
at the point with coordinate? • The re-

maining parameters of this lumped mass

may be obtained from an analogous treat-

ment of the diagrams for the static and

inertia moments.

The rigid modes 14t114412)
are determinedby the geometry and degrees

of freedom of the structure.The influence

coefficientsmatrix for a glider may be

obtained very easily, if we cansuppose

that the beams have straight elastic axes.
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Fig.5 and 6 show the result of cal-

culationsperformed with 48 and 54 coor-

dinates (degreesof freedom) in the sym-

metric and antisymmetriccases respec-

tivelly.Jespite the small number of co-

ordinates,the principal modes were cal-

culated with sufficientaccuracy.

Because of the numericalstabilityof

the method presented,nothing prevent the

performanceof the calculationwith a

larger number of coordinatestoo, as is

needed in the case of complex aeroplane

structures.It may be mentioned that this

method is faster in computingtime than

those commonlyused, which employ larger

and unsymmetricmatrices.
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