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A NoW M<THOD OF CALCULATING THE NATURAL VIBRATIONS OF A FREE AZROPLANE

Miron Nowak
Institute of Fundamental Technological Research
Polish Academy of Sciences
Warszawa, Poland

Abstract

A method for calculation of the natural
vibrations of an elastic aeroplane taking
into account all the rigid body degrees of
freedom and additional degrees of freedom,
due to e.g. free controls, is presented.
Contrary to commonly used methods the pro-
posed procedure leads to an eigenvalue
problem of a positive definite symmetric
matrix of degree equal to the total number
of coordinates used for the description of
the vibration modes minus the number of
rigid degrees of freedom. The basic data
for calculations consist of matrices des-
cribing the rigid degrees of freedom as
well as of the mass and flexibility in-
fluence coefficients matrices. For the re-
duction of matrices and calculations, only
numerically stable methods were used.

I. Introduction

The well known, described in several
papers, computational methods for deter-
mination of the natural vibration of a
free - free body use the flexibility in-
fluence coefficients matrix for the struc-
ture prevented from rigid displacement by
introducing additional, statically deter-
minate constraints. In this approach, the
equation of natural vibration has been ob-
tained from the equation of vibration of
the body with no rigid degrees of freedom
with an additional vector which describes
the displacements of the supports. This
vector has been determined from the equa-
tions expressing the conditions that the
momentum and moment of momentum of the
body are equal to zero. The equation of
natural vibration obtained in this way,
determines an eigenvalue problem for an

unsymmetric matrix in the case of a system
with a finite number of degrees of free-
dom , and an eigenvalue problem for an
integral operator with unsymmetric ke§ne1
in the case of a continuous system (2 .
After some formal transformations it is
possible to obtain an equivalent eigen-
value problem for a symmetric matrix too.

In the presented approach, these as-
sumptions are preserved. However, after
interpretation of one of the operators as
a projection, considerable simplification
and unifying of the procedure has been
obtained. The procedure presented is based
only on numerically stable transformations
and concerns a structure with an arbitrary
number of ,rigid" degrees of freedom ( as
e.g. an aeroplane with free controls). The
restriction on the free choice of the
statically determinate constraints by'de-
termination of the influence matrix is
also considered.

II. The computational method

Let us suppose that by means of phy-
sical considerations or mathematical sim-
plifications, the real structure with an
infinite number of degrees of freedom was
replaced by an approximate one with n de-
grees of freedom. The position of that
structure with respect to an inertial re-
ference frame can be described by a n- di-
mensional vector {u} . The coordinates
of this vector express usually the dis-
placements of selected points of the
structure and the rotations of elements
in their neighbourhood. For example, if
the lumped masses and inertia concept was
used for the idealisation of a real struc-
ture, then the displacement of each lumped



mass - inertia element is determined by
six parameters
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where uéiz uéix u;i) are the components

of the displacement vector of the point
0 (Pig.1) and q#i{ ¢(1h @ ape thouse
of the rotation vector in the coordinate
systen x{iz xélh xéiy. The integer k de-
notes the number of lumped mass elements

Figure 1. A lumped mass - inertia element

that constitute the structure. If some of
the coordinates are dependent, then their
number may be reduced and therefore we
will assume that all the n coordinates of
the vector {u} are independent.

With the degree of approximation con-
sidered, the inertia properties of the
structure may be described by a mass
matrix [M] of degree n . In the case
when the lumped mass concept was used,
the mass matrix is a direct sum of the
inertia matrices of all elements

M) = P+ PLJ+- -+ Py, (2)

where (in the general case)
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~ is the mass of the i-th element, I#ll

Iél; Iél' are its moments of inertia with
(33 (4 \ iy

respect to the axes x{l; xéi; x%i’; I;é‘,

Ié;‘, Ié%' - the deviation moments and

s _ f xPan (3=1,2, 3) - the

dJ (i) J
M
static moments. If for the description of

displacements of the i-th element less
than six coordinates were used, then the
degree of the matrix [ﬁi] is subjected
to an appropriate reduction. As a conse-
quence of the independence of coordinates,
the mass matrix is always positive definite

p D

The elastic properties of the struc-
ture considered, may be described by a
flexibility influence coefficients matrix
[c] of degree n for the same structure in
which rigid degrees of freedom have been
eliminated by means of additional sta-
tically determinate constraints. The ele-
ment c;: of the matrix [C] express the
change of the i-th coordinate of the vec-
tor {u} produced by the generalized
force appropriate to the j-th coordinate.
If the structure consists of several
elastc parts that can undergo relative
displacements without deformation then
the influence matrix [C] must be deter-
mined after suppression of the rigid
motion by introducing additional, arbi-
trary statically determinate constraints.

In order to make the problem of natu-
ral vibration unique, we must have a num-
ber of additional relations between the



coordinates equal to the number of rigid
degrees of freedom. It is convenient to
suppose, that the generalized momenta for
the rigid degrees of freedom .are equal to
zero. Let us suppose that the structure
has N degrees of freedom for the rigid
displacements and, if all their elastic
parts become rigid, its configuration can
be described by means of generalized co-

ordinates Qs Qpreees Ay - Now, if we
define the ,rigid modes" of the structure
by the relations
d
) = 5 (e

for j=1, 24¢+4y N , then the condition
of nullity of the generalized momenta may
be represented in the form

W)* (W )= 0, for 5 = 1,2,..,5,  (3)

where ( T) denotes the transposed matrix
and ﬁb} is an arbitrary vibration mode.

Let us denote by L the n - dimensional
vector space containing all vectors {u}
(and {¢}) . The vectors {L{JJ} (3 = 152,058
constitute a basis of a N - dimensional
subspace R of the space L. If we suppose
that the metric in the space L is defined
by the mass matrix [M| , then the re-
lations (3) indicate that each vibration
mode is orthogonal to the subspace of ri-
gid displacements, that is ﬂ$}i_R et il
vector {u}EIL can be, in a unique manner
represented as a sum of two components
{u} = {ug} + [uE} where {ug}€R and
{uE}J.R . This expression determines a
decomposition of L into a direct sum

=RPE (where ELR).
Let us denote by [ ] and PE]E [P] the
projection matrices on R and E respecti-
velly in the space L. Now, the orthogona-
1lity conditions (3) may be expressed in
equivallent forms

[Pl {} = {0} or [P]{¢} = (¢} (4)

where {0} is a matrix, the elements of
which are all zero. Determination of the
projection matrices [Py and [P] is
not difficult.

Let us introduce a nx N matrix [R] ,
the columns of which are the rigid modes,
that is

["p'lf 4‘25,,.., inN] .
The projection matrix om R in L has
the form

[P] = [B][a]7"[R]" [u]

where

[a] = [&]" [u] [R].

The projection matrix on E in L can
be obtained as

[Eﬂ = [I] = &EJ!

where [I] denote the unity matrix. How-
ever, for numerical purposes, a direct
determination of the matrix [P] is more
covenient. Let us consider a nX(n-N)
matrix defined by the condition that its
columns constitute an orthonormal basis
of the n-N - dimensional subspace E .
We have then

[E]" [M][E] = [1]

and therefore

[p] = [&] [E]T [u]

(5)

The equation of natural vibration may
be expressed in the form

{bg) + {9} = w? [c] [u] {4} (6)

where [@R}E R . The vector [d)R] depends
on the manner in which the structure was
supported by determination [C], and has
different forms for different vibration



modes. It can be determined by the ortho-
gonality relations (3). This is the usual
way of deduction of the vibration equations
However the projection of (6) on the sub-
space E leads to the same result

{¢) = w? [p] [c] [u] {4} (7)

The commonly used equation of wvibra-
tion is equal to (7) with the form (5) of
the projection matrix. Using the second
relation of (4) we may derive from (7)
also an equation with a symmetric ( in the
space L ) operator:

{#}= w? [p]{d} (8)

where

(o] = [?](c] [u][].

To obtain, on the basis of (8), an equa-
tion with a symmetric matrix we can per-
form the Banachiewicz - Cholesky decom-

position of the positive definite matrix

[M]
(] = [z] [x]®

where [L] is a lower triangular matrix.
Bearing in mind the particular structure
(2) of the matrix [M], this operation can
be carried out separately for each matrix
[Hi] of degree six at most. let us now
introduce the notations

@Y= [1]" (o),
(8] = [£)® [8] ama [E] = [5)" [£] Ga)

and also

6] = [1]"[d] [z],

Bl = [L]® [?] (L] ? = [E]° (o)
On multiplying (8) by the matrix [L]T
obtain the following eigenvalue problem
for a symmetric matrix

we

(¢} = w? [D]($) (10)

where
(0] = (B [c] [F].

The transformations (9) determine a space
I isomorphic with L , the metric being
defined by a unity matrix. At the same time
the N - dimensional subspace R corresponds
to the subspace R generated by [ﬁ] .
Similarly, the subspace E corresponds

to the subspace E generated by [E] . [F]
is a projection matrix on E in the space
L.

Let us introduce the notation

(%) = [E%(9)

On multiplying (10) by [E]T and bearing
in mind the relations (11) it is seen that
we obtain an equation of vibration with a
positive definite matrix of degree n- N

(&) = ©® [pp]{ep). (12)

The n- N dimensional vectors {¢p} contain
all information on the vibration modes,
since those belong to the n-N dimen-
sional subspace E. From (11)we obtain

and [pp] = [E]"[T] [ELGY)

[El{¢p} = (E]T [E](®} = [P] ()= ().

Finally, the determination of vibration
frequencies and modes may be divided into
the following steps:

1. Choice of a set of coordinates to des-
cribe the displacements of a given
structure.

2. Determination of the mass matrix [M]
and the flexibility coefficients matrix
[e] &

3« Definition of the possibly rigid dis-
placements of the structure and thus
determination of the matrix [R] .

4, Performance of the Banachiewicz -

Cholesky decomposition of the mass
matrix

[¥] = [z] [z]T

—



5. Computation of the products

(8] = (L)*[R] ama [G] = [1]" [c] [x].
6. Determination of any orthonormal basis
of the n-N dimensional subspace E .
7. Computation of the eigenvalues <~
and eigenvectors {dﬁﬂ of the symme-
tric, positive definite matrix (of
degree n-N):

bp) = [E% (] [E].

8. Inversion of the triangular matrix (],
9, Calculation of the vibration modes from
the relations:

(¢} =( [L]™T [El{o,).

The data of the particular structure
considered, are involved in the steps
1 - 3 only. All the remaining steps can
be performed by universal , stable numeri-
cal methods. The computation method con-
sisted of reducing the matrix [DD] to the
tri - diagonal form by the Householder
method with subsequent determination of
eigenvalues by the bisection method and
the determination of eigenvectors by the
Wielandt inverse iteration method (%)
which is particulary convenient to solve
the eigenvalue problem for the matrix [Dp).

The natural vibration frequencies and
modes are determined by the matrix [D] .
The influence coefficients matrix [C] in-
cludes some additional information on the
way the structure is constrained which is
of no use in the analysis of the natural
vibration and eliminated finally by the
projection matrix [P] . In practical ap-
plications we are often concerned with
structures composed of several parts con-
nected by statically determinate con-
straints. In such cases we may introduce
further simplifications for the deter-
mination of the matrix [D] by replacing
the matrix [C] with a sum of influence
coefficients matrices, constructed in a

manner analogous to [C], but for the struc-
ture in which all their parts except one
are rigid, and the constraints for fixing
each of these may be different. As an
example of such a procedure, let us con-
sider an aeroplane, whose wings and tail
planes are connected to the fuselage by
statically determinate constraints.

Figure 2, Determination of the influence
coefficients matrix

In this case we may determine the ma-
trices [01] to [Gq] independently, assu-
ming the shaded (in Fig.2) parts of the
aeroplane as rigid and obtain the matrix
[C} as a sum

[c] =[eq + [ed + [of + [cd]

III. Determination of the
matrices [E] and Jbﬂ

From the above consideration it fol-
lows, that the central problem in the
estabilishment of the equation of natural
vibration is that of setting up the ma-
trix [E] . Bearing in mind that the ma-
trix [E] is arbitrary to a considerable
degree, we can choose for its determina-
tion methods particulary convenient from
the point of view of simplicity and nu-
merical stability. Below we shall des-
cribe a method based on the application
of elementary hermitian matrices and
analogous to the Householder method, of
reducing a symmetric matrix to the tri-
diagonal form.



Let us suppose that the matrix [E]con-
stitutes the first n-N columns of an
orthogonal matrix [H]T of degree n

From the condition [E]T [B] =
lows that

= [@"

[0] it fol-

0
(8] [&] = ] (13)
il
where [T] is a nonsingular matrix of de-
gree N .

The matrix [H] is sought for in the
form of the product

1] =[] [aa]---[ay]

every factor of which, [3.] , is an ele-
mentary hermitian orthogonal matrix set
up according to the scheme

] = [1]- 2 {w) ()"
where {wr} (wr} = (15)

From (13) we obtain the following condi-
tion for the determination of each par-
ticular matrix [""r]

(RACR - (Rl = ] 6o

The matrices {wy} , [(Wyoa} seees {wﬁ] are
selected in such a manner that if multi-
plication is performed in the order deter-
mined by the parentheses in (16), the
elements above the diagonal of the block
[T] become zero at each stage. This means
that the matrix [T] is assumed to be in a
lower triangular form. Let us consider the

(14)

result of multiplication by the matrix [Q,r] :

As a result of the preceding steps, the
matrix [R] has been transformed to

where [Fr] is a (n-N+r)Xr matrix and

[& p] 18 a lower triangular matrix of the
degree N-r . We have, of course, [Fy] = [F]
and [GO] [1]. If the matrix [Qp]is se-
lected in the form

o] - [P AR

0 P

(where {vr}T {vp) = 1), we obtain
([1]- 26w, M) [m ]t o

In this connection the matrix [Fr] is the
only one to be modified. lLet us denote it
last column by {a.}. The elements of the
matrix {vr} should be selected in such a
manner that

([1]-2 (v} {v}") (o} = {eg} 5y

where {e } is a column matrix, the last
element of which is unity and the remai-
ning ones zero. If the last element of
{ar} is the only one different from zero,
we have, of course, [Q'r] = [I] . In the
opposite case we find

2 T
SI‘ = {ar}

Let us denote

{u.} = (o}~ 8, {e,}-

Then, we obtain

[ar}.

(17)

= {ur}{ur}T/('2 Ki) :

2 { vr} (Vr}
where

= {ur}11 {ax} = Sf- T Pp (er}T{ar}'
The sign of the number Sr must be deter-
mined, in order to preserve numerlcal sta-
bility in such a ma.nner that S {e} {arj‘io
(the product (e } {ar} is equal to the
Laivt ‘shuaent of the mabpix (a.})e

The transformed matrix

([1] -2 (v} {vp)") [7])



is conveniently determined in two steps.
We obtain first the auxiliary matrix

{pr}T & {ur}T [Fr] /(2'Kf~) '
and then

([1]- 2 (voh (v} D) [Fg] = [Fg) - (u} o)

For further calculations the matrices {ur}
with n-N+r elements, and the coef-
ficients 2 K2 (r = 1, 2,...,8 ) are the
only quantities necessary, because

2 [wr}(wr}T = {w'r}{w;_,}T/(E Kf,) where

In view of the method for the determina-
tion of the matrices {u.} (17), it is
convenient to store them in the same space
of the computer memory, in which columns
of the matrix [R] which are no more
needed were located. The Householder
method described above is numerically
unconditionnaly stable (51.

After N steps

Becr] = (9 [0 [, (= = Bnet,.0,)
@8)

we obtain on the basis of (14) and (11)

b)) - co][ ] (I = (1), (19)

Taking into consideration the form (15) of
the matrix [Qr] every transformation (18)
is carried out according to the scheme

(o] = [04] - - {a}{w.}? (208)
where

(ap} = (g} =3 (% }({ws}" () /(2 EZ)) (e0D)
and

(pr} = [Co]{m} 7(22) . (200)

Bearing in mind the form (19) of the matrix
[Dp] » it sufficies, according to the for-
mula (20) to determine only the elements
belonging to the submatrix of degree
n-N+r-1 of the matrix [C,_,] and, for
the matrix (q_.} to calculate the first

n- N+r elements only.

IV. Example of calculations

In order to demonstrate a practical
application of the previously discussed
method, an example of natural vibration
calculation for a glider is presented. Ma-
king use of the particular features of
glider (and partially aeroplane ) struc-
tures, we can introduce further simplifi-
cations to the procedure described above.

Antisymmetric mades

Figure 3. Computational scheme of a glider

Because of the symmetry of mass and
stiffness distribution, the symmetric .and
antisymmetric modes may be calculated
separatelly. The slenderness of the elements



m M allows the structure to be replaced by an
approximate model consisting of beams as
shown on Fig.3 . Wings and tails may be
treated as rigid in their planes which
implies that with satisfactory accuracy

we can take into consideration only the
displacements indicated by arrows in Fig.3.
Direct replacement of the structure by

n X lumped masses and inertia is not conve-
nient. Better accuracy can be achieved by

Figure 4. Smoothing of the mass taking into account the continuous mass
distribution distribution and using numerical integra-
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Fig.5 Symmetric vibration modes
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Fig.6 Antisymmetric vibration modes

tion methods to determine the lumped mas-
ses, However, we can get good accuracy
this way, only if the mass distributions
are smooth enough. In the case of irre-
gular distributions as on Fig.4 , we may
obtain sufficiently smooth distributions
by introducing a concentrated mass with a
value equal to the shaded field on Fig.4 ,
at the point with coordinate ” « The re-
maining parameters of this lumped mass

may be obtained from an analogous treat-
ment of the diagrams for the static and

inertia moments.

The rigid modes {‘-P-]] v{We} ""'{wN}

are determined by the geometry and degrees
of freedom of the structure. The influence
coefficients matrix for a glider may be

obtained very easily, if we cansuppose
that the beams have straight elastic axes.



Fig.5 and 6 show the result of cal-
culations performed with 48 and 54 coor-
dinates (degrees of freedom) in the sym-
metric and antisymmetric cases respec-
tivelly. vespite the small number of co-
ordinates, the principal modes were cal-
culated with sufficient accuracy.

Because of the numerical stability of
the method presented, nothing prevent the
performance of the calculation with a
larger number of coordinates too, as is
needed in the case of complex aeroplane
structures. 1t may be mentioned that this
method is faster in computing time than
those commonly used, which employ larger
and unsymmetric matrices.
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