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Abstract

Elements of flows behind a systems
of plane and conical shocks, creating
bodies which are named “wave-ridersg are
used for investigation and estimation of
aerodynamic forces . = and heat fluxes to
super- and hypersonic vehicles, Lift-to-
drag ratio of such vehicles may be higher
than for the wedge or simple wave-rider
with one plane shock and the same Yift.

Experiments with models of wave-
riders confirmed the existence of the
flow in vieinity of

1) the sharp leading edge, correspon-
ding to the wedge flow with strong shock
in the normal section;
' 2) the line of shocks intersection,

corresponding to the strong shock, reflec-

ted from the wall, in the normal plane,

l, Introduction

Gel, Maikapar and T, Nonweiler have
stressed the expediency of investigation
of flow with attached plane shock waves
nesr three-dimensional bodies,<12) Thig
approach had been extended, and bodies
formed by streamsurfaces of known two-
dimensional and axisymmetrical flows
were investigated.(3?#1546) yith the help
of this streamsurtaces it is possible to
build a broad variety of bodies (fig. 1).

Aerodynamic characterigstics and heat
transfer rates to such bodies can be
predicted simply and accurately and used
for estimation of characteristics of
supersonic and hypersonic vehicles.<7’8)
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FIGURE 1. Bodies with plane and conical
shocks.

The simplest and basic element of flow
with plane shocks about a body is a
corner, the ridge line of which is parel-
lel to the wedge, corresponding to the
designed shocks, Recently there appeared
a number of investigations of the flow
in a corner.

In the present paper the realization
of two exact solutions for corner flow
is proved, and the problem of increase of



lift-to-drag ratio of the wave-rider
supporting two plane shocks in compari-
gon with the wedge or wave-rider suppor-
ting one plane shock (caret wing) with
the same lift is investigated.

2, Realization of the two Exact
Solutions for Flow in a Corner

(1) The flow in a corner with plane shock
is the simplest three-dimensional super-
sonic flow, similar to the flow near the
wedge with an attached shock, This flow
is sufficiently general because it is
reslized for a certain region of Mach
numbers and wedge angles &
ponding to each corner. The mentioned

s corres -

region and flow parasmeters in the corner
depend only on the angle between the
ridge line and the plane of leading edges
é?-cr ( é7 -~ 1s the angle between the
shock and the velocity vector of flow)
and do not depend on the angle between
panels of the corner v . By reduc—ing
it (strength of the shock unchanged)
normal to the leading edge component of
the velocity benind the shock also dimi-
nishes and beginning from certain \4
becomes subsonic. In normal to the lead—
ing edge plane suct flows correspond to
wedge flows with "strong" shocks; their
realization was doubted by some authors
(9,10,11).

Experimental investigations of the
flow in a corner showed that threedimen~
sionality and boundary conditions down=
stream leading edges realize such f£lows.
In fig. 2 pressure coefficient ( é} )
for inner surfaces of three corners with
the same inclination of a ridge line to
leading edges plane is shown. The corners
are designed for a weak plane shock,
corresponding to the wedge cf’=31?5
and M=6, Normal to leading edge component
of the velocity behind the shock is sub-
sonic for corners N 1 and N 2 ( U,;3<0;)
and supersonic for corner N 3 ( U/;z >a,).
Results of measurements 1or different
panels are presented in fig, 2 in diffe-
rent dots, X - the.conical coordinate.
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FIGURE 2. Comparison of measured and
predicted (dotted lines) pres-
sure in the corners (plane
Shock).

In the limits of experimental scatter

( A0=+1° ) the pressure is the same
for all corners and equal to the pressure
on the wedge (dotted line). Pressure
coefficient behind the shock on leading
edge ( X=/0 ) with supersonic normal
component of the velocity ( Uno~>d, )

is also shown in fig. 2 ( é:f de It is
nuch smaller than measured.

Limiting stream lines obtained with
the help of smeared dots method for
design conditions are parallel to the
ridge line.

Corner flow with the plane shock is
sufficiently stable to regime variation
also in the case of the "strong" suock
in normal to leading edge plane, if



geometry is properly chosen. In fig. 3
pressure coefficient for inner panels of
the corner at M=3 and different angles of
attack 1s shown. At regimas when the

shock for the wedge parallel to the ridge
line departs from the leading edge plane
not more than * 1° ( d =3"2 247) the
measured pressure practically coincides
with the pressure on the corresponding
wedge (dotted lines). In the normsl to
leading edge section plane the shock cor-
responding to measured pressure is
"strong".

”
5
g M=§ d’=4z.54
45 " . [ |
¢ 1
[ o)
[ ] 4‘950

e 025
V4 g5 X 10

FIGURE 3. Comparison of measured and
predicted (dotted lines) pres-
sure in the corner (plane
shocks ).

For M=6 "corner flow" with a plane
shock is realized for ¢ =41°. Small
departures from these conditions cause
sharp variations of the flow, If angle of

attack is decreased, there appear in a
corner flow lnner shocks inducting local
separations and expansions (fig. 4).
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FIGURE 4., Pressure in the corner at
off-design conditions.

(2) The second exact solution for the

corner flow corresponds to the vicinity

of the:line of intersection in space of
two oblique plane shocks. The shape of
the reflected shocks and parameters of
the flow behind them can be calculated in
the plane normal to the intersection line,
The problem is reduced to regular refle-
tion of the oblique shock from the wall
and has two solutions., The first solution
realizing in two—-dimensional flow corres-
ponds to the weak reflected shock, the
second corresponds to the "strong" shock
in the above plane. In three-dimensional



flow for certain domain of defining para-
meters both these solutions correspond

to the weak shock for supersonic velocity
behind it.$12) Por Me5 this domain is
shown in fig. 5. '5& and é% are angles
between the incident and the reflected
shocks and plane of symmetry, )/ is

the angle between the velocity vector
ahead the shock and the intersection line
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FIGURE 5, The domain of two solutions
for intersecting in space
plane shocks.,

Pressure behind reflected shocks in the
second solution is considerably higher
(fig. 6).

In two-dimensional flow both soluti-
ons correspond to the same wall, on the
contrary in three~dimensional flow the
flow surfaces are different., If leading
edges are rectilinear and their sweep --
back satisfy the condition:

'y 2
cas,z%ﬁ[f 05(6,+8)) cos (8,~d") / .
/[ cosb) cos(8+4) %]sinb

§+8>75 “

7= 15 the angle of flow deflection in
shocks in calculation plane, than the
second solution is the corner with panels
normal to the reflected shocks.
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FIGIRE 6, Maximum pressure behind four
intersecting shocks.

Predicted pressure on inner panels for
inviscid flow in such a corner (dotted
line, fig. 7) correlates well with measu-
red, though reflected shock induces sepa-
ration ahead of ift.
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FIGURE 7. Comparison of measured and pre-
dicted (dotted line) pressure
in the corner (four intersec-—
ting shocks).



The pressure in the vicinity of the ridge
line of this corner is nearly twice that
on the wedge with the same angle of incli
nation ( d'=26°).

At angles of attack less than the
designea 18°<d < 26° the flow with
four three-dimensional intersecting
shocks is mainteined (fig. 8). At d>26°,
graphs of C(p and patterns of limiting
streamlines show the second inner shock
(fig. 8). Ahead of shocks on corner
panels local separation occurs (dotted
lines of divergence of limiting stresm-
lines, fig. 8), the beginning of which
is the line of convergence (s0lid line).
Flow pattern in fig. 8 is drawn from
limiting streamlines obtained with the
use of smeared dots.
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FIGURE 8. Pressure in the corner at off-
—design conditions.

Pegks of the heat transfer rate in the
vicinity of inner shocks exceed the heat
transfer rate near sharp leading edges
(fig. 9). Heat transfer rate is maximum
on leading edge and varies smoothly if
there is only one shock in the fiow and
no lnner shocks (fig. 9b). Heat transfer
rate was measured with the use of the
thermosensitive paint.
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FIGURE 9, Heat transfer in the corner on
the regime with (a) and with-
out (b§ inner shocks.

3, Lift-to-Drag Ratio of the Bodies
Supporting Two Plane Shocks

Bodies supporting one plane shock
have the same lift-to-drag ratio as the
wedge. As a result of interference a body
supporting two plane shocks intersecting
on the outer edge can have lift-to-drag
ratio higher, than that for the wedge with



the same 1lift coefficient.

Attempts have been made previously
to solve this problem using linear theory
(13). Exact analysis of such flows with
the aid of plane shocks is much simplier
and gives results in general form, The
body considered and shocks in the plane
normal to middle edge are shown in fig,l0
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FIGURE 10. Body with two plane shocks.

Let us name the part of this body -
bounded by panels in the vicinity of sym-
metry plane a "body'" and two lateral
panels of lower surface - wings; in par-

-ticular case wings may be placed in one
plane. Upper surface of the body may be
formed by the undisturbed flow streamsur—
faces or msy creste expansion. Strengtn
of the shocks ( an angle of the equiva-
lent wedge S ) and the angle between
their planes Z&  given, panels of the
body are determined, but leading edges of
the wing can move in the planes of shocks
and angle Y  between the panels of the
body and the wing will vary. Minimum
value of this angle corresponding to de-
signed flow is attained when wing panel

is normal to the shock plane:
oty Vrin W% 6)21 Sin(6-6)

Designed flow is maintained if disturban~
ces from trailing edge do not reach
nearest panel, The boundary of influence
region of the rectilinear trailing edge
intersects the nearest panel on the
straight line and - angles between trail-~
ing edges of the body ( 6 ) and the
wing ( 6V/ ) and the line of their inter-
section must satisfy unequalities symmet-
rical to & and 5/ .

oly 0 =cosVelyo - V[@JE g SinV”
g esVa-fpeyb , (3

or
64761ézabez?dﬁ‘chaﬁ;:§§;erﬁalf
S coasVrgpelyr %)
FCTR, f corV<-tys clyo
028, asv<fpeys,

/3 = is Mach angle in flow behid the
shock.

For a symmetrical wave rider with one
shock

SBeC=0"<T-/3

For the case of the strong shock in a
plane normal to the leading edge of the
wing or the mean edge plane the domain
of the designed flow on the panels is
limited; for the case of the weak shock
it is unlimited.

Lift-to~-drag ratio of the considered
bodies increases with an increase of the
wing panel area related to the body panel
area. Maximum value of lift~to-drag
ratio for bodies with upper surface paral-
lel ‘o undisturbed flow and corresponding
angles of the trailing edges is equal.
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cos\=lg (6-0)elyf3,
Virin « V'E Vien A B 7

cly&= cos (Viniy * A )0ty 8
0ty 6= 05 Vi * A V/a{gﬁ .

Unequality (7) is satisfied if the shock
is strong in the plane normal to winug
leading edge. For a given strength of
the shock maximum velue of lift-to-drag
ratio is obtained when CJI=W,

8- B-~29%8- i
L0 = |/ 285764, A ;’;d’/ s ©

and is equal to

= 2/4_

/%/mtﬁ 2//1# ‘tf 4 zd’/ y &y )

w, |7 (G5-ty16-8) s
and always exceeds lift—toedrag ratio of
wave-rider supporting one shock of the
same strength [%=Aﬁd7. In fig. 11
~the relation of meximum lift-to-~-drag
ratios of bodies supporting two shocks
and one shock is shown as function of
1ift coefficient (=, ( lift is
related to the projection of lower sur-
face on the horizontal plane).

Decreasing strength of the shock

iﬁkﬂ (1%?(;:&211é%¢/t= oo

If skin friction is taken into account,
this limit is finite, Results of compu-
tations for M=6, =10° and laminar
boundary layer are shown in fig. 11.

Minimum value of lift-to-drag ratio
for bodies supporting two plane shocks
is equal to

Bz, (5 fferd

Sor a% < Vtgs-1y98-8) 253,

or

Gz Wo</58)2 1 cosw

for

(12)
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FIGURE 11, Maximum lift-to-drasg ratio
for bodies with two and one
plane shock.

Region of lift-to-drag ratio variation
for bodies considered with varying
trailing edge is shown in fig. 12, Lift-
to-drag ratio for trailing edge disposed
in the plane normal to undisturbed flow
direction is shown in a dolted line:

(5)=Vr(&g) s

In computations base pressure was
assumed equal to the pressure in undi -
sturbed flow, Base drag reduction and
increase of volume can be obtained by
extending afterbody which does not
influence the flow over the wing.
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FIGURE 12. The rang of lift-to-drag
ratio for bodies with two
plane shocis.
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Summary

Examples of supersonic flow in a
corner show that:

(1) On leading edges of bodies in

" three~dimensional flow shocks, correspon-
ding ‘to strong shocks on the wedge in
normal plane, are realized.

(2) Reflected shocks behind two plane
shocks intersecting in space can be
strong when considered in plane normal to
the line of intersection. Pressure behind
these reflected shocks is higher that
that in two-dimensional flow.,

Such flows can be realized if velocity
behind shocks is supersonic. Realization
depends on boundary conditions downstream,

(3) Inner shocks in the corner flow
induce local separations and peaks of
heat transfer rate.

(4) Lift~to-drag ratio of the bodies
supporting two plane shocks intersecting
on the outer edge can be higher that
that of the wave-riders of the same lift
supporting one plane shock.
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