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THE INFLUENCE OF NEAR-FIELD FLOW ON THE SONIC BOOM

K. Oswatitsch and Y.C.

Sun

DFVLR-Institut fldr Theoretische Gasdynamik
Aachen, Germany :

Abstract

The influence of near-field flow on sonlc
boom has been studied for an incldent tri-
angular wing with constant 1ift distribu-
the front
analysis re=-

tion. Confined in 1ts scope to
shock of the wing, the present
veals nevertheless features of flow impor-
tant for sonic btoom prediction which cannot
be adequately described by the

Whitham in 1ts prevalent form,

theory of
Moreover,
limitations
of the usual approximation procedure in

the present analysis polnts to
sonlc boom study and indicates some practi-
cal possibilities to influence the sonic

bocm in addition.

I. Introduction

Sonic boom has become a fleld of intensive
research with the impending advent of super-
sonlc civil transport. On the one hand,

the effects of gradlients of air density

and alr temperature and the effects of un-
steady flight conditions are under concen-
trated stuy at present. On the other hand,
however, the influence of near-field flow
on the boom intensity and also the distinec-
tion between near- and far-field flows
stlll seem to deserve more attention, So
far, the thecry of Whitham has formed the
pagis of most analytical 1nvestigations of
sonic boom, Just as the asymptotlic approxi-
mation of the shock front in the usual pro-
cedure of Whitham's theory has to be re-
placed in many cases by non-asymptotic
approximation in view of the relative
proximity of aircraft to ground, so may

the approximation of the entire flow field
by 1ts far-field values and the equivalence

of a wing to an axisymmetrieal body in the

theory of Whitham under circumstances also
need modificatlions. The ailm of the present
study 1s to check, through revealing
examples, the validity of equivalence of a
wing to an axisymmetrical body and the
accuracy of the wldely employed far-field
approximation in line with Whitham's theory
in its present form by application of a
more comprehensive analytical method.

II, Nomenclature

Cartesian coordinates after the
Prandtl-Glauert transformation
with x = X, y = ¥ cota_ and

z = Z cota_, X, ¥, Z denoting
the untransformed Carteslan co-
ordlnates, x and X belng mea-
sured along the direction of
free stream

X552 =

X sY 2o Xqs¥q0Zq% Se€€ Eq. (1)

characteristic coordinates, &
and n defined in (3)

E,n.(

=
1

free-stream Mach number

=3
n

free-stream Mach angle

[¢]
1}

sound speed 1n free streanm
U V tana_, W tane
vely, U,V,W denoting the veloci-
ty components of flow in (X,Y,2)
in the X-,Y-, and Z-directions
respectively

respecti-

g— , C belng the local sound
speed

m
1]

angle of lncidence

af
1}

tanw tano_ (Fig. 4)

~
n

% [(v + DtanZa+ (v - 1)]
(Egs. (2), (5), (6))

ratio of specific heats

=<
u

€
1]

perturbation veloclty potential
(Eqs. (4), (11)) i

local Mach angle



8 = local stream angle, 1l.e., angle
between directions of free-stream

and local stream line

%2, shock Strength (Eq.(10))

xl(s),x (n) = integration functlons (Eq.(2))

S <

I(xé,zé) = a function proportional to the
intensity of vortex distribution
(Eq.(11))
x',z! = coordinates for vortex distribu-
o o t1 :
on
20 : see Flg., 3
A
z, : Eq. (12)
CL = 1ift coefficlent
H = height of cruising flight
W or A = total welght of aircraft plus
loading or total 11ft of the
wing
Lw = maximum chord length of the tri-
angular wing
g = wing area
v : angle shown 1in Pilg, 5

III, Analytical method and basic equations

The analytical method of characteristics
employed in the present study has been de=-
veloped(l)(Z)(B)’
turpatlicn theory for two-dimensional pro-
blems based on the method of characteristics
D). The essentlal features

in complement to the per-

presented by Lin(
of the present method consist in the intro-
duction of a coordinate system (e.g.(&,n,z))
composed of characteristic surfaces and in
the expansion of the space variables as well
as the physical quantities of flow in an
ascending power serles of some small para-
meters (e.g. angle of incldence, wing thick-
ness, etc,) in this coordinate system of
characteristics, Thus, with the serles writ-
ten in an implicit form, one has:

¥ Por details of derivation of the analyti-
cal method of characterlstlcs, the in-
terested readers are re{egred to the
cited literature (also (5)),

X (C.n.c) = X "114'124-

¥y (&,n,2)

z (§,n,5) = z_+ zy oz, ¢+

u (&,n,z) = ¥_ + ug +ou, ¢t (1)

V(E.n,‘-’.) = v1+v2+ ses
w o (§,n,5) = Wyt W, b e
c (E,n,2) = 1 + Cy t eyt ouuas

The orlginal coordinate
deplcted in Fig, 1, The x,z~plane stands
for the projectlon plane of the wing, while

system (x,y,z) 1s

the plane z = O represents the plane of
symmetry vertlcal to the projectlon plane.
Flow and shock front in the plane z = 0 will
be studied 1n the present analysis, In Fig,
1 the triangular wing 1n question is shown
to be at an angle of Iinclidence ¢ to the

free stream along the direction of the x-
axis,

wing at
incildence

Pig. 1

As the present Investigatlion 1s conflned
to a first approximation of the shock wave

in the plane z = O due to the incident



triangular wing, the basic equations in-

volved are:
Mn ﬁ=n -
X4y= ¥4 = -3 I‘ﬁ: (vl- K ul) dn + Kl(E)
(2)
M, E=¢ .
X1+ y1 = '-E )’E:Q (V1+ k u1) dg + Kz(n)
with
ERx Y,
(3

and k = 3 [(y+ 1) tanZa_+ (yv- D], K (&)
and Kz(“) being the integration constants.

From previous 1lnvestigations of shock waves
(e.g.(s)(7)), it can be shown that the
values of X+ y, near the shock front are
much smaller than those of X4= ¥y and are
of a higher order than the present approxi-
mation, This makes possible the approxima-
tion: X+ y1:=0, and Xy= Yy= 2x1.

The functions u, and vy in the integrands
of (2) can be determined from the following
equations:

329
2
3y,

32¢
2
ax

3% .o (4)

and

uy = %%o; v, = %%— ’
Formally, the equations in (4) are exactly
the same as the corresponding equations for
the linear acoustic approximation, except
that the independent variables become now
Xos Yo» 24 instead of x, y and z. Since the
former are related to the latter in the
characteristlc coordlnates, the first appro-
ximation by the present method couples
therefore a first-order perturbation of the
physical quantities of flow (velocitiles,
pressure, etc,) with a first-order pertﬁr-
bation of the characteristics which denote
the surfaces of propagation of disturbances
in these flow quantities,

The equations 1in (2) can further be rewrit-
ten 1n the following manner:

£ xy =y, = (x=-y) - (x3-yy)
M, .n=n _
= x -y + = I ) (V1-1{ u1) dn +K1(E).
nExyty, = x+y) - (xg +yy) (5)
Tz
= x +y - ;ﬂ { (vy+k uy) dt +K,(n).

Expressed 1n words, the equations 1n (5)
signify that the change of inclination of a
characteristic curve is represented by a
summation of the local changes of inclina-
tion along the characterlstic in question.
Generally, the integration functions Ki(E)
and K2(n), determined by the boundary con-
ditlons, may be set equal to zero, as will
also be done here,

If the first equation for & in (5) is now
recast into the following form with omission
of Ki(c):
E=x-y+M vy - kui)dio, (6)
it changes then into the fundamental equa-
tion of Whitham's theory except for the
upper limit of integration, - Yo instead
of y. However, the replacement of Yo by y
is permissible in the present approximation.
Thus, it becomes obvious that the theory of
Whitham is closely related to the first
approximation of the present theory, whille
in the usual application of Whitham's theory
further simplifying approximations are made
for the functions uy and vy This will, how-
ever, not be done here so that an adequate
assessment of the influence of near-field

flow may be ensured.

For the present lnvestigatlon, the basic
equations consist, therefore, of (2) (or

(5) or (6)), (3) and (4).



IV, Determination of shock wave

As the present study 1s limited to the
front shock of the wing, the shock wave in
this case separates the region of free
stream from the fleld of flow disturbed by
the wing., The local inclination of the
shock wave 1s expressed by:

3y 3y 3y . 3y
g BEE | Gl G

3x,.dE,9x 3X X, dg axo‘ﬁxl
3 dnan (3 gl ¢ tes)

% [tana_ + tan(a + 0)]

(7)

The last expression in (7) signifies simply
the angle property of the shock (also
‘called the Pfriem-relation for a shock)
according to which a weak shock bisects at
each point the characteristics on both
sides of the shock meeting at the point.

On account of the relations:

3y4 ax1 M

an n
(8)
ay1 IX
e Ca T (gt k),
(7) can be reduced to:
e -u—(Vl-k u,) - 7 (vy-k uy) (%)
In = 3X, 3x,-y,) °
1 + 2 === 1+

]

Here the procedure has been adopted to ne-
glect terms with axllan as agalnst those
with axilac. - a procedure which can also
be Justified a posteriori.

By solution of (9) with application of the
basic equations in III, the relationship
between £ and n on the shock
determined, Further, to the present order
of approximation, one may replace

n(n = x +y)) by & + 2y,» and, furthermore,
by & + 2y, and obtains thus a relationship
between ¢ and y on the shock wave, This

can be

also parallels Whitham's theory 1n its

prevalent form with again the exception that
now full velocity disturbances will be taken
into account in (9).

The shock strength as expressed by the
ratio of the pressure Jump across the shock
to the pressure in front of 1t can be shown
to be:

s = %E = %—% (gﬁ&) (Vl- k ul) (10)

with v1 and uy represented by functions of
¢ and y. Thus the shock strength at a given
distance y from the wing can be determined
from (10) together with the relationship
between £ and y for the shock,

V, Statement of the problem

To investigate the influence of near-field
flow on sonic boom, it would be desirable

to choose a problem for which particularly
aggravating influence of the near-field flow
should be expected. From this viewpoint, the
problem of flow due to the fuselage may be
disregarded in the first place, for this
itself constitutes normally a slender axi-
symmetrical body 1n an analytlcal sense,
Further, in order to make the most of an
analytical study, numerical integration has
to be avolded as much as possible, On the
ground of these considerations, the problem
of an incident triangular plate with super-
sonic leading edges and constant loading

has been selected for the present analysis,
The known results for a flat triangular
plate with supersonic leading edges in the  __
region of conical flow will be drawn upon
for comparison.

In the present study only the front shock
in the plane of symmetry vertical to the
projection plane of the wing (Fig, 1) will
be consldered. The problem corresponds
roughly to the study of influence of a wing
with relatively large aspect fatio on the
sonic boom due to the front shock durlng



steady crulsing flight at the maximum alti-
tude without regard to the variation of air
density and alr temperature with the alti-
tude, The latter effects can be considered
separately (e.g.(e)).

VI, Various regions of flow

As the veloclity perturbations uy and vy in
the integrands of (2) (or (5) or (6)) are
determined by (4), which are simply the
acoustic equations 1in the coordinate system
of (xo, Vo zo), the known methods of solu« '
tion for such equations can now be of great
avall, For calculation of the flow at some
distance from the wing, as 1s the case at
present, the method of vortex distribution
seems to be the most sulitable., According

to this method, the 1ntensity.of vortex
distribution in the projJection plane of the
wing vanishes behind the trailing edge.
This will greatly simplify the analytical
treatment.

To solve the acoustic equations in (4) with
‘the corresponding boundary conditions, the
shape of the wing in the coordinate system
of (xo, Vos zo), which 1is linked up with
the coordinate system of characteristic

(g, n, ) by linear relationships, has to
be known first., From previous investigations
of delta wings(7), it follows that in the
coordinate system of (xo, Yoo zo) the plan-
form of the wing in the projection plane
(xo,zo-plane) will also be a triangle with
the same apex angle as the actual wing,
provided that the leading edges are not
nearly sonical, The effect of slight devi=-
ation of the trailing edge in the Xo025™
plane from a straight line may be safely
neglected in the present approximation,
Thus the wing form remains unchanged in the
coordinate system (xo, Yoo zo).

As 1s known with the method of vortex dis-
tribution, the potential of veloclty pertur-
bation at a point P (xo, Yos 0) is given by:

= 1 Yolxg-x2) I(xh, z8)
$ = J’J’ o YoV ) dx! dz!
T ey Nix x ) 2= (270l © ©
(11)
3 ETE
with u = 3%; and vy = 3%; .

In (11), the xé
plane of vortex distribution, while I(xé,zé)
denotes a function proportional to the
vortex intensity. Here I(xé,zé) = 2Au =

stands for the velocity

» za-plane represents the

uuiup’ where Ysup
component u, on the upper (suction) side
of the wing. Because of symmetry of the
problem, the limits of integration in (11)
are to be assigned by considering only one

half of the wing.

In the field of disturbed flow due to a
triangular plate at incidence, four diffe-
0 (zo = 0)
can be ascertained from analytical consi-
derations, They (Reglons a-d) are shown
qualitatively in Fig, 2

rent regions in the plane z =

f brojected wing

Y v

a: reglion of conlcal flow

b: region characteriged by the tralling
edge expansion

¢: an intermediate region

d: regilon of influence by the whole wing

Fig, 2



Az}

forecone
of P(x,,¥,,0)

A

— X5

trailing
v/edge

(a)
shaded area =

(b)
effective area of vortex distribution for I(x4, 28) in (11)

These regions of flow arlse as a result of
differences in limlts of integration for
the veloclty potential in (1i1i), The four
different cases corresponding to those de-
picted in Fig, 2 are shown in Filg, 3 (a-d).

Case a: In this case, the curve of inter-
section of the forecone of the point

P(X,, Yo O) with the x!,z!-plane lies
‘ahead of, or just touches (from the wing
side) the tralling edge., Here ¢ 15 composed
of two expressions with double integrals as
in (11). The integration limits involved
are:

0 ¢ xf < X3 O z0 ¢ Exé
and ; £ x!' sx_ =-y.3 0<gz'¢g z

o o~ “o of = % ¥ %0
respectively,

- 2 g2. 2. y2

with , _ x +/x2+ (52-1)(x2- y2)

° 52 - 1

7 = flx = x1)2 - g2
and z, = (xo xo) I5

In case a, the front shock 1s not yet, or
Just about to be, affected by the trailing
edge, and the flow 1s conical.

Case b: In thils case, the curve of inter-
section of the forecone of P(xo, Vs 0)-
with the xé,zé-plane Just touches the trai-
ling edge from the wake side. ¢ comprises
also two expressions with double integrals

as in (11). The integration limits are:

fore.
cone

(c)

(d)

0 < zé < 015

A
and X, € xé £1; 0 g zé

$ z respectively,
Here a limiting process Xo= Vo 1 1s to
be taken on the results of integration,
since xé = 1 has been assumed to represent
the tralling edge. A Jjump in the values of
uy and vy will occur if one determines these
components from case a and from case b by
taking the same 1limit X0~ Jo * 1, The 1i-
miting process corresponds to approaching
the tralling edge from the wing side or

from the wake side, and the jump arises

out of a generalized Prandtl-Meyer expan-
sion at the sharp trailing edge (cf. Fig,2,

Region b),

Case c: In case ¢, the curve of intersec-
tion of the forecone of P(xo, I 0) with
the xé,zé-plane 8till lles ahead of the
tips of trailing edge. The 1limits of inte-~
gration for this case are the same as for
case b, The values of u, and vy will be
continuous and join smoothly to those for
case b, '

Case d: Here the curve of intersection of
the forecone of P(xo, Vo» 0) with the xé,
zé-plane lies entirely outside the wing,
The flow in the plane z = 0 (or z, = 0) is
now affected by the entire wing. In this
case, ¢ comprises only one expression with
the following integration limits:



0 g xé 1 ; 0g 2' ¢ °xé .

\j
o
From the analytical polnt of view, the
cholce of a wing in the form of a triangu-~
lar plate with congtant 1ift distribution

is desirable, because then in (11) I(xé,zé),
the function for the vortex intensity will
simply become a constant. After repeated
trials, the best procedure for the determi-
nation of uy and vy from (11) 1is found to

be the following: The velocity component ug
is to be determined first from (11), By use
of the ¢-integral in (11), this 1s accomp=-
lished by flrst integrating with respect to
zj» then by differentlating under the inte-
gral sign with respect to Xy by proper
epplication of the Leilbnitz rule, and final-
ly by integrating with respect to xé. After
obtaining u,, one can determine ¢(x°,y°,0)
by the formula: :
u dio,

whicn amounts to an integration with respect
to X, between the Mach cone from apex of

the wing and P(xo, Yo» 0). With ¢ deter-
mined 1n this way, one obtalns vy then by
simple differentiation., The results can be
checked by the condition of 1rrotationality:
au

y

v

[5Y
[

Q2

(o]
@)
[0}

X

VII, Estimated region of interest for sonic

boom

The relative extent of the various regions
of flow as shown in Fig, 2 should certainly
be lnteresting, though a precise knowledge
of thils has to awalt the final results,
Nevertheless, it can be safely postulated
that the extent of each region of flow will
depend on the free-stream speed or free-
stream Mach number, on the aspect ratlo of
wing, on its area, and on the angle of in-
cildence, With a fixed speed of flight and

a fixed aspect ratio, the angle of incidence
of the wing should then be the governing
factor for the relative distribution of

various reglons of flow, It would not,

therefore, be out of place to make at first
here a rough estimatlion of the angle of in-
cldence (i.,e. the angle of incidence of
wing to the fuselage in level flight) which
one might encounter with a supersonic air-
craft{

To simplify the estimation here, a delta
wing in the form of a flat triangular plate
is now taken and the following symbols are
introduced.

H = Helght of cruilsing flight,

= Total welght of alrcraft plus loading
= Total 1ift of the wing,

Area of the wing,

= Maximum chord length of the wing

= tanw tana_ (Fig. 4)

Ql & N e =
n

\ 2

Fig. 4

For a flat triangular plate with supersonic
leading edges, the angle of incidence is
known to be expressed by:

MZT T
€ = —u—— CL
2 Avﬁ&- 1
and C A {or W) . — (13)
pwuazt Yp“M"’qu
—> °F
C being here the 1ift coefficlent. p U2/2

the dynamic pressure, F and U_ belng the
wing area and speed of flight respectlvely,
and p_,e, and U, referring to condltions

at H.



A(M2- 1) 1

21pnMiL£3 2Yp

Hence, ¢ = (1- L) A
. M2 oG

(14)

Assuming now as examples for estimation:

M_ =3, H=20 km, W= A = 200 tons (men

[

tric) and

L, =100 m, § = 1,2 (H=2001L)) (15)
or

L,= 50m &= 4,8 (H= 400 L) (16)
or .
L,= 50m §=1,2 (&=1400L,), (17}

further setting vy = 1,4 and taking the alr
density at 20 km altitude to be one~tenth
of 1ts value at sea level or, due to tem-
perature effect, pi“'%? x 1 kp (kilopouqd)/
cm? = 0,83 x 103 kp/m?, one finds from (14)
for (15): ¢ = 0,0064,

for (16): ¢ = 0,0064,

and for (17): e=0,0256,

The first two values of ¢ are very small
indeed, For (15) and (16), the wing area
is kept constant, whille for (17) a reduc-
‘tion of the wing area to one fourth of its
value 1in (15) or (16) and a fourfold in-
crease of the average wing loading com-
pared with (15) or (16) are implied,

With the calculated values of ¢ above, one
can readlly estimate the extent of reglon
a (Fig. 2) of conical flow. From previous
work(T), for not excesslvely large o, the
distance Za (Fig. 2) may be given by:

2 6
L n2c¢ot o,

Y = - 1)L tana_ (18)
2 9 MB(y + 1)2(e 5)2 o
This gives for (15): Y = 365 L,

for (16): Ya-90 L, for (17):

Y, = 90 L,. The value of Y, here for (16)
should however, be treated with reserva-
tion, because o for (16) 1s relatively
large already. But 1t can stlll serve as
a useful gulde,

Evidently, the extent of reglon a (Fig.2)
1s strongly dependent on the product of
€d, With the altitude and the speed of

flight kept fixed, ¢ 1s simply proportlo-
nal to the reclprocal of wlng area or of

2 4
o Lw' Thus Ya 1s proportional to Lw'

It 1s noteworthy that for (15), the reglon
of conlcal flow would be solely responsible
for the boom intensity on the ground 1in
the plane z = O, For (16) and (17), flow
beyond region a should then be taken into
account in a study of sonic boom. If one
now conslders region a and probably also
region b (Fig, 2) to be near~fleld reglons,
then in many cases only near~field flows
wlll be involved in the study of sonile
boom due to the front shock,

VIII, A special feature in shock determi-
nation for triangular wing with
supersonic leading edges

In the shock determlnation for a trlangu-
lar wing in the symmetry plane z = 0(z°=0),
or 1n 1ts neilghbourhood, a speclal feature
of the problem should yet be taken 1nto
conslderation. In hls ploneering investi-
gations of sonle boom by approximative
methods, Whitham( (also Walkden(g)) de-
duced for thin wings with supersonic lea-
ding edges a set of planes 1n which the
flow for shock determination should be con-
sidered, As they are, such deduced planes
do not, however, sult for the study of
shock wave in neighbourhood of the plane

z =0 (or Zy= 0) for a trlangular wing with
supersonle leading edges., Analytically, a
triangular wing has a discontinuous leading
edge, and the apex might be regarded as a
singular point on the leading edge. This
could be perhaps best explained with the
ald of Fig. 5. '

In Fig. 5, the area bounded by OABB'A'Q
represents the influence zone 1in a plane
X, = constant of a flat incident triangu-
lar plate (here projected as AA' on the
zo-axis) with its apex at x°=-y°= Zy = 0,
The coordinate system considered is again

(xo, Yoo zo). Alternatively, Yo and zZ,



in Fig. 5 may be considered to be conical
coordinates yo/xo and zo/xo with X, put
equal to one., AB and A'B' stand for the
plane wave front, while BB' depicts the
curved front., B and B' denote here the

points of tangency. In the plane X, =0,

BB' would shrink into the apex,

A 0 Az

Fig, 5

The set of planes prescribed by Whitham's
procedure for shock determination will be
‘related to those parts of the wave front
corresponding to AB and A'B' in (xo,yo,zo),
but not to the parts corresponding to BB“,
which embraces an angle of 2 y = 2sin”!
(1/9). Mathematically, the shaded regions
in Fig. 5 are conical-hyperbolic, while the
unshaded region in influence zone of the
wing 1s conical-elliptic, For the determi-
nation of shock front bounding the conical-
hyperbolic regions, a set of planes passing
through the apex and perpendicular to AB

or A'B!' in the plane x, = constant, as laild
down by the procedure of Whitham, should

be taken for study of the flow. For the y
determination of the shock front bounding
the conical-elliptic region, as 1s 1in the
present case, the flow should however be
studied in meridian planes passing through
the xo-axis (or x-axis). The problem re-
sembles then the conlcal-elliptic problem
for a wing with subsonlc leading edges.

IX. Results and discussion

For a triangular plate with constant 1lift
distribution, I(xa, zé) which denotes the
function proportional to the vortex inten-
sity in (11) 1is given by: I(xa,zé) = 2Au1='
MmAp/% p, U2 = constant, where u; and 4p '
denote the absolute values of differences

in uy and p respectlvely between the upper
and lower sides of the wing and ap =

A cota_/d L2, A and L, belng again the total
11ft and the maximum chord length of the
wing respectively. With reference to a flat
triangular plate with an angle of incidence
€, one finds the relation ¢ = % I for the
same wilng area and the same total 1ift,

It becomes obvious from the present in-
vestigation of front shock attached to the
wing that the results for the regions of
flow' a and b (Fig. 2) are of major interest,

Region a (Fig, 2) - conical-elliptical re-
gion of flow:

The wave front for this reglon corresponds
to BB' in Fig., 5. According to (4) and the
approprilate boundary conditions, the problem
in the coordinate system of (xo,yo,zo) is
also a conical one., The full velocity com-
ponents uy and vy (for (5)) can be found

in closed form as follows:

1 tan=—! 2 a/?
w n =

Yy = = 3%
S N n_-
vy = - ez 1n [l ] (19)
, 152 [tan" 2/(52-1 En]
2%G n + ¢

gand n belng related to x
to (3).

o and Yo according

On the shock or in its vicinity, because of
the condition &/n << 1 (corresponding to
£/2y << 1), it follows that:



- 1/2 =2 3/2
- Io £ 49
w o= -2 (8 ‘T(%] P
- 1/2 22 3/2 (20)
Io 4g
7RI (ORI - 1 I
With due attention paid to the cholce of

the plane for flow analysis (ef. VIII),
one would obtaln the first terms of the
expressions 1n (20) as results for uy and
vy by a direct application of the usual
procedure of Whitham's theory, as £/n here
may be replaced by &£/2y in this approxi-
mation,

Because of the conlcal nature of flow, the
solution of (9) 1s found under the assump-
tion of 32g/n << 1 to be:
3M3(y+1)0I

1 .
(_ﬁ.)g = (21)

8wcot2a

and the shock i1s then simply expressed by:

' 672 2
?- tana_ [1 + 2!.22.&1:11.]

= (22)
X 32wzcot“au

The shock strength s, which 1s constant
here, 1s given by:
3M4y(y+1)(8I)2

8 #2

(23)

s

It hay be interesting to compare the shock
strength for region a in (23) with the cor-
responding value for a flat incident tri-
angular wing with the same planform and

the same 1ift coefficient., The shock

strength for the latter 13(7)5 because
of € = %:
‘ 2
s = 3MSy(y+1)(3I1)2 (28)

2 2
8n2 cot?a_

¢ being tanw in Pig. 4.

Thus the ratlio between the values for a
rlat'wing and a wing of constant loading

is seen to be M2/M?2 - 1, which approaches

one for large M_. This is quite plausible,
as, with a fixed planform, the zone of non=-
constant 1ift distribution for a flat wing
will diminish accordingly with increasing
M .

The point A 1n Fig. 2 marking the outermost
point of region a on the shock 1s indicated
by:

Ya =

[ 64 =2 (25)

- 1] L, tana,
IME(y+1)2C 02

with again G = tane = Gtana_ (Fig. 4),

The corresponding value for a flat wing with
the same 9 and C;, is from (18):

64 ﬂz(Mi - 1)
v, = [
IME(v+1)2CF02

- 1] L, tana_  (26)

For large values of Ya, the ratlo between
the latter and the former 1s roughly

(M2 - 1/M2. Thus region a for an incident
triangular wing with constant loading ex-
tends farther away' from the wing.

From the above results 1t becomes evident
that the parameter 3/%/n or a/E/2y at the
shock 1s of great significance in the sonilc
boom analysis for a wing. As now 1n region
a ¢/n = O(52I2) = O(G2C)(cf. (21)) the
parameter 5YE/n or ov/E/2y may be replaced
by G%C_ or for constant M_ by GZCL. For
cases where 320L<< 1 applies, a direct
application of the procedure of represen-
ting the flow field by its far-fleld values
would give good approximation to the shock
front and shock strength for the conlcal-
elliptic region of flow here. For cases
where.320L<< 1 no longer applies (desplte
E/n org/2y<< 1), correction terms or even
a higher-order abproximation might then be
necessary.

Owing to the assumption of constant 1ift

distribution on the wing, logarithmic sin-
0 (zo = 0)
arises at the wing surface, which, however

gularity of vy in the plane z =

should not upset the present analysis of

10 -



shock front and boom intensilty.

Region b (Fig, 2) - region with nature of
a plane flow:

This 18 the region in which the flow 1is
characterized by the expansion from the
sharp tralling edge of the wing. The Jumps

in the veloclty components u1 and vy in
this reglon are found to be:

b u, = - av, ='W (27)
In the plane Vo = 0 (also y = 0), this can
be easlly understood, since behind the trail-
ling edge the veloclty component uy vanishes
in the projectlion plane of the wing (cf,
(19)). However, the result i1s in so far of
significance as these Jumps 1n veloclty
components remaln unaltered away from the
wing in the system of (xo,yo,zo) and do not
tend to zerc in the far fleld. Thlis reminds
one of the acoustlc solution for a plane
flow, for example, by Ackeret. Certalnly,

in the actual flow, these velocity Jumps
willl be curtalled downstream by the flow

"in region d (Fig. 2) and by the compression
waves coming from the stralght leading

edges (corresponding to AB and A'B' in Filg.
5), but this would not affect the study of
front shock at present. .

Such features of plane flow in region b,
which may be regarded as an example of very
typlcal near-fleld influence on the far
fleld flow, cannot be adequately revealed
by the theory;pf Whitham 1n 1ts prevalent
form, In 1ts present form, Whitham's theory
1s capable of accurately approximating a
tralling-edge expanslon or an expansion of
Prandtl-Meyer type only at the wlng surface,
and perhaps at very large distance from the
wing, but cannot adequately reproduce the
behaviour of flow in the intermediate re-
glons which form, as a matter of fact, the
main range of lnterest for a sonic boom
study. This 1s because the otherwlse very
powerful theory approximates 1n 1ts preva-
lent form a wing wilth no exception by an

11

equivalent axisymmetrical body, for which
any veloelty disfurbance will inevitably
dle away like y % in the flow fleld. In
this connexion, 1t should also be polnted
out that a determination of the shock waves
coming from genulnely supersonlic leading
edges (corresponding for a trlangular wing
to the plane waves AB and A'B' 1n Fig, 5)
would also be lnadequate by adoptlion of the
prevalent procedure 1n Whiltham's theory.
Again this 1s because, 1in the range of -
interest for sonlec boom study, such plane
waves cannot be replaced by disturbances
caused by an axisymmetrical body. Conse-
quently, Just as the relatlve proximity of
alrcraft to ground has necessltated 1n many
cases the replacement of the usual asympto-
tic approximation in Whiltham's theory by
non-asymptotlic approximatlon, so will this
relative proximity also necesslitate a re-
vision of the conceptlion that 1n each plane
normal to the wave front arlsing from a
supersonlc leading edge (e.g. AB and A'B'
in Fig. ) the wing may be replaced by an
equlvalent body of revolution,

Owling to the possibility that now Au1 and
1 in region b, (26), can outweigh uy and
vy inherited from reglon a particulary at
the shock front (ef. (19) (20)), only a

part of the characteristics 1n reglon b

will converge 1nto the front shock 1n such
cases. The rest of them will very probably

converge, due to the over-expanslion 1n this

av

reglon, 1nto a rear shock which remains
then to be determlned.

In reglon a, the front shock 1s of constant
strength, Away from reglon a, the strength
of the front shock will decrease continu-
ously until the shock degenerates into Mach
line at infinity. Therefore, in region b
some neutral Mach line EN’ which merges
into the front shock only at infinlty,
should be expected (Fig. 6).



projected wing

lyo

projJected wing

Fig, 6

To analyze the flow in reglon b, one may
proceed in the followlng manner., Taking

&, and £_ to be the two characterlstics
bounding region b in the x,y-plane (Fig.6)
and noting that £, and {_, and all the
characteristics between them (in fact, in-
finite in number), fall together in the
X,s¥,-pPlane because of (3), one has:

£p = X5= Yo = (%=¥), - (%4-y4), =

(o]
M, nEn . (28)
= (x=y)_ * 3 E[V1°k u], dn =
n:
Mm -’-)=n -
o o B

with K, (§) in (5) set equal to zero and
with suberlpts + and - denoting values on
§, and §_ respectively., Thils glves:

(x-y), - (x=y)_ =

e OF0
o o I7i=£ (v = vy) = kg

In principle, one could determine region b
in all detalls by adequately subdividing
the region between €, and §_ through inter-
medlate characterlstics E10 sonely with a
corresponding subdivision of duy and Avy

in (22). To determine any intermedlate
characteristic §qe One has then Just to
substitute £_ in (28) and (29) by Ene
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From (5), the characteristic fm 1s expressed
by:

Mm T\=n -
Ep=l3x =yt f_=¢ (vl- k ul) dn
" (30)
M_(14K)I, M_(1+K)I5 __ M_(1+k)I5
X - [1+um =3 y+— - 15?- -

with “m denoting the fractional increment
0 for g,
and u = 1 for €_) and with the tralling
edge represented by X, = 1, The shock front
for this region can be determined either
graphically or from (8) by noting u=u(&,n)
in this region., The shock strength is again
given by (10).

of uy and vy assigned to Em(um =

X, Conclusions

Owlng to the aséumption of constant 1ift
distribution over the triangular wing, ana-
lytical results relevant for the analysils
of front shock of the wing have been ob-
tained in closed form. The singular be-
haviour of vy in the plane z = 0 (z°= 0)
should not affect qualitatively the follow-
ing conclusions: ’ '
(1) Validity of equivalence of a wing to a
body of revolution

In the plane of symmetry vertical to the
wing, the equivalence 1s seen to exist in



region a (Flg, 2) under the assumption of
3(€/2y)1/2 << 1 or EZCL <<1,This is because
this near-fleld reglon of conical flow 1s
conlcal~elliptlc in the analytical sense
(ef, VIIL, BB' in Fig. 5). However, in
planes normal to wave fronts arising from
the leading edges and corresponding to AB
and A'B' in Flg. 5, flows with the nature

of plane waves will prevall in the near
field, and no equilvalence to an axlsymmetri-
cal body wlll apply there. In region b,
agaln in the symmetry plane z =
the trailling edge begins to exert 1ts in-
fluence, flow with the nature of a plane

flow also makes its appearance. Flow of

such a type will then imprint its character
on a wide 1lntermediate field of flow until
the strong disturbances of plane-wave na=
ture are finally attenuated in the far fleld,
In thils intermediate fleld of flow, the

wing can agaln not be substituted by an
equivalent body of revolutlon determined
from conditions in the far fleld %together
with conditions at the wing surface. As the
Intermedlate flow fleld seems to be of major
interest to a study of sonlc boom (cf., VII),
the conception of equivalence of a wing to

a body of revolutlon should therefore be
subJect to revisicn,

0, where

(2) Accuracy of the usual approximation
procedure :

The usually employed approximation proce-
veloclty perturbations
in(6)by 1ts far-fleldl values 1s allowable on
the condition that E/n)l/2 or a(zlzy)l/2
<< 1 applies on thehshock. For those por-

tions of the shock front where the above

dure of replacing t

condition no longer applies, correction
terms for the results obtalned by the appro-
ximation procedure or even a higher-order
approximation would then be necessary.

(3) Possibilities to influence the boom
intensity

Because of the far-reaching effects of the
above-mentioned intermedlate fleld embody-
ing flows of plane-wave character, inter=-

esting posslbillities seem to offer them-
13

selves to influence the boom intensity,

In this respect, however, a study of the
whole flow fleld involving very likely a
rear shock should be undertaken first. It
appears that, among other factors such as
the angle of incldence, the aspect ratlo

of the wing, etc.,, the shape of trailing
edge of the wing, for example, could also
Influence both the front and the rear shocks
to a conslderable extent,
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