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Abstract

A brief survey is given of methods for calcu-
lation of plane transonic flow around airfoils.
Two hodograph based methods for shock-free flows
and two physical space methods for flow with shock
waves are discussed. The last method which is a
relaxation procedure for equations of mixed type
is discussed in more detail. Comparison of the
results of the different methods for shock-free
cases is made. Some calculations are also pre-
gented for flows with shock waves.

1. Introduction

There has been a recent revival of interest in
transonic flow calculations for various reasons.
Engineers feel that efficient transonic design of
high subsonic speed aircraft can be achieved
with the resulting improvement in performance,
Upon further investigation it may turn out that air-
craft which operate very close to sonic may have
some advantages. Also, current aircraft turbines
typically operate with at least part of the blade in
the transonic region. Last, but not least, is the
availability of large scale computing facilities
which enable a different approach to these prob-
lems to be taken, in comparison to that of twenty
years ago.

In this paper which we will review briefly four
different methods which have been developed re-
cently for calculation of steady, plane, transonic
flow aboutairfoils. All these methods have in
common the feature that the essential results
could not have been achieved without the practical
possibility of high speed calculations. Further-
more, each method represents a basically differ-
ent mathematical approach to the problem. The
comparison of these different methods will enable
us to see how they complement one another and
which will serve best for particular future develop-
ments. All of the methods discussed here aim at
an exact solution of a flow problem, although one
method is applied to the simplified transonic

equations. Other approaches, such as integral
methods which are based on approximations dif-
ficult to assess, are not considered here.

Two of the methods are based on the hodo-
graph representation of the flow problem; one
uses the classical method of superposition of ele-
mentary solutions, the other, essentially compu-
tational, uses a method of complex characteris-
tics. The two methods discussed next rely on
direct finite difference calculations of the equa-
tions of motion in physical coordinates; one ap-
proaches the steady flow as a limit of unsteady
flow (t =) computations proceeding as t increases,
the second uses a method which is essentially re-
laxation, adapted to a mixed flow (elliptic-
hyperbolic). Thus, in the nature of the methods
at their present stage the first two methods find
the airfoil shapes which produce shock-free flow;
shock waves can not be handled. The second two
methods on the other hand calculate the flow about
given profiles and one of the main points of these
methods is the possibility of including shock
waves.

The problem of plane inviscid flow past a pro-
file is a logical starting point for the development
of these computational methods. The essential
difficulty of transonic flow is contained in this
problem and even the results for this restricted
class of problems has some engineering interest.
This is true even though there is no transonic
analogue to lifting line theory. Further develop-
ments can proceed in various ways. The hodo-
graph methods can be extended to generate wider
classes of shock-free shapes. The direct methods
can be extended to account for viscous boundary
layers and eventually to three-dimensional flows.

In the next four sections of the paper each of
these methods will be described briefly and re-
sults of calculations based on each method will be
presented and compared when possible with the
results of the other methods and experiment.
Finally, some remarks will be made comparing
the methods and suggesting future developments.

2. Hodograph — Direct Method
1
The method developed by Nieuwland( ) and
applied by the other Dutch workers (see also the
paper by Boerstoel in this meeting) is based es-
sentially on Lighthill's earlier work.




Analytic solutions are obtained for the hodo-
graph equation {perfect inviscid gas) for the stream
function ¢(r, 6)
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The particular solutions dzy('r) of product form
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operator is constructed which maps a given in-
compressible flow into the space of the product
solutions. The flow may have circulation but the
calculations are simpler in the nonlifting case.
Taking advantage of the linearity further particu-
lar solutions of (2. 1) are added to produce desired
detailed changes in the airfoil shape. However,
the airfoil of course can not be prescribed in
advance and comes out in the calculation; varia-
tions in shape and Mach number are obtained by
varying the parameters. From the point of view
of obtaining practical results the outstanding dif-
ficulty in this method is computational. The high
order hypergeometric functions ¥, are tricky to
calculate, especially in the supersonic region and
further slowly convergent infinite series of these
functions must be calculated. Even with a modern
computer (Telefunken TR4) summability methods
(Wynn's e-algorithm) must be used to accelerate
convergence so that sufficient accuracy can be ob~
tained. 18 hours was required to compute a table
of x//n up ton=100 (0< <. 32) and about 15 min-
utes to calculate an airfoil defined by coordinates
and two derivatives at 40 boundary points.

are hypergeometric functions. An

In this work of Nieuwland many difficulties
have been overcome. A systematic set of results
is reported in Ref. 2. In this survey systematic
variations of parameters produced systematic
variation of pressure distributions, many of which
contain substantial supersonic zones with smooth
transonic flow. See for example Figs. 1,2, 3.

The extreme sensitivity of the flow to the details of
the shape is evident in these calculations. The ex-
istence of smooth flow depends on a delicate bal-
ance of successive reflections of Mach waves from
the body and sonic line. The free stream Mach
number can not be increased too far or the smooth
flow breaks down; the limit line which is inside

the body for smooth flow penetrates the surface
and causes infinite acceleration.

3. Hodograph — Method of Complex
Characteristics

Essentially the same problem as studied by
Nieuwland is taken up by Korn(3) and the same
type of results, smooth flow past a family of

airfoils is achieved. The method is based on
some earlier work of P. Garabedian in which all
the variables are complexified. :

The system of equations to be solved is
basically
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where (u, v) = velocity components
(x,y) = physical space coordinate

(&, n) = characteristic coordinate

uv t ¢u2+ 2- 2
At = v -¢

e c=local sound speed
c -u

(Later a more convenient choice of characteris-
tic parameters to replace (£, n) is made. ) The
characteristics are of course complex in the sub-
sonic region and all the variables are considered
complex. The characteristics are two-
dimensional surfaces in a four-dimensional space.
[The method is again based on the incompressible
flow past an ellipse which fixes the topology of

the hodograph singularity corresponding to the
free-stream.]| The corrections to the basic singu-
lar solutions are found by solving a characteristic
initial value problem in the complex space. A
version of Massau's method with complex arith-
metic is used. The solution can be continued
around the complex sonic line into the supersonic
region.

A typical calculation in the subsonic region
uses 200 grid points on each characteristic and
takes about 20 sec. on the CDC 6600 machine
(about 40000 sixty bit words of central memory
are needed). Near the sonic line the solution is
accurate to four digits. To compute the whole
supersonic zone a typical initial grid uses 400
points on each characteristic and takes nearly two
minutes for four place accuracy. The complete
salution is found and plotted in six minutes.

The shape of the airfoil depends on the initial
conditions chosen and the location of the initial
characteristics. In these calculations the initial
condition is taken as the (complex) Riemann func-
tion plus log terms which give singularities in-
side the nose and tail. There are seven param-
eters including M and E, the eccentricity of the
corresponding ellipse. Figs. 4,5 show some
typical results, with the Mach lines drawn to
scale.



4. Numerical Method: Marching Forward in Time

A numerical procedure for obtaining the
steady transonic flow past a given profile with a
shock wave, if necessary, has been carried out
by Magnus and Yoshihara. (Convair, San Diego).

The unsteady equations of continuity and mo~
mentum in conservation form are "solved"
numerically.
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The pressure is eliminated by assuming isentropic
flow, a good approximation since transonic shock
waves are weak, and a hyperbolic system in

(u, v, p) is obtained. Initially and at infinity, the

" flow is taken as uniform, the airfoil surface is
solidified® at t=0 and the resulting flow computed
as it tends toward a steady state.

The system (4-1) is replaced by a finite dif-
ference system in the main on a rectangular net
(Ax, Ay, At). A modification of the explicit Lax-
Wendroff second-order accurate scheme is used.
The truncation error of this scheme contributes
both dispersion and damping. Near the boundary
a special mesh and a special procedure is used.
The conditions near infinity are handled by map-
ping the exterior of a circle in the (x,y) space in-
to the interior of a circle in a transformed space.
Extra fine meshes are introduced when rapid
gradients are expected. The size of the time step
is chosen as a suitable fraction of the allowable

-value as determined by a local linearized stability
analysis.

From previous experience in computing one-
dimensional unsteady shock waves it is to be ex-
pected that shock waves should appear in these
calculationa as rapid transition zones spread over
several mesh points centered around the correct
location.

Two samples of calculations are presented.
Fig. 6 shows one of Nieuwland's shock free pro-
files compared with experiment. The numerical
results did not achieve the full suction peak (due
to rapid acceleration on the profile) and conse-
quently reflected waves arose downstream.
Another example is the flow over an NASA 64A-
410 profile at 42 angle of attack (Fig. 7) and a
comparison with wind tunnel experiments. (Fig. 8)
shows the corresponding Mach number profiles.

In these calculations there were approximately
3700 mesh points, 53 points on the upper side of
the airfoil. About 530 time steps were required to

»x
the Kutta condition is also imposed at a sharp
trainling edge.

attain a reasonably steady result. The total com-
puter time is approximately 2. 2 hours on the CDC
6400 machine. The large amount of time required
can be attributed to the large number of lattice
points required to resolve the flow in the nose
region adequately and to the very crude initial
conditions.

5. Direct Calculation — Relaxation Method

A relaxation method of calculating the mixed
subsonic-supersonic steady flow field of an air-
foil has been developed by Murman (Boeing Co.)
and Cole. () This method also has the possibility
of incorporating shock waves.

This method differs from those described

previously in that the approximate transonic poten-
tial equation for ¢(x,¥ ) is "solved"”

_atl 2 = -

(k- T2 62) 42020 (5-1)
P

The exact potential is @

Plx,y) = Wx+ 62/3¢(x,?; K)t...} (5-2)

where U = free stream speed

(x,y) = dimensionless coordinates (airfoil
chord equal one length unit.)
6 = airfoil thickness ratio;
~ _ . . _ 1/3
y = transonic coordinate = § y

K = transonic similarity parameter

1-M2
= (a version of K which is best
2]
M_é 3 according to our calcular

tions)

The Equation (5-1)is of mixed type, hyper-

bolic for local supersonic flow ¢x> —7+1 and
- - K
i <
elliptic for local subsonic flow ¢y - Itcan

be shown (Ref. 5) that the correct shock-jump
conditions are included in the conservation form

- (5-1)

The boundary value problem is illustrated in
Fig. 9 for the case of a symmetric nonlifting
flow. The condition at infinity is replaced by the
first term of the far field solution. In the numer-
ical work the finite difference calculations are
carried out to that distance from the airfoil where
the errors in neglecting the higher terms of the
far field are of the same order as other errors.
It can be shown by studying the integral



equations obtained from (5-1) and the boundary
conditions that
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The doublet strength consists of the usual term
proportional to the airfoil volume and a nonlinear
contribution, unknown in advance. In the numeri-
cal procedure ) has to be claculated as one of the
unknowns in the problem. The result (5-3) is
valid even if shock waves are present in the field.

The usual relaxation procedure fails when a
local supersonic zone appears. The key to adapt-
ing a relaxation procedure to mixed flow is to use
a local difference system which depends on the
type of the equation, and has the correct domain of
dependence. The following procedure is used: at
each mesh point the velocity is computed and
tested to determine if the flow is supersonic or
subsonic. The appropriate implicit hyperbolic or
elliptic difference scheme is then selected for that
point. The implicit hyperbolic scheme has the
advantage of being unconditionally stable with re-
spect to mesh size and of fitting naturally into a
line relaxation algorithm,

In the numerical procedure a mesh (i, j) is
set-up in the finite part of the plane and values of
"¢ are solved for along a vertical (x=const.) line.
Each vertical line is successively relaxed pro-
ceeding in the + x (time-like) direction. The
"latest' values of ¢ are used as they become
available. After about 10 sweeps through the field
the value of the doublet strength 20 is recalcu-
lated — it did not change rapidly. The sonic line
and shock wave evolve naturally in the course of
the iteration.

The following difference formulas have been
used
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(Ay)
Sometimes a second~order accurate hyperbolic
scheme was also used. The airfoil boundary con-
dition was treated by using a mesh cell adjacent
to the boundary. The test formula at each point
which seemed to work best was:
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A subcritical (subsonic) solution was first
computed, by ordinary relaxation and then solu-
tions for decreasing K were computed in suces~
sion, The initial guess for ¢..(K) was obtained
from final values for a larger*{or smaller) K.
Convergence was established by computing
answers at several K with initial guesses from
above and below.

For the results reported here there are 74
mesh points along the x-axis (40 equally spaced
along the airfoil) and 41 along the y-axis. The
mesh was unequally spaced in the y-direction and
in the x-direction ahead of and behind the airfoil.
A typical calculation took about 400 iterations
with a corresponding computing time of about 30
min. on an IBM 360/44. The same computation
would be faster by more than an order of magni-
tude on a CDC 6600.

Some of the results achieved are shown for
circular arc airfoils in Figs. 10, 11
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(Spreiter's similarity parameter). Fig. 12. For
a Nieuwland airfoil symmetric fore and aft we
have Fig. 13, 14 which show both on and off de-
sign calculations. A comparison with Korn's
calculations is given in Figs. 15, 16, again for
both on and off-design conditions. The good
agreement for the design condition and the occur-
rence of shocks in the off-design condition is
easily seen,

6. Remarks

I think that the previous sections have amply
demonstrated the possibility of various methods
for the calculation of transonic flow.

The good agreement between both hodograph
methods and the finite difference calculation
serves as 4 corroboration of both methods and



enables the shock-free solutions to be extended by
transonic similarity.

For future work the hodograph methods should
be extended to obtain more general classes of
shapes — finite difference calculations can also be
done in the hodograph.

The unsteady procedures can be made much
more efficient. Also an artificial time can be
used so that a parabolic system is integrated in-
stead of a hyperbolic one. This procedure is
closely related to a relaxation procedure. Some
experimentation on the unsteady small-disturbance
equations seems advisable.

" The modified relaxation procedure is suffi~
ciently simple that thought can be given to doing
lifting airfoils, axi-symmetric bodies, and even
three-dimensional flows.

Numerical work for these types of problems
is not cut and dried but by approaching the diffi-
culties in an experimental way much progress can
be made.
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