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Abstract

The general equetions of nonlinear
elasticity are firstly recalled, and
transformed in such a way as to be applied
to plates ond shells of increasing thick-
ness. The importance of shear flexibility,
finite curvature, nonlinear inertia is
The attention is then
focused on physical nonlinearities for
which it 1s pointed out a certein lack of

then discussed.

sclentific informatlon: similar consider-

ations apply to damping as well. COurrent
mathods of solutions are briefly review-
ed, and the idea of a new method is then

proposed.
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1 - Introduction

The problem of panel flutter has
recently been considered in very great de-
tell everywhere in the world. The reasons
for such a wide interest underly in the
technical importance to the problem and in
1ts relatively clear formulation as well:
it could be said that there is no nation
of some scientific preparation where geve-
ral panel flutter pspers hnve not been
1soued.
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It 18 almost impossible to follow
the trenendous anmount of technloal 11t-
erature. Some attempts have been made,
such ag in [4], which is a real Cook's
tour to the problem; even this tour,
however, misses some important, or at
least, significent field, such as f.i.,
the work of the italisn school, who has
produced a congiderable number of works
in the last four years.

Therefore, in the discussing the
subject under concern, it was my opinion
that a complete, comprehensive, compar-
ative study of.the ptate of the art of
the problem could not be reached, and
that it is much better to discuss ldeas
more then results, nethods and conoepts
although results

and grapheo will be sonetimes necessary

rather than grapho:

in order to substantiate such 2deas ..

Furthermore, desplte the title of
the lecture, I will gometimes also
introduce linear, et least "linearized"
effects, which are often ignored, even
if their importance is greater than the
nonlinear ones.

1t is well known to everybody that
ony aeroelastic problem is governed by
the symbolic equation:

S(w) - Y w) - Alw) =4 (1)



where S,'J’ A
ertial, aerodynamio operators respective-
ly, whereaﬁ q is the unit load acting on
the body surface.

are structural, in-

Nonlinear terms appear-
ing in each of the terms are referred to
as "nonlinearities". We will mainly
discuss nonlinear terms in S’ﬁ s as far
as A is concerned, the linearized ver~

sion of the piston theory

A= !ﬂEi[.?ﬁ£.+1;L%§%

T L OE (2)

will be accepted.

It has been shown, in fact, [2] that
piston theory flutter prediction oorres-
ponds very closely with experimental re-
suitg, at least for moderate values of q .
Furthermore:

(1) there iz no real contradiction in
using lincar aerodynamic theory for
nonlinear flutter calculations,
because the limlting amplitudes of
flutter will still be small from
the aewrodynamic point of view.

(i1)Very little is gained in consider-
ing higher order piston theories for
practical coses [3] .

As far as structural nonlinearities
sre concerned, they can also be ranked

into three main pgroups:

(1)
(ii) etructural nonlinearities in the

stress—strain relationship
(i1i)terms representing internal damp-

geometric nonlinearities

ing.

We will discuss them aeparately.
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2 - Geometrical nonlinearities

Geometrical nonlinearities arise
from two different facts: (1) defor-
mations are finite, so thut the equa-
tione of equilibrium are to be written
in the body after deformation -~ (ii)
the relationships between deformation
and displacement are not linear.

In reality, under such conditions,
should be
since Hooke's law is valid

also physical nonlinearities
introduced,
only for infinitely small strains.

For plates and shells, which are
the structural objects of panel flutter,
however, the general three-dimensional
equations of elasticity must be re-
duced to two-dimensional.

In Appendix A 8 general procedure
is proposed to obtain such two-dimen-
sional nonlincar counterpart of the
general equations, allowing for succes-
sive approximations of the order hz,hﬁ
(where h is the shell or plate thick-
ness); thus we have the general egua-
tions of finite deformations for plates
of finite thickness.

Again, in dynamic aeroelasticity
of panels certain simplifications are
allowed, the most important of which is
that otrains are negligible, whereas
Although both cir-
cunstonces denoted as (1) (ii) as the

rotations are not.

begining of this article are still valid,
the corresponding nonlinearities are
greatly simplified.

Purthermore, in general, the only
gignificant contributions to them arise
to the displacements normal to the panel
surface.

If such asswnptions are retained in
a plate whose h? is negligible, one ob-
tains the well known Karman's equations
for large deflections of a plate. Again
in Appendix A the extension of similar
equations to plates of arbitrary thiok~
ness (and in particular so as to in-
clude 12 termg) is considered.



Kerman's equations have been widely
uged in panel flutter analysis, despite
the difficulties to use them in represent-

ing situations where in plane inertia
forces are to be considered and/or when
boundary conditions reférring to in-
plene displacements are to be considered.
It may be of interest, thersfore, to have
equations in [w;v,ur] .

In order to check the effects of
terms omitted in bthe common theory of
plates, a calculation was performed on'
the shear flexibility, which as an effect
of the order of h* , (but is not the
only one, of course). It is well known
that the effect of such flexibility is
important essentially on higher frequen-
cies, where the effoctive span is consider-
ably reduced with respect to the originel
ones. Since panel flutter is essentially
dominated by the second freaguency, the ef-
feot on the meroelastic vibrations are
expected to be small.

Details of calculation can be found
in Appendix B. '

Typical results are shovn in I'ig. 1
which shows the amplitude of the limit
cyole with respect to the shear rigid
emplitudes vs., the ratio of dynamic pres-
sure to critical (linear) dynamic pressure.
The analysis is based on the harmonic
balance method.

A typical nonlinearity associated with
finite deformation ig the one taking into
account finite curvature effects. For a
plate, the pertinent expressions can be de-
duced from the general equations of Tab, I;
for a plate of infinite span, however, it
is well known that we have bending moment =

= D x curvature, where the curvature
has to be written in the exact form. The
general equatlons sccounting for such
effects in aeroelastic conditions are
written in Appendix C; eome typical re-
gults are shown in Fig. 2.

A more refined analysis shows how-

ever that,
tained in the equation, alco inertia

gince third order termo are re-

forces associated with horizontal dis-~

placenent, must be considered , and
thus give rise to a well know pheno-
menon of nonlinear mechanics, referred
to as inertie nonlinearity.

Conasidering such effect, the curve
of Fig. 2 becomes that of Fig.3,

3 - Physical nonlinearities

Ag far ag the subject of physical
nonlinearities is concerned, we will
confine ourselves to the deviation of
stresu-gtrain relationship from the
well~kmnown, universally used Hooks'sg
law.

The basic characteristic of such
noniinearities is that they may have
a destablizing or a stabilizing effect.
To show this, a wery simple analysis
was conducted on a three-layer sym-
metric sandwich plate of infinite span
consisting of a material for which the
stress-strain relationship 15 of the
type:

6=k [t-be™] (3)

Such a law was proposed by Ambart-
(4]
years ago, and is based on a former work
by Prager [5] .
flutter equations are derived in Appendix
D form=3:
associated to (3) is depending on a pa-

Sy aIl in a paper of several

The pertinent panel
the physical nonlinearity
rameter, G , that can have either a
pogitive br 2 negative value, under
such circumstances the limit cycle ocan
be either stablm-or instable. The
amplitude of the 1limit cyocle, for the
stable case, for several values of the
dynamic pressure ve. the value of £
ig represented in Flg. 4.

An important point in physical non-
linearities thus arise; the fact that
the values of the physical parameters may

have & quite different effect upon
aeroelastic vibrations, according to



thelr values, and we lmow very little

ebout such velues. It is therefore, of

vital importence, for panel flutter analy-
sls, to have a better knowledge of the
naterial chorectericticsy and, in my
opinion, this cannot be a simple experi-
mental worl,

We should Imow in principle, which
sre the baeic mathematlcal forms of the
gtress~stra’n relationships, =nd this is
a work of theoretical phyesics, the solid
only after this work will
have given some results, =

state physics;
researen nmay provide the informations we
have regquired.

Ag far as elastic coefficientg are
considered, another effect which is often
ignored is the variations of them with
temperature. This is of course a linear
effect, but, like shear flexibil

may have an impact also on nonlinsar be-

by, it
haviour,

We conasider the very simple case of
a plate of thickness a subjected to a
heat flux of constant value 41‘ from one
side, and (i) insulated on the other side
(1i) kept at zero temperature on the
other gide.

For both cases the temperature dis-
tribution is given in Appendis L. There
(1), the
with time

it is also shown that, in case
variation of E 15 egsentially
E=g;[1+xt], so th t in Galerkin's
equationg, terus containing B are to be
multiplied by the factor (+et] |
may change the behaviour of the solutionj

This

consider the variation ci
[44—&{] during one period of

to see this,
the factor
vibration

xp= -+ [ 45 —%’ip (4)

wide exprimental .-

where p 1is the period of aeroelastic vib-

ration of the plate.

—4

longldering, f.i., 2 naterial such
as René 41, we have (YE)AE[/dT)of the
erder ol .-Q/booo“C"
e = 06cal/°c cm? a=4cn 2
NF«; [heat flux entering in one cycle ] calfent”
4000
Now, even witli a strong heating
(oay,100 Btw/sqft sec) and a period of vib-
ration of 1/10 of second, we have
®p= 26/4000

y which is almogt negli-
gible for enpineering purpoees; fhere-
fore we may replace the tenu'[1+“t]

with [1+«fm3
tlme sbout wihich vibration is taking
place.

vitere %y, 18 the mediunm
In other words, whereas frequen=-
cies of vibratlons willl be changed in a
continuous way on time, the shape of the
vibration during one cycle remains esgen-
tially unchanged.

The situation 1s somewhat enalogous
to the vibrations of a multistege missile,
where mass 1o changing with time, but
much more slowly that the vibration
phenomenon

As for as case(i) is concerned, the
varietion of E 1is essentially with
spece, E=E[1+ AU-¥)] vhere

ﬂ:(i}Ed}(dE/dﬁQ*ﬂffK: this produces a perw
cent reduction in axial and flexural
1+ Bl2
typical value of 3 din the exmple
above f=(-14 [6009)(25/0.032) > — 26180 ; in this
the

stiffness given by Again a

case, therefore, & reduction of
order of 10pm is 1o be expected.
Again here I would like to em-
phnasize the tremendous lack of infor-
mation existing in this area.
e do not lmow very much sbout
of E but almost nothing

we know about variation of about

»
¥

variation
’
anisotropicity clffect,; about depen-
dericy of such velues from freguencies,
etc.

shall soon undertake a research
program in this area; I do hope that

a decicive effort may be conducted in
this area.

w
e



A- Damping effect

The importance of damping in panel
flutter does not need to be emphagized;
since for a long time it is lknown that
danping can have destabilizing effect

[3] . Apain here we have to

stress the point that very little infor—
mation is available. As far as the ac—
tual the law governing structural damp-
ing are concerned, several laws have
[7]

appears to be satisfactory, be-

been provosed
themn

but none of

cause is not based upon: ~ny particular
physical ground. An excellent attempt.
is thet of obtailning solutions for a
set of different laws of damping asg
proposed by Dugundjy [8]

To show the importance of pheno-
menion we consider the peneral laws:

L9

G"I5i]= 6"ey| (5)

where G" and Gn are differential time
operators of degrece M and N respec-
ehjaro the deviation
tensors of stregses

tively end S”
1

and strains. By
considering for simplicity one dimem-
sional structure, the b%gdinm mo;gnt

3 a + = J.;A‘l w ]
equation reduces tojf D[314 P owrs
(AppendixT') where A is

a3 constant.
Again here by employing a two

mode Galerkin solution, we obtain the
results of Figs., 5, 6, T.

In F'ig. 5 the typical relationship
between damping and frequency for
various values of A (in dimensionless
form) shows thnt for E%0 the transi-
tion is from damped to increasing am-—
olitudes, whercas in the case E=0
the transition from undamped to increa-
sing emplitudes.

Figo. 6, 7 give the values of
frequencies and daapirns coefficlent

va. £ . Thic shows in particular that

ag E-0 the value of the critical

dynamic pressure does not tend to the
value for €=0 . This proves that to
neglect the damping is very important
gince even a very slight damping may
dangerously anticipate instability.
This point has been discusaed for
other type<of damping in [3%] .

5 ~ lethods of =olution

The general methods of golﬁtion
for panel flutter problems are those
clagssical of nonlinear mechanics:
boundary of sitability and limit cycle.

fe will not go into detall of
such problems from a mathematical
standpoint, since excellent textbooks

[#0] completely cover the subject.

Ve oimply recall that the most
widely used method for eliminating
space varisbles ig the well-known
Galerkin's method. '

A first problem arises here and is
that of an adequate choice of ‘describ-
ing modes.

It ig coumon to refer to the
eigenfunctions of the simnly supported
panels: it should be noted however,
that constraints in the edges
to wind direction (x) have an important

normal
efferct whereas constraints in the edges

paralled to the wind (4) have pratically
Fig. 8 Ref.[M] provides

the variation of eritical (linear)

no importance.

dynamic pregssure with respect to a par-
ameter defining rotational stiffness of
the edges of the panel (M= ~uxD 8
where M; is thce bending moment, and ©
is the edze rotation).

In contrast, Fig. 9 (from [12] )
shows th. variation of the 1st mode in
the y-wise direction, for the o= oo
value of the edge restraint coefficient,
and completed with the 1st mode in

it should be noted
all curves shoulad
Thercfore, since

x-wise direction;
that, as «=0 ,
merge to sin(hmy/fb).
the neroelastic force 1s esgentially
proportional to the derivatives along x



and since the function along Y is un-

changed. very little can he gained or

lost in codaidering conditions other than
simply eupport along Y
the oondition M,;=-Dx® mey represent
very poorly the actual behavior of a con-
tinuous structure.

A curious effect for
such structures is described in Tig. 10,

[13]
plate of infinite aspect ratio is congi-
It is seen that as the ratio U/L"
approaches

y where a two-gpan continuous

dered.
unity, theres is a trend to
merging of the first critical pressure to
the second critical pressure, which greati
instability.

Now, coming back to Galerkin's

1ly reduces

approach, we note that it may be inade-
quate to treat nonlinearities if express-
ed with their complete expressions. Tor

example, a nonlinear factor such as

2D  Pw/ds?
%S [+ -1,7‘1]‘/2 2 [ [1_4{,'3;]'72]}

wwhich enters in finite curvature problems
should be treated by setting w= ij'(t—)-Fj(S)
multiplying by ﬁ_&) and integrating.
But such integrals cannot be, in general,
calculated analytically, and this 1is the
reason why we must confirm ourgelves to
treat expanded expressions of nonlinear-
ity; otherwviege one should think of a
method of numerical paremetric integration,
which would be extremely cumbersome.
This point is of gsome importance
since Luigi Morino, who is now working
at M.I.T. recently, in a private conver-
sation, told me that he is going to pub-
“1lish a result, that 1limit cycle with third
order nonlinearity is unique, whcreas
other limit cycles appear with fifth,
geventh... ctec. order nonlinearities:
and aloo the question of the stability
of such limit cycles is open.

Thig is the reason why we are think-
ing of a new solution which ic based upon
a general method of solution of dynamic
problems by Iuigi Broglio (4] and
which pratically abandons the idea of

modal approachus

Again however,

The approach is based upon splitt-
ing the terms of the actual differential
equetion into terms describving a linear
"tangent" structure and to consider all
the other terms (including nonlineari-
ties) as forcing functions. Thus for a

plate we would have:

4 Pwr
DV W + B —p = [AeroDYNAHICS] + [DAMPING] +
+FTRUCTURALNONUNEAmeq=

_ (6)
=w[w, graal.w-,%]

Now consider the dymamic Green's
function for the left hend side of

Bg. (6), C(P?;t-2) which is given by:

c(P, P';i‘—A)=§n

% Un(P)UplP!
“(T")sinw"(f—;\) (7)

where the W& are frequencles, and

n
Vn[P} are normalized modes.
that ¢

accurately as required with as many

We note
can be calculated as

terms as necessary, and can even by

—6=

precomputed and stored in the digital
At this point, wthe
golution to ELgs.(6) becomes:

computer.

+
W(ﬁf)=f42££Y(P’,ﬂ)c(R Pit-2)d2

(8)

where 3 is the surface of the panel.
Thus, by choosing a suitable grid on
the panel, for each gridpoint, and for
successive time intervals one has to
calculate and store the nonlinear term,

P , and simply apply the con-
volution integral (8). The work to be
done 1o render the program efficient -
is essentially a numerical one, to
evaluate as accurately as possible,
time and space derivatives of the



single quantitiea. A much greater
acouracy is expected, cince the work
involved should increase roughly as the
numher of grid pointw, whereas the in-
crease would be much more with the modal
approach. In'contrast, menory may be~
come a major problem, since you have to
store all the nonlineariti

s for every
grid-point and for every timeo.

Coming back again to Galerkin's

equations, thecy may be written in the

form:

b + Ad = F(&) (9)

Here ¢ ip the vector 0&ﬁ&fﬂ&ﬁﬁ%f~%);
the % are tle functions describing
time~varying modal emplitudes; A is

is a vector,
|

a constent matrix and F

degcriblng nonlinearities.
It should be ugtcd that

not depend upon P .
Methods of solution of ILg. (9) are

F does

very numerous, and are of course differ-
ent according to the availabl

Analog computers (G]lﬁé] are of rreat

e tools.

help when one has to look for secveral
golutions (such as in the doterminetion
of stability boundary) which can be re-
fined later: they are generally in-
adequate as one has to look for limit
cycle characteristica.

With digitel computers one ean
generally use one of the many techni-
ques of numerical Integration.

However, in view of the expected
oscillatory character of the solution,
the method of slowly varylng parameters
can reduce the danger of too high
round off errors. A general approach
to such method is glven in Appendix G.

Lt should be noted that the method
of slowly varying coefficients may be
very useful even if one requires only
gteady occillations. In other words,
the 1imlt (constant) solution of the
nlowly varying coefficient C y
obtained through integration of the
pertinent differential equation

¢ =Y , if equivalent
to (9)/15 the solution of the finite
Y(c)=0 ; and the
former can be nuch simpler than the
latter (Avpendix G ).

equation

6 - Concluding remoarks

Some general ideas of panel
flutter research have been investi-
gated. It was firstly ochecked that
existing and actuslly epplied struc-
tural theories are generally adequate
for today's engineering configurations.
A major effort, in the writer's
opinion, should be conducted in the
field of materials, in order to have
better information.on the actual
material behavior. Also a fresh
thoupht of solution techniques may
prove to be useful, eliminating some
of the problems arising with the modal

approacti.
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Appendix A

1) Ve recall here the equations of

finite deformation for an elastic body.

Let (%,42) be the coordinates of a
point in the initial undeformed state
and V¥ (uquqﬁu) be its elastic
displacements. Ve have the following
equations [17]:

a) Relationships between dis-
placements and strains:

€= V[1+

][]—

(1)

W

. W, e v
[T]

2 WX % Tk
(1+8,) (14 8y)

W
$—
3

r!,-_' (1.3

‘b) Equations of equilibrium:

[’)x z] D:+-F:-_-o (2)
where
» _ %
D’={D4 [I+grao|.V]}T (3)

Here I is the unit tensor,
grad. ={qradu,gradv, gradw]  and:

. 1% 0 O 1+s,:) o
D{: 0 A4y O D 0 -H-—E; 0
0 0 A4y 0 o 11&

(4)

where

o {1+ B OB G o 2 (e (3] -

4
['ah'w LS2u gy ';urlgi’/z_i
7 T xRy =y T m Y

(41)

and P 1is the stress tensor written
in the undeformed state. As is knownm,
the components of Ef% are
symnetric, i.e., 6':: = 6; H
the same relationship does not apply
to the components of D (unless
we considered negligible strains and
shears).

It is also kmown that the tensors
appearing in (4) take into account the
change in angles and length of the

‘elemental volumé, parallelepiped

before deformation, whereas (3) take
into account the rotations of the
element. Finolly:

o= Fdet[T+ gradV] (5)

-->

where ¥ 1is the external force per
unit volume of the undeformed body
(including possibly inertia forces).

¢) The stress-strain relation-
ship is a complex equation whose
explicit (although very theoretical)
form can be seen in [9]



Suffice here to say that the relation-

ship 1s between generalized stresces 6;
end the strains:
* .
G'ij = 'F[E'J] (6)

d)
also boundary conditions. In particular

Of courge, we have to consider

at points wherc the body surface is sub-
jected to opecified tractions g;* ’
we must have:

(7)

where f 1is the normal to the body.

2)  Let the three components of E%*
on the CIM,Z) coordinate lines denoted

by_ "“,E;'wa-;* . Then we have:
- - =
T Doyx Dy -
+ + + F =
2x W 2% * =0 (8)

Consider now a plate of thickncss h ’
whoge medium plane is the plane Z=¢ .
Maltiplying by %J and integrating

with respect to Z and letting:

b
0 [ in
Ny = _b.z 6,, 4z
2

(9)

—-9-

we have
ONox | DNy - (-9 =)
M Dy wx +Fu =0 (10)

where the boundary conditions (7) have
already been considered.

3) - Now, if we let

> [

v ! (11)

Oo
o

V=3

J

we can express, through (1) all styains,
and through {6) (9) all stresses snd
the N*

Thus Lgs. (10) are equations

v y from which Z

as power series of %2
for v has
been eliminated.

"It should be pointed out that
this procedure is a generalization of
the piates and shell equations, since
by retaining a sufficient number of
terms of Eqs. (11) end consequently
a sufficient number of Egs. (10) we
can allow for approximations of any
thiclkness of the plate.

4~ Iets consider a 1little more
in detail the case where the square of

thickness is negligible. Thus we
- -» (o) - (1) .
have V=V 42V and each

quantityq(strains, stresses, etc.)
oan be expressed under the form
=al 1
q=47+2q" - |
Then we consider Egqs. (10)
and thelr

projections on the fixed axes, say

written from j:o’ j=1

(;Iqlg) we dengfe t%?
generic equation by GO% ,t0)y ete.
0 [0) ™
In Egs. (1o)§ ) (10)‘1 y (10)g
we have terms of the order of h ’
and other of the order of h? ; 2o h?

is negligible, we infer thot the
former are zero 100.



The conditions are wrlttcnsfo Yox=Yax =0}

allowg to obtain m w Mrw

this
terna of the other three qu ntltle"
(10,

we obtain the expressions for 152 Tzz

in
turthermore, from Egs. (10)

Then the three oqu%tionu we employ are:
Q0P L (100, 2000+ A0y 1)
The results are given in Tab., I

9— Tor panel flutter purposes the
simplifications generally admitted are to

ignore strains as compared with rotaticn,
and furthermore to consider W much
greater than the other digplacements.
Then we would have, instead of (1):

(12)

o o D 9w
Txv T W T ax T %x oy

Again we consider the expression (11),
but we write Eqs. (10) in the equivalent

form:
g w‘,’}, G Db .
oy TNt
) . :
Moy . (7Y 0 _
+ 5y -iD, " + F =0
v, M,
Ty TAax y
Y u-9 ) (12)
'a:: “iPa + Ry =0
oNS,),, DNy 9 .NG—') %ﬁﬂ N
Dx + L) ~ %% 24
DN SO
N
ilere we have:
h
: j
= J-'-.h.' Grs'l dw
’; (4)
D b).: I nd (grad,u.,.xg‘s)al.z
re _%

-=10-

The general equations for the
. \ 3 . :
apnroxinntion h’ are written in Tab.II,
2 .
Ly W approaches zero, they reduce to

the well-lmow Karmon's large deflection

Lquations.,

Appendix B

We write explicitly, in particular,
Karman's equations when shear flexibil-
(It should
be noted, however, that such equations

ity is taken into acoount.

are incorrect, since they consider only

~a portion of the hzterms which are in-

cluded in the egquations of Tab.II. De-
noting by &, oty the rotations in the
-x, -4 directions, by W the vertical
displacement, by ) Airy's funection,

we have:
Pur 2 [P, 1y 'Nz I ?“v
%t Wl a7 it 'nz'ly]
Wy R Woy | oy Wx
%y + ET[ yz A v 4 Tf'ﬁz;;] -
,bi
D5 * % )( ) ko w =
’b( fo’; w'b%) ( % ww) b
o N\ Xyt T g xdy) T Y Xy 2~ o 9
(1)
1 Vﬂb s %_.235:225
ERT Y T %0y xt Py
where




with X,_,,Xu phear factors, nnd ip is the
agroelastic overpressure:

(2)
with U

p'= Miig (3)

Letting, for a simply supported panel:

u,(z,,+)=z:m2n-':‘£a,,,‘ec)w'” sin 222
Sy x99 =2 By 5By, [ sin MIE o 7L ()

‘W‘(_I,‘H:) 2 E (ﬁ.m(@ Sin mrx sm—’%r-"’-

from the first two Eqs. (1), we get, at

2
h* accuracy:

Amn= ?rm{* ~ kT, "z[(‘g')z* ('E")z]}
(5)
Bun = foun {1' hitgwe[(%)ﬁ_'_(%)’]}

Then, with the aid of the third aund
fourth of Igs. (1) one can proceed as de~
scribed f,i., in [M] .
for the panel of Infinite agpect ratio
[b-r w0 ] , we get the following system:

In particular,

4

43+(:;’9) [2' ﬁf ] " (P"’"

u .
+ 26’?; Eﬂ C;m-!-@tb",,,lf‘-] =0 (6)

.0 ﬁm
l'Pm." 1+ “29 (fm

-1t

whare:

2 Wy,
A= ~ T=V e (7

T = Tt %: C )-
29 *__ Ta [5'1
6= e =v g
9= -ZX (b (9)
Tt

I G=m
D =
o <o Gi#m)

(10)
J Sin mn¥ cod iwE dF

Apvendix C

Consider a plate of infinite
aspect ratio, fixed at the left and,

subjected to the right end to a
spring of axial stiffness ¢, , and

1let the plate be performing aero-

elagtic vibrations of such magnitude
that finite curvature and horizontal
inertia effects cannot be neglected.
Under such circumstences it is
posgsible to show that the general
equations of the plate reduce to:



2]l

y 2 ds
S T el 5=

(1)

"RBere, in addition to the symbols
of App. B, & is the curvilinear ebscissa,
WL W% gre the displacements along the '
fixed axes before deformation, H is the
horizontal thrust, B is the mass per unit
length.

If we consider the plate to be in-
extensible, we have at second order

accuracy:

_ .

w=-4 [ (554 @
If we let:

w= 86X 6 (3)

where, Xj (s)ere the fundamental modes
of vibration, we obtain the following
Galerkin's equations:

A ..3]+12 % n.,n‘f. B — (4)
- 4T e e BB

b3 .
+ G'E;[‘f; ‘im"goim‘fi]zo

-12=

X.,u =Y [ XS0 ) df

where , 1in addition to the symbols de-

fined in App. C, we have:

A= f Xm 43
1
Dim-.;[x,xm d-}

X 9= f Y, ®)dy
Y(f)——f X 4

40)
L=y



Appendix D

The folwaing Tan. are a fenerali-
zation of those contained in [4]

Hy asouming again an expangion

W= iji(x)lfj&), we have the following
pansl flutter equations (for a simply
supported panel :

cém*} 2:"(&‘ + 62; {C;m(fi'Q' Q*Dim@;] +

HEREEE NP GOROGO Ty gm=0 (1)

where:

1
Ihpéln’.[ Sin BXE Sin pXF dqNF aMITE AR
(4

(2)
and:
_ 3 a4 D+ Dy .

EL—--ZT—EF o (3)

here:
5
D= 75 [hi~hy ] b By
p=Alhzh,E (4)

D,= —%—[Eah: +E,(h2-h3)]
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and the gubscripts 1,2 refer to the
two parte the panel is constituted by
(Fig. 1-D). It should by pointed out,
however, that the value of L) may be
positive or negative,

Appendix Iv

The temperature distribution in
a slab of thickness d- subjected to a
heat flux .Q_*i‘rom the side %=0 in-
gulated from the side 2=a,; with
constant thermal coefficient ¢
(apecific heat per unit volume) and K
(thermal conductivity) is:

, ‘ x .
where t =time, and =2 ;

My the case of constant zero

tempernture at f: we have:

-”ﬂ-;

&“[u—f) ——;z» o3 l‘-;‘—‘-] (2)

Ac T approaches infinity (i.e.
for sufficiently high value of time)
the temperature in. the first case is
oraotlcally uniform and 1%gﬂwen by

,Q*{{_ i‘t[ 30—?)’41]}

Thus,
congider small variation of temper-

if we confime ourselves to

ature about a reference value T,

the variation of modulus of elastie
oity will be E=B, ['1+ ‘Q 'E]._E B+«t]



where

prx

Lo (%)
ca 3 w= B i (8) sin 5 (3)

a—lr%

A
B

In the second case, we hove
Eeg [1 N ]3 (1 *"F)] we have:

where

Gt A+ 265, [+ 60, 6] +
+ Wty =0 (4)
p=i %‘” (4)
with:

Annendii P
IZA*‘{D (5)
E= a2 EY 5

Consider a material for which the
generalized stregs—strain relationship is:

6= EE€ + F¢ (1)

For & one~dimensional plate:

ea’('
o[ 2 A5 25 ] P—“F’,r+r=o (2)

"
where A 195 a constant depending on F .
By the Galerkin approach:

-1 4~



Appendix G

Consider Eq.(1)-D written in the form:

Y +AY = ¢(YY) (1)

If we are looking for trangient re-
aponse and 1limit eycle to BEq. (1), we em
ploy the method of slowly varying ampli-~
tudes, Letst

Y= Zt[ﬁn Sin ewt 4+ Nkmawt] (2)

where M, (8 and N, ) vary with time, but
we stipulate that the variation 1s so

glow that derivatives of M, Ny can
bhe neglscted as compared with HE,NE «

In. such conditions:

(3)

g

=3 lzk [Hkm Rt —~ Ny, Sin h.w’c]

Furthermore we may writes

b= 2, [¥, (M) Skt 0, (4N) osbwt]  (4)

where iln,HQL are functions of the un-
Mh N; determined by the
Fourler technigue. Wow we have the sys-—
tem of differential equations.

known valued

v ’2 2 [~ 3 -
wi M, —w N, + AN, = ¥ (4 N

- 2,2
~WRN,—w k M,2 +AMR=‘Q:1 (Hj,Nj)

ir Y
and 1if the expanslon (2) is stopped at
the k._th term, we have for (5) a set:
of qk-4 scelar squations which 1s ap-
proximately cquvalent to (1), since

has, say, 4 components,

“15~

one component can be erbiltrarily get
qual to zero. The remailning Iquation
gserves to determine w

Setting in (5) !‘:122 h'lp_=o , We
have the well-known equation of harmonic’
balance: from & numerlcal stendpoint,
however, the steady-state response i1s
better obtained as the limit solution

to Bgs. (5),regardless of the initial
conditions.

Q=
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