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A NUMERICAL METHOD FOR TRANSONIC FLOW FIELDS

S.B., Berndt
Royal Institute of Technology
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Abstract

An iterative method based on the slender-
bedy approximation is applied to the problem of
axisymmetric sonic flow. An essential feature is
the splitting of the differential equation for
the perturbation velocity potential, in regions
of subsonic flow, into two coupled parabolic
equations which can be integrated stably in al-
ternating radial directions, An outer boundary
condition is provided by the asymptotic far-
field representation introduced by Guderley and
Yoshihara many years ago. - The computations in-
clude a number of cases for which experimental
data are available., Comparisons with approximate
results obtained by other methods are also in-
cluded, The agreement with experiments is found
to be excellent.

1, The Problem

#e shall be concerned with the inviscid
flow around bodies flying at near sonic speed,
in that Mach number range around M, = 1 where al-
most all aircraft are slender from an aerodyna-
‘mic point of view, It iz well known that in or-
der to establish a systematic small-perturbation
theory in terms of the thickness ratio T of such
bodies it is highly efficient to use the method
of matched asymptotic expansions, Thus, follow-
ing the body surface inwards when T —=0, there
arises in this inner limit the slender-body
approximation, requiring the computation of a
series of two-dimensional harmonic functions in
planes perpendicular to the free stream. This is
not a difficult task, except for an unknown
function of the streamwise coordinate x which
can only be determined by matching to an outer
approximation. On the other hand, moving out-
wards (at constant x) in inverse proportion to
T, there arises in that outer limit the classi-
cal nonlinear transonic differential equation.
It turns out that the matching condition to the
inner solution at the body (receding into a seg-~
ment of the x-axis) contains only the cross-
sectional area distribution of the body, in con-~
sequence of which the ounter approximation, re-
quired for completing the slender-body solution,
becomes axisymmetric and immediately leads to
the transonic equivalence principle as well as
the area rule, This is why it is of crucial im-
portance to aeronautical applications of transo-
nic flow theory around li,= 1 to be able to
solve the axisymmetric problem.
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We shall be considering this problem in a
normalized form. Let the cross-sectional area
distribution of a body under consideration be gi-
ven by the twice continuously differentiable
function 5(x), with the origin of x located at
the foremost section (behind the leading tip)
where S" = O, Taking 5(0)/5°(0) as the unit of
length and the free stream velocity as the unit
of velocity, and writing the velocity potential
in the form x +T%), where? = §-(0)/v 2ns{0), we
obtain for the normalized (outer) perturbation
potential P(x,n ; k) the following problem:
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Here

8(x) = 5(x)/5(0), (2)
and

k= O -0 /[ug T ()], (3)

while n , the outer coordinate replacing the ra-
dial distance r from the x-axis, is defined by

1= VY” M T, (4)

eing e spec ic ea ratlio o e ul 1
being th ific heat ratio of the fluid (if
a perfect gas). This normalization implies that

(5)

The parameter k cannot be suppressed by
further normalization; it is an essential para-
meter of the problem, Large negative values cor-
respond to purely subsonic flow and large posi-
tive values to purely supersonic flow, We cannot,
nevertheless, define a transonic range in terms
of fixed values of k, owing to the singular na-
ture of: it will always be possible to find ar-
bitrarily large negative or positive values of ¢
for any value of k by going close enough to the
x-axis, The shape of the body therefore is essen-
tial in determining how much cf transonic flow
there is outside the body. This is of no conse-
quence here, however, since we shall be concerned
with cases of k approaching zero {"sonic flow"),
in which the flow is of a transonic nature out
to large distanoe from the body.

s(0) = 8’(0) = 1, s"(0) = 0,

One of us recently presented a surveycﬂ of



this problem of axisymmetric sonic tlow around a
slender body and of the methods available for
solving it, so it is not deemed necessary to do
so here, Rather, we shall gc directly to our
main task of investigating a specific numerical
method proposed in that survey, a method based
on the slender-body approximation and aimed at
providing accurate test solutions to be used
when developing simpler methods of approximation,

2,The Approach

The key importance of the slender-body
approximation in the rresent context derives
from the fact that this approximation is obtained
not only in the inmer 1limit but in all interme-
diate limits (where, in addition, it is axisym-
metric): not until the outer limit does the ron-
linear transonic term appear in the limiting
differential equation., This suggests, of course,
that there is a neighbourhood of the x~axis
where @ has the form @= s’(x)lnm+g(x;k), and
that this region may extend to a considerable
distance, Indeed, analysis of available evidence
shows (1) that even as far out as 1 =1 the slender-
body approximation is not unreasonable (ex~
cept for sections where s(x) is not smooth
enough, e,g, at the tip of the body, where s"
usually has a jump discontinuity).

The first step of the present method of
computation therefore is to substitute for ¢ two
functions, F (x,n;k) and G (x,n;k), generalizing
the n -~independent functions s” and g of the
slender-body approximation, This is achieved by
writing, for Q<1,

qucg\, Gz?—r[?\lnrt, (6)

which implies that @= F Inq+ G. Prom (1), then,
follow a system of equations for F and G:

FrL=rLln/l(k+1nILFx +G, ) (B, +Gyy /1an) ,

Gq= 'llnﬂ(k+lnq_FK +Gx)(Gxx+1nq_FXX)' 1)

n=0:F= s’(x),
= 1t G =¢(x,13k) = o[F(x,15%)] ,

where G [F] denotes the functional relationship
between G and F (i.e. ¢ and¢)) atn = 1 as deter-
mined by the solution ¢ for \1>1. For concise-~
ness, the formulae are not given for the some-
what more general decomposionx?=F 1nOL/%q)+G,q<q,
although this was in fact used in somé of the ”
computations,

It is in line with our surmise of small F
and G to adopt the crude approximation of consi-
dering the two differential equations of (7) as
parabolic equations for F and G respedtively, to
be integrated with respect tonk. The different
signs of tke tio equations, however, give them
different directions of stable integration, so
they cannot be integrated together but rather in

alternating directions by iteration, keeping G
fixed when integrating F, and vice versa. It is
encouraging, then, to note that the apparent
coupling between the equations is strong only in
regions where the boundary conditions, rather
than the differential equations,tend to deter-
rmine the relationship between F and G. Further-
more, it is the elliptic case (P, <0) in which
the stable directions, outwards for F, inwards
for G, are such as to render the boundary condi-
tions into initial conditions., In the hyperpolic
case (q§;>0) they would become end conditions,
and the scheme would not work; but there we can
solve for(P directly by the method of characte-
rigtics.

Apart from obvious objections to this some-
what naive approach to a pumerical method, there
are a number of practical difficulties to over-
come, such as obtaining the functional G[']l, lo-
cating the sonic line {§,=0) and fitting in
shock waves. In this paper only the simplest
case will be considered, namely k = O,

2. The Method for Sonic Flow

The sonic case is simple because there is a
limiting characteristic extending to infinity, in
front of which there are no shock waves, and
because we can obtain G{ ] from the ssymptotic far-
field representation introduced by Guderley and
Yoshihara(2:3) , The situation may be assumed to
be as depicted in Fig. 1, The sonic line
(¢, = 0) starts at the origin (where s" = oyt
and extends to infinity, crossing the linen= 1
at C; the limiting characteristic, located
farther downstream, starts at the point E on the
axis and extends to infinity, crossingn= 1 at D
(neither curve is known in advance, of course) .
The region downstream of the limiting characte-
ristic is not involved in the problem, The
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Fig. 1. Regions of integration in the case
of sonic flow (k = 0).

+ It is one of the important consequences of the
presumed validity of the slender-body approxima-
tion at the axis that lines of constant @, e.g.
the sonic line, ¢, = -k, can reaoch the axis onl

where s" = O (hence our choice of origin for x).



relevant part of the hyperbolic region is loca-
ted between the limiting characteristic and the
sonic line, while the problem for ¢ is elliptic
everywhere upstream of the sonic line., The re-
gion for alternating integration (¢ 1) is ta-
ken to be bounded on the upstream side by a line
AB located sufficiently far upstream of the tip
of the body (at x=x,;, < ~1) for F to be practi-
cally zero at B. It then makes sense to assume
the functional GL] to be defined approximately
over the line segment BD,

The asymptotic far-field representationaﬂh
conveniently called the Guderley expansion, may
be written

2300 172+ 2, o5 7Tl

A =
3=C (x-x,) L
k =VY24n(n+1) + 1 -2n +1

It consists of a basic solution (the term con-
taining f), which is an exact solution of the
transonic differential equation (1) (for k=0),
and of a sum of terms obtained by linear pertur-
bation analysis of the basic solution; f and f,
are well-determined functions of ) , here norma-
lized to place the sonic line of f at 5 = 1, The
basic solution is singular at the point x = x,
on the axis; its "strength®” 1is determined by the
parameter C, Approximate values, C = .79 and
Xo=— .43 in the present normalization, were ob-
tained in Ref, 1, However, these parameters,
like the ocoefficients &, , depend upon the shape
of the body and must be determined as part of
the solution., The implied validity of the Guder-
ley expansion as far in as n = 1, suggested by
the analysis in Ref, 1, should also be verified
by the computions., For further details the
reader is referred to the survey in Ref., 1 as
well as to Ref. 4, one of several which in
recent years have presented analytic expressions
for the functions f and f,.

(8)

Now the method of soclution can be described
by the following prescriptions:

C) Obtain, by educated guessing, approxima~
tions for the parameters of the Guderley expan-~
sion (with a small number of terms), the starting
point E of the limiting characteristic, the
location of the sonic line for q41, and the
function G in the region ABCO,

C) Compute by the method of characteristics
the solution in the hyperbolic region (0oECD)
starting with the initial condition forqqh(uF
at the axis and keeping the assumed sonic line
fixed,

Integrate the parabolic equation for F in
the elliptic region (ABCO) with G as assumed,
starting with the initial values at the axis, ob-
taining a boundary condition on AB from the Gu-
derley expansion and a boundary condition on_ the
assumed sonic line (O0C) from the result of (2).

@ By (@and we have obtained values
for qﬂé:?) on BD: use these for determining C,

x, and a suitable number of coefficients of an
improved Guderley expansion, and obtain there-
from values for Q(:Gf on BD (thus constructing

GLD.
Integrate the differential equation
-F
ax*
- L. (9)
NN

to obtain a new

sonic line x= x"(n).T Proceed inwards, starting
at the new locat;ln C on BD obtained in (@), and
using values for F, and ¢, obtained in ®B.

Integrate the parabolic equation for G in
the elliptic region with F as obtained in (:),
starting with initial values on BC obtained in
@ , obtaining a boundary condition on BA from
the improved Guderley expansion and a boundary
condition to the left, on the new sonic line,
from A

Return to (2) and proceed, using newly
obtained values in place of those guessed in ().

Repeat this until the sonic line, as

well as F on BD and G on AO, reach stationary
values with acceptable precision (or it becomes
obvious that the procedure does not converge at
all, or not fast enough to be useful).

It ought to be mentioned here that the
authors received decisive encouragement to go
ahead with this scheme from studying the expe-
riences gained by Yoshihara many years ago
in treating numerically the case of a cone-
cylinder body.

4, The Numerical Analysis

The following description of the numerical
analysis is rather brief and sketchy. Usually,
the simplest procedure likely to succeed was
chosen for any particular task, and if it did
work no attempt was made to improve it. A de-
tailed description of the computer program and
its performance was therefore not attempted at
this stage.

The flow chart of Fig. 2 names the main
procedures of the program - written in ALGOL
60 - and shows how they interact to execute
steps (@) to as outlined above. & great
mmber of special procedures are not shown, such
as those evaluating the different fields derived
from the Guderley expansion, or those evaluating
geometrical data for the body specified in the
input., The body contours admitted by the program
are those generalized parabolas (degree = n) con-
sidered in Ref 7; they include practically all
bodies of revolution for which experimental data
are available.
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Fig., 2, Plow chart of AILGOL oomputer
program,

In the procedure STEP the basic lattice is
laid ont for the numerical integrations in the
elliptic region. Here, as well as in the rest of
the program, lnn rather than n is used as the
basic radial coordinate, The lattice is a rec-~
tangular one with constant step size foxr both
Inn and %, The relationship between the two step
sizes is selected by the procedure according to
a crude stability criterion based on the stabi-
lity theory for linear parabolic eguations., The
first row of lattice points, at lnrl, is put
rather close to the axis, typically at f, = 0,02,
so that the boundary condition F = s7(x) can be
applied there,

The procedure STARTVAL provides the lattice
points with starting values as prescribed in (),
using simple slender-body approximations in com=
bination with a Guderley expansion specified in
the input,

The program section performing (:) is en-
tered by BEGCHAR , It computes the characteris-
tics C;Hy, leading from the level 7, down to the
leveln,, and starting data along it (see Pig. 3).
This is done by assum%ng the slender-body
approximation = s’(x).,

PP %

Having established this starting charac-~
teristic and the values of @, and qglalong it,

lnm

Cs,
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Fig. 3. Characteristics procedures
BEGCHAR and CHARO,

0

the computation proceeds by the characteristics
procedure CHARO, which takes us to the next

level of 1 at the sonic line. The procedure

makes a three~term series expansion with respect
to 4{?’3 (a variable naturally suggested by

the characteristics equations) in the neighbour-
hood of the sonic line, and uses this for tracing
the characteristic §S,;C, leading to the assumed
sonic point C, (at n=1,), and for computing the
values of T ,Fy and ¢,at C,. It thereafter
covers the region H,C,C,H, (or” the part of it
located upstream of the limiting characteristic;
gsee Fig., 1) to provide data on the characteris-
tic C,H, as a preparation for going tc the next
N.~level, This is repeated until A = 1 is reached,
¥inally, the characteristics solution required in



CDH is provided by CHAROCO, It takes boundary
values for @, on CD (see Fig. 1) from the Guder-
ley expansion and ends up by delivering values
for Qqaon Cch,

Next, the parabolic equation for F is in-
tegrated by the procedure FINT, using the values
obtained from CHAEO as a boundary condition for
P on the sonic line. FINT is a straightforward
three~point centered difference scheme which can
ve used for either explicit or implicit integra-
tion; it contains no special provision for hand-
ling the singularity at the tip of the body.

The values for F provided by FINT and
CHAROCO on BD are fed into the procedure ALPFA,
which performs a least squares fitting of the Gu-
derley expansion, thus obtaining new values for
Cy, X, and a specified number of coefficients x,.
As an auxiliary condition is employed the Te-

quirement that the conservation equation
A

K¥ X
j{aﬁ(x,1)dx =1 +J/f dx ,

o . 5
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(10)

easily obtained from (1) and (5), shall be satis-
fied when the first integral is evaluated by the
Guderley expansion and the second by the sonic
line data obtained in . This serves to give
some weight to the values of F upstream of B

on n=1,

The recomputation of the sonic line is per-
formed by SOL. It integrates (9) by a simple
predictor-corrector method, approximating F x by
a linear variation with respect ton in the
neighbourhood of the o0ld sonic line (Fx is nega-
tive and approaches zero a short distances up-
stream of the sonic line), while for the longi-
tudinal acceleration,q&l. is taken the value ob-
tained in CHARO on the downstream side of the
old sonic line.,

Finally, the integration for G prescribed
in is performed by GINT, This procedure is es-
sentially identical to FINT, the main difference
being that the boundary condition at the sonic
line prescribes G, (= - Fx-lnq) rather than G,

This completes the computation program, If
the solution needs improving a new round starts
at BEGCHAR as prescribed by (7), while otherwise
the result is printed out in a form determined
by TRYCK, It may include, among other things,
the values of ¢ and the pressure coefficient
Cy at points along the contour of a specified
body of revolution and along predetermined lines
n =constant, as well as data along the sonic
line and the limiting characteristiec,

The consistency and precision of the
program as described has been tested, in part
and in toto, on two different computers, the
SAAB D22 and the IBH 360/75., The crucial part
of the program, the iterative alternating direc-
tion integration in the elliptic region, was
found (with a fixed sonic line) to be stable and

to converge rapidly towards a staticnary solu-
tion, The sonic¢ line, on the other hand, does
not seem to be quite as welldetermined, most
likely due to the influence of truncation errors
in satisfying the condition of continuous 9
across the sonic line, However, the effect on
the pressure distribution at the body seems to
be entirely negligible within the precision
aimed at in the present preliminary computations,
namely one step better precision than that of
available experimental data. ‘Simple precision’,
as available in the two computers, was found to
be amply adequate, throughout,

Based on these tests the following choice
was made for the parameters of the program:

STEP: Ax = 0,2, n, =0,02;

BEGCHAR: 0, = 0,001
FINT and GINT: explicite integration
ALFA: n £ 5

Exit Condition: change of |GX(O,1)J from
preceeding step < .01.

In most cases this setup led to four iterations
and a computer time (CPU) of 6 minutes; the core
memory space required was 250K (on the IBK Ewhﬂ.

The tests leave little doubt that a more
efficient program will permit considerable sa-
ving of computer time and memory space with
the same or improved precision,

5. Results

The fact that the output from our computa-
tional scheme seems to converge rapidly towards
a welldetermined end result does not, of course,
guarantee that the result is close to a solution
of the original problem (if such a solution does
indeed exist). Rather, in view of the nonlinear
character of the problem and the complexity of
the method, there would seem to be a considerable
risk of arriving at a spurious result. Since
there is no exact solution available for compa-
rison, the only way to find out seems to be to
compare with experimental results., But that
might not be a bad way: if the method passes
such a test we may, in fact, contend that we
have proved not only the numerical method bdut
also the original perturbation analysis.

The experimental results available at

K, = 1 are mainly for bodies of revolution at
zero incidence, Our computation of the outer so-
lution @ should be immediately applicable to
such bodies since it happens to contain the in-
ner solution (as far as the differential equa-
tion and the boundary condition are concerned) .
It is only in computing the state of the gas in



the neighbourhood of the body that additional
terms appear, namely terms proportional to the
square of the crossflow velocity. For example,
the following formula is valid for the pressure
coefficient,

o]

(r,=body radius at x=0), while similar additions
must made when locating the soniec line and the
characteristics at the body (see e.g. Ref. 1).

(11)

¢, =

laterial for comparison was selected from
the experimental data of McDevitt and Taylor“fv.
These are the most complete ones available (they
cover, in fact, much of the data available from
other sources, e.g. Ref, 8). The bodies tested,
having different location & of the maximum
thickness, are described in Table 1. As men-
tioned earlier, n is the degree of the genera-
lized parabola defining the body contour, For
the precise definition of ¥ and f ("fineness
ratio"oc 1/T) the reader is referred to Ref., 7.

TABLE 1. Geometrica} data of bodies of revolutiam

/3
i n £ T Xiip S"(xtiﬁl s (0)
0.3 6,03 12 0,271 -1,42 1.75 -0,61
0.4 3.39 12 0,184 -1,44 1,60 -0,67
10 0,163
0.5 2 12 0.136} -1.46 1,50 -0.75
14 0.117
0.6 3,39 12 0,104 -1,61 0,90 -1,18
0.7 6.03 12 0,086 -1,75 0,69 -1,93

However, there is strong indication(m) that
the data for the three last bodies are conside-
rably influenced by wall interference. That
leaves essentially the three first bodies for an
accurate comparison. But those are so similar in
shape that it would not seem worth while to con~
sider all of them. Therefore,only the first and
third bodies were selected.

In fact, it was thought sufficient to
restrict the presentation here to the third body,
leaving the first one for the oral presentation,
This is done in Fig, 4, which shows the pressure
distribution on the forward part of the body and
along the lines n = 0,175 and 0.351. The agree-
ment at the body surface is rather good. Away
from there deviations are seen: primarily, the
influence of the body does not propagate as
strongly upstream in the experiments as in the
computations. This effect might well be due to
the presence of the slotted walls of the wind
tunnel, but wether this is the true explanation

+ The variation of ¥ is not significant, of
course: the data are known to bhe consistent with
the transonie similarity rule 5
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Fig. 5. Computed pressure distribution on
parabolic-arc body (n=2) of fine-
ness ratio £ = 10, and along lines
n= 0,175 and 0.351 (experimental
points from Ref. 6).

or the computations are inaccurate, cannot be
decided at this stage. 3

A comparison with results obtained by other
methods of computation could be interesting. All
such methods seem to derive from the so~called
parabolic method of Oswatitsch and Keune V! the
most accurate of them being the local-lineariza-
tion method of Spreiter and Alksne ¢ This
method is known to give results which agree
very well with experiments, so for the bodies
selected above the results are bound agree with
those of the present method as well. The situa-
tion might be different for the last two bodies
of Table 1, however, since no accurate experi-
mental data are available for those. Results
from the local-linearization method are available



for the last body”@they are compared with re-
sults from the present method in Fig, 6, There
is seen to be a small systematic deviation. What
it means cannot be ascertained at this stage.
The answer might be obtained from improving the
accuracy of the present method, or from making
an assessment of the wall interference so that
experimental data may be called in again.
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Fig 6., Computed pressure distributions on
body of fineness ratio f = 12
having maximum thickness at ¥ = 0,3.

6. Conclusions

The results obtained so far are rather en-
couraging and seem to indicate that the method
developed will make possible accurate computa-
tion of axisymmetric flows at M= 1 with a
reasonable computimg effort, What remains to be
done is essentially to revise the computer
program for higher efficiency, and to calibrate
its precision and performance in terms of program
parameters.

There is an obvious need for extending the
method so as to be able to treat the effect of
wind tunnel walls, Another useful development
to attempt would be to find methods for descri-
bing the far field accurately at ¥, % 1, as
would be needed for extending the method to sub-
sonic and supersonic transonic flows, More gene-
rally, the success of the method of alternating
direction integration indicates that it might be
a useful tool even outside the transonic small-
perturbation theory.
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