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REFLECTION OF CURVED SHOCK WAVES IN STEADY SUPERSONIC FLOW

Sannu MBlder*
McG1ill University**
Montreal, Canada

Abstract

Numerical results are presented for regular
and Mach reflection of curved shock waves at a
plane wall. Reflected shock curvature and
streamline pressure gradient behind the reflected
shock are calculated by imposing zero downstream
curvature for the regular reflection, and by
matching streamline pressure gradient and curv-
ature at the slip line for Mach reflection.
Results show many possible combinations of
reflected shock curvature, streamline curvature
and pressure gradient. Theoretical arguments
and experiments are presented to show that trams-
ition from regular to Mach reflection at Mach 2.80
occurs when the Mach stem is normal to the
incident flow.

For the region where neither regular nor
Mach reflection is possible, a new flow structure
is proposed. This structure is compatible with
wave reflections between the back of the shock
and the sonic line, and the inclination of the
sonic line.

I. Introduction

In 1963 Pack (1) wrote a review and critique
of shock reflections, considering both unsteady
and steady shock waves in ideal gases. Since
the writing of this paper Bazhenova et., al, (2)
and Glass (3) have experimentally discovered the
appearance of a second reflected shock in
unsteady Mach interaction, and, on the theoretical
side, Henderson (4,5) has published a systematic
study of multiple shock confluences. Apart from
these two significant developments, the unsolved
problems of shock reflection and interaction are
as described by Pack. The most stubborn problem
of shock reflection was first noted by von Neumann
(6) when he observed that regular and Mach
reflections persisted for Mach number-shock-
strength combinations where neither regular nor
Mach reflection solutions existed. The condition
is observed at low Mach numbers and for shock
angles where the flow behind the incident shock
is just supersonic. The problem has been so well-
preserved that it has been accorded the title
"yon Neumann paradox" (Birkhoff (7)). Notable
attempts at describing the flow in this para-
doxical region are those of Guderley (8) and
Sternberg (9). Guderley proposed a three-shock
intersection with a Prandtl-Meyer wave emanating
from the intersection point; this wave being
interposed between the reflected shock and the
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slip layer. The resulting local patch of super-
sonic flow has become known as the "Guderley patch!
Sternberg suggested that viscosity, in the
immediate neighbourhood of the triple point,
destroys the validity of the Rankine-Hugonio shock
wave relations. The, thus modified, structure of
the shock waves, in this non-Rankine~Hugoniot
region, can have a considerable influence on the
downstream flow. Shindiapin (10) extends the idea
of viscosity and heat conduction, acting at a
triple point, by use of "short wave" equations, to
the calculation of reflected shock angles in the
paradoxical region. It is felt that, although
there may be regions of Mach (and regular) inter-
action where the application of non-Rankine-
Hugoniotrelations becomes a necessity, the possible
solutions, with Rankine-Hugoniot type shocks and
otherwise inviscid and non-conducting flow, have
not yet been fully explored. Part of the dis-
crepancy between theoretical prediction and
experiment seems to have been resolved by Smith's
(11) measurements where he observed that there is
no persistance of regular reflection beyond theor-
etical limits. Nevertheless, even if we consider
this .part of the discrepancy resolved,we still
have to answer the question: what happens in

this paradoxical region?

A question closely related to the above is:
How do curved shocks reflect and interact?
Crocco (12) first considered the flow behind a
single curved shock wave, and pointed to the
existance of a shock angle behind which the flow
could be straight even though the shock was
curved, This angle of the shock wave (which
varies with upstream Mach number for shocks in
uniform flow) has been called the "Crocco point".
Thomas (13) derived an equation relating shock and
streamline curvature for two-dimensional flow, and
provided numerical results for curved shocks in
uniform flow (14). In (15) Thomas provided con-
sistency relations for higher derivatives of shock
and streamline curvature, and used these (16) to
give the first three approximations to the pressure
behind a curved shock on a curved two-dimensional
body. Lin and Rubinov (17) used the equations
of Thomas (13) to show that for an irrotational
upstream flow, a normal shock, at a continuously
curving couvex wall, 1s possible only for Mach
number above a certain critical value. They also
derived a number of interesting relationships for
flow behind a single curved shock attached to a
curved body.

Shock curvature relations and flow variable
gradients behind the shock were derived by
Drebinger (18) for both two-dimensional and axi~
symmetric flow; in both cases under the assumption
of a uniform and irrotational freestream. Flow
variable gradients were derived also by Gerber
and Bartos (19) who then used these to find
directions of constant Mach number and constant
density contours behind two-dimensional and
axisymmetric shock waves.



A homenergic, ideal gas flow with an irro-
tational upstream has been assumed in all of the
above derivations., 1In this paper, equations for
two~dimensional curved shocks will be presented,
which allow for a rotational upstream flow. This
becomes necessary because the equations are
applied to curved reflecting shocks, where the
flow behind the curved incident shock is non-
uniform and rotatiomal.

For regular reflection of curved shocks at
a plane wall we will require the streamline curv-
ature, at the reflection point behind the
reflected shock, to be equal to zero. For Mach
interactions we will adjust the curvatures of
the reflected shock and the Mach stem so that
flow curvatures and pressure gradients are
matched along the slip line. Presentation of
these results is done in their own right as well
as to show that the new flow model for the para-
doxical region merges smoothly with known flow
configurations at the boundaries of the para-
doxical region.

The main purpose of this paper is then to
derive relations for derivatives of flow var-
iables and use these to explain the observed
phenomena of curved intersecting shocks. In
particular we examine the processes of transition
from regular to Mach reflection and from Mach
reflection to a smoothly curving shock wave.

For regular reflection of shocks we consider
the whole range of supersonic freestream Mach
numbers. Discussion on Mach reflection is
limited to Mach 2.80, because a complete set of
triple point solutions was available for this
Mach number, and also because a wind tunnel was
operating at Mach 2,80. Yowever our qualitative
conclusions apply from 2.40 on upwards.
Conclusions regarding the smooth curving shock
again apply to the whole range of supersonic Mach
numbers.

I1I. Theory

In this section we state the basic equations
of steady, adiabatic inviscid flow of a calor-
ically and thermally perfect gas. We assume that
the flow is two-dimensional and that
discontinuities such as shocks and slip layers
are infinitesimally thin.

Equations of Motion in Streamline Coordinates

(s,m)

The equations of mass, momentum and vor-
ticity can be written, (Hayes and Probstein (20))
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In the above, q, &8, S are the absolute velocity,
the flow deflection angle and the entropy,
respectively; & is the vorticity, and the distance
along and normal to the streamlines are measured
by s and n. The flow deflection angle § is
measured positive counter-clockwise from the free-
stream direction.

Another useful form of the continuity
equation 1s

(5

The compatibility relations along the c, and C_

characteristics are

2
dp * ——%ﬂ——— s = 0
-1

(6)

where the directions of the characteristics are
given by

dn

ds

= M2 - 1 N

Since the characteristics make an angle *p with
respect to the streamline, we can write,

I 3 P

3C+ = cosig + Sinusﬁ (8)
3 P 2

5c = coskgs - Sinusg 9)

where C+ and C_ denote distances measured along

the C+ and C_ characteristics and where

sinu = 1/M and cosu = Vﬂz - 1/M. The strength of
the C_ and C+ characteristics can now be defined

as
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where the strengths are positive and negative for
compression and expanslion waves, respectively.

Characteristics Strength Ratio

We define the ratio of strengths of the C+

and C characteristics as
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Strength of C+ characteristic s, 9C_
Xc = Strength of C_ characteristic = E: = 3p
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Using Equation (3) to replace 3p/3n in the
definition for Ac’ glves
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From this we see that XC is real only for sonic

At the supersonic side of
This implies that a sonic

or supersonic flow.
a sonic line A = ~1.
L&

line reflects compressions as expansions and
vice versa; but always with unchanged absolute
strength.

At a plane wall or line of symmetry
36/9s = 0 and kc = +1. For the surface of a free

jet, with constant external pressure, 3p/3s = 0
and AC = -1, For the flow immediately behind a

curved shock it is convenient to consider normal
components of characteristic strengths. The
characteristics strength ratio is then multiplied
by sin(u - 6 + 8)/sin(e + 6§ - 6) and called the
reflection coefficient (Chernyi (21))

sin(p - 8§ + 8) N (14)

A= sin(u + § - 8) "¢

It can be calculated using Equations (14), (22)
and (23). The reflection coefficient can be
either positive or negative. For uniform irro-
tational upstream conditions the value of A behind
a curved shock depends on upstream Mach number

and shock angle only. This variation is shown

in Figure 2. Behind the shock, on the immediate
supersonic side of the sonic line, A is always
negative.

We note here that as a general rule if
there is communication between surfaces by
characteristics which reflect back-~and-forth, then
the reflection coefficients for the surfaces must
have the same sign. In stating this we assume
that there are no discontinuities in the region
bounded by the surfaces.

The above implies that it is possible for
characteristics to reflect between a sonic line
and a constant pressure surface, a sonic line and
the back of a shock (in the immediate vicinity
of the shock), and between a constant pressure
surface and the back side of a shock in the
immediate vicinity of the sonic point.

-3

Orientation of the Sonic Line

For isoenergetic flow the angle between the
streamline and the sonic line can be written,
Hayes and Probstein (20),

PR ]
_ _3¢/3s _ pg 3s
tan o = -yl 36 (15)
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For the case of conditions immediately behind a
two-dimensional shock wave this becomes,

tan3(8, - 6,) [3(y+1)tan?(6,-6,)+5v]
Tt - tan?(e -8 D] [(y+D) tan? (8,6 )+2]

tan w = -

(16)

where the subscript * pertains to values of shock
angle and flow deflection at sonic conditions.

A plot of this, obtained from Gerber and Bartos
(19), %s shown in Figure 1. We note that

w=90" at M_ =1 and 1.691. The latter Mach

number is found from Equation (16) by setting the
first term of the denominator equal to zero,

tan?(6, - 6,) = 1 (17

glving o, -5, = 45° or 135°

* *

90® ANGLE BETWEEN STREAMUINE
AND_SONIC LINE AT SHQCK
WAVE
TWO-DIMENSIONAL FLOW , Y=t-4
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FIGURE 1 - ANGLE BETWEEN SONIC LINE AND
STREAMLINE BEHIND TWO-DIMENSIONAL
SHOCK WAVE

It is interesting to note that at M_ = 1.691 the

streamline and the sonic line are at right angles,
with each making an angle of 45° with the shock
wave. Although, as seen from Equation (17), the
Mach number at which this occurs depends on ¥y,
the relationship between the angles is inde-
pendent of y. At the sonic line the character-
istics are perpendicular to the streamlines,
since the Mach angle at M=1 is 90°. This means
that for a freestream Mach number of 1.691 the
characteristics are parallel to the sonic line
at the shock. Thus, characteristics reflect
between the shock and the sonic line for concave



shocks below M_ =
above M = 1,691,
L=~

1.691 and for convex shocks
In both cases this is per-

mitted by A being negative for both the sonic
line and the shock in the neighbourhood of their
intersection. An implication of this is that it
is possible for a sonic line to emanate from the
rear of a progressively weakening shock wave,
Similarly, for a concave shock, below M= 1.691,

communication between the sonic line and the
shock is possible since both have negative A's .
and the angle between the sonic line and the
shock is such that repeated reflection of
characteristics is possible. The above arguments
will be used later to establish a flow structure
which provides a qualitative explanation of flows
behind smooth concave shocks with continuous
curvature.

Curved Shocks in Non-Uniform Flow

In this section we write the equations for
vorticity, streamline curvature and streamline
pressure gradient behind a two-dimensional curved
shock, which advances into an upstream with
finite vorticity, streamline curvature and
pressure gradient. Thomas (13) first derived
these equations for the simplified case of a uni-
form upstream state (no curvature and pressure
gradient) and a two-dimensional curved shock.

Lin and Rubinov (17) gave the equations for a

two-dimensional shock with upstream flow curv-
ature and pressure gradient but zero vocticity
and Drebinger (18) derived the case for a uni-
form upstream, but axisymmetric flow.

In our case we intend to apply our relations
to a curved reflected shock which lies behind a
curved incident shock wave; so that it becomes
important to account for flow curvature, pressure
gradient and vorticity produced by the incident
shock.

Our discussion and derivations are
restricted to flow with planar symmetry; for
axisymmetric flow the relationships would contain
a term which includes the distance from the axis
of symmetry. The equations relating shock curv-
ature 36/3c and upstream vorticity £; to the

streamline pressure gradient 3p/9s and stream-—
line curvature 36/5s in front of and behind the
shock are derived in the Appendix:
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In these equations the coefficients are independ-
ent of the derivatives and are functions of only
the freestream Mach number M., shock angle 6 and

ratio of specific heats y. The functional forms
of the coefficients are given in the Appendix.

Solving for the downstream pressure gradient
and flow curvature from Equations (18) and (19)
gives,

3
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(21)

where D1

If the vorticity is produced by a curved shock,
with curvature (36/3%c),, then we can write,
Hayes and Probstein (28),

(22)

In the above a, is the velocity upstream of the
vorticity-producing shock, 6, 1s the shock angle

and (36/30)0 the shock curvature.

Using
a position
streamline
shocks for

Equations (20) and (21) we are now in
to calculate the pressure gradient and
curvature behind curved two-dimensional
various states of upstream flow.

Curved Shocks in Uniform Irrotational Upstream
Flow

Uniform flow implies that both (Bp/Bs)l and
(38/88), are zero and irrotational flow requires
that 51 = 0. This case pertains te the most

usual situation encountered with forward shocks



on projectiles advancing into still air.
Equations (20) and (21) then become

32 -C
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1 ap 2 38
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s 2 D1 361

From these equations it 1s seen that both the
streamline pressure gradlent and streamline
curvature behind a shock are zero behind a
straight shock wave (36/30 = Q). Furthermore,
the pressure gradient 1s zero whenever the
determinant in the numerator of Equation(23)is
zero. An expansion of this determinant gives

sin 26
4cos2(6 - 8)

sin 26

y+1 (25)

The solution of this equation, for a given value

of the freestream Mach number gives the shock
angle where (ap/as)2 = 0. This point, and the

locus of streamline points with a pressure maxi-
mum, emanating downstream from this point, are
called the isobaric point and the pressure ridge,
respectively. The variation of the isobaric
point (ep) with Mach number is shown in Figure 2,

for the present case of uniform irrotational
upstream flow.
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FIGURE 2 - EXCEPTIONAL SHOCK ANGLES FOR TWO-
DIMENSIONAL SHOCKS

In a similar manner, the streamline curv-
ature 1s zero whenever the numerator in
Equation (24) is mero. An expansion for this

gives,
2sin26 2_ 2¢a. . B5in26
=T (1 + (2-2)s1n?(6-8)] == (26)

-5~

"stream 1s uniform and irrotational.

and a solution of this equation for a given M
determines the Crocco-point at which (36/35)2 = 0.

Analogonsly, the locus of points downstream of
the shock where (36/35)2 = 0, which is in fact

the inflection point of the streamlines, we will
refer to as the Crocco line. For uniform irro-
tational upstream flow the Crocco-point (ec) is

shown in Figure 2, and it is noticed that the
Crocco-point lies between the sonic point and the
point of maximum streamline deflection for all
freestream Mach numbers. MNote here that the
location of the isobaric and Crocco-points does
not depend on the shock curvature when the free-
The exist-
ance and significance of these points has been
discussed by Crocco (12) and Thomas (14).

I11. Regular Reflection of Curved Shocks

at a Plane Wall

The reflection of shocks at a plane wall, or
the equivalent case of interaction of two equal
strength shocks is one of the more elementary
problems of shock dynamics. As long as the
upstream Mach number is high and the incident
shock 1s weak the readily calculable regular
reflection appears. However, if the incident
shock reaches above a certain strength (determined
by the upstream Mach number) then the reflected
shock is no longer able to return the flow to the
freestream direction, and regular reflection is
no longer possible. We will demonstrate later
that transition from regular to Mach reflection
occurs before this limiting condition imposed by
the reflected shock. We wish to calculate flow
properties and their derivatives as well as shock
curvatures in the immediate vicinity of the shock
interaction point, in the first instance, for the
case of regular reflection. We presume y to be
constant throughout, and begin by specifying a Mach
number in front of the incident shock M,, a shock

angle 6, and a shock curvature (39/30)1. On

1
applying the condition that the reflected shock
returns the flow to the freestream direction we
can immediately calculate the reflected shock
properties, Similarly from the incident shock
curvature (36/3¢);, we can, by using Equations (23)

and (24), calculate the pressure gradient and
streamline curvature behind the incident shock
and the vorticity €, from Equation (22). We now

use Equations (20) and (21) for reglons in front
of and behind the reflected shock, by advancing
all variable subscripts by one; first calculating
(36/30)2 from (21) by imposing the condition

(36/35)3 = 0, and then finding (Bp/as)3 from

Equation (20). The reflected shock curvature is
shown in Figure 3,normalized with respect to the
incident shock curvature,and plotted versus the
incident shock pressure ratio pz/pl. On

reflection, weak shocks at high Mach number curve
in the opposite sense whereas strong shocks at
high Mach number and shocks at low Mach number
curve in the same sense. . Above a freestream Mach
number of 1.6 there is always a given incident



shock strength, for every freestream Mach num- -
ber, for which the reflected shock is straight.
High values of reflected shock curvature are
reached when the reflected shock begins to
detach. The pressure gradient along the wall
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FIGURE 3 — RATIO BETWEEN CURVATURES OF REFLECTED
AND INCIDENT SHOCKS FOR REGULAR
REFLECTION

behind the reflected shock is shown in

Figure 4. It has been normalized with respect
to the incident shock curvature and the free-
stream dynamic pressure. The gradient has the
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FIGURE 4 - PRESSURE GRADIENT BEHIND REFLECTED
SHOCK FOR REGULAR REFLECTION

same sign as the incident shock curvature. High
values of shock curvature ratio and pressure
gradient should not be viewed as high values of
reflected shock curvature and actual pressure
gradient but rather as the incident shock curv-
ature tending to zero. This is clearly the case
when the incident shock becomes very weak, tend-
ing towards a Mach wave at p2/pI + 1. For then,

for the case of a uniform freestream, the curv-
ature of the Mach wave (36/30) - 0, causing a
seeming singularity as Pz/Pl »> 1.

—6—

IV, Mach Reflection of Curved Shocks

Flow variables around the triple point con-
fluence were calculated by the method described
by Henderson (4). Results for Mach numbers and
wave angles are presented in Figures 5a,b and 6
for a freestream Mach number of 2.80. From 5a
we see that as we increase the incident shock
strength (pz/pl) the Mach number behind the

incident shock (MZ) decreases to reach a value of

one at pz/p1 = 7.14. However, Mach interaction
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FIGURE 5 - VARIATION OF MACH NUMBERS WITH
INCIDENT SHOCK STRENGTH AROUND THREE-
SHOCK CONFLUENCE (MACH INTERACTION)

ceases before this, at pz/p1 = 7.074. At this
point both M3 and Mq become supersonic and
equal to M, = 1.012. Beyond this point the

reflected shock decays to a Mach wave and the
incident and Mach shocks become continuous.

At this upper limit of Mach interaction the
value of A = O; so that, from Figure 2, we con-
clude that Mach interaction is impossible above
the line A = 0 and further, since the A = 0 line
meets the Mach angle curve at M, = 1.245 we con-

clude (as has been done. previously by others)
that Mach interaction is not possible below this



Mach number. We have also shown in Figure 5a
the Mach number behind the reflected shock for
regular reflection for M, = 2.80, and it is seen

that, although the upper limit of regular
reflection lies at p2/pl = 3.6, the Mach numbers

for regular and Mach reflection are equal at
pZ/p1 = 3.35. If one postulates the transition
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FIGURE 6 ~ VARIATION OF SHOCK ANGLES WITH INCIDENT
SHOCK STRENGTH AROUND THREE-SHOCK
CONFLUENCE (MACH INTERACTION)

between regular and Mach reflection to be smooth,
then the point of transition would be at
p2/p1 = 3.35 rather than at the upper limit of

regular reflection at 3,6.
shown in Figure 6.

The shock angles are
The values of 6, for regular

and Mach reflection are again equal at
pZ/p1 = 3.35, so that again a smooth transition

is predicted at this poinﬁ. Furthermore, we find
that 6“ = 90" at 3.35 which implies that if

transition from regular to Mach reflection begins
by the growth of a very small Mach stem then this
small stem can grow from the wall (or centerline
of symmetry) because flow behind the stem is
parallel to the wall.

Just as with regular reflection we make use
of Equations (23) and (24) to calculate pressure
gradient and streamline curvature in region (2)
(having specified the shock curvature
(88/90)1 = 1.0); and then we calculate the curv-

ature of the reflected and Mach shocks by equat-
ing the streamline curvatures and pressure grad-
ient in regions (3) and (4). In doing this we
use Equations (23) and (24) for region (4) and
Equations (20) and (21) and (22) for region (3).
The resulting reflected-to-incident shock curv-
ature ratio (88/80)2/(89/30)1 and the Mach

shock-to-incident curvature ratio

(88/30)“(96/30)1 are shown in Figure 7. In both

cases the curvatures have been non-dimensional-
ized with respect to the incident shock curv-
ature (36/30)1. The four singularities at

p_2/p1 = 1.0, 3.08, 6.65 and 7.074 should be

regarded as places where it is possible for the

incident shock to be straight, with finite curv-
ature values of the reflected and Mach shock,
rather than places of infinite curvature of the
latter. At p,/p, = 3.95 and 6.45 it is possible
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for the reflected and Mach shocks to be straight.
The dashed curve for the regular reflected shock
crosses its Mach reflection counterpart at

p,/p; = 3.35, indicating that if transition from

regular to Mach interaction occurs at PZ/PI = 3.35

then the reflected shock curvature changes
smoothly. The pressure gradient along the slip
layer and the slip layer curvature are shown in
Figure 8. The streamline curvature is zero at
pz/p1 = 3.35 as for regular reflection, and the

pressure gradients are equal as well. At
pZ/p1 = 6.45 the slip line pressure gradient and

curvature are both zero. This is due to the Mach
stem being straight at this point. Division of
the streamline curvature by the incident shock
curvature (86/80)1, being zero at p2/p1 = 6.65,
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induces a singularity at that point. No such



difficulty arises with the pressure gradient term
since it is multiplied by (39/30)1. Summarizing

the previous discussion, we state that 1if we
assume the transition from regular to Mach
reflection to be smooth then (for Mach 2.80)
transition would oceur at p,/p, 3.35. At this

point the Mach stem is normal to the freestream
flow. Further we have seen that incident shock,
reflected shock, and Mach stem are straight at
pz/p1 = 6.65, 3.95 and 6.45 respectively.

Transition between Mach interaction and a smooth
curved shock should occur at p,/p, = 7.074; this

being the point where the reflected shock decays
to a Mach wave and the reflection coefficient
behind the smooth shock becomes zero. The flow
behind the smooth curved shock 1s described in
the next gection.

V. Smooth Curved Shocks

happens if the incident
greater than the maximum
For M, = 2,80 this would

Figure 5a, or 6 > 62,84°

Consider now what
shock strength is made
for Mach interaction.
imply pz/p1 > 7.074 in

The Mach number behind the incident
reflected

in Figure 6.
shock M, would still be supersonic, the

and the
range
shown in

shock would have decayed to a Mach wave
reflection coefficlent would lie in the
-1 5_Ac < 0. The flow would appear as

Figure 9, with the incident shock and the Mach
stem forming one continuous shock wave. A patch
of smooth supersonic flow 1s contained between
the sonic line and the shock wave. The latter

has a point of inflection between the two sonic
At this inflection point (36/30)1 =90,

points.

M, <1691
- -

BEHIND SMOOTH CURVED
(SHOCK ANGLE IN THE RANGE
<8 i_e*)

FIGURE 9 ~ TRANSONIC FLOW
SHOCK.

eA=o

and from Equations (23) and (24) we conclude that
(3p/3$)2 = (36/33)2 = 0 and from (10) and (11)
that the strength of the C_ and C+ characteristics

are both zero at the shock inflection point.
According to Figure 1 the sonic line makes an
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angle greater or smaller than 90° to the stream-
line as M, is smaller or larger that 1.691. This

leads to the two Figures 9a, 9b. As the shock
strength is increased beyond py/p, = 7.14 the

Mach number behind the smooth shock becomes <1,
and the supersonic patch disappears entirely.

Further increases of shock strength will event-
ually lead to the normal shock at pz/pl = 8.98.

VI, Experimental Evidence

Two circular cylinders (% in. diameter, 2% in.
long) were placed parallel to each other in a
Mach 2.80 wind tunnel. TFor two runs the distance
between the cylinders was so adjusted that the
interacting shock strengths would bracket the
transition from regular to Mach reflection. The
measured sgock anglesoat the point of intersection
were 37.75" and 38.75 . These correspond to
pz/p1 = 3,26 and 3,41 which bracket the theor-

etically predicted value of 3.35. From Figures l0a
and 10b we observe that transition has indeed taken
place. The shock angle and pressure ratio for the
"detachment" of the regularly reflecting shock are
390 and 3.6; these both being outside the
experimentally observed range of transition.

FIGURE 10a - REGULAR REFLECTION NEAR ONSET OF MACH
REFLECTION

An attempt was made to establish the trans-
ition between Mach interaction and the smooth
shock. Larger cylinders () in. diameter, 1% in.
long) were moved together until the reflected
shock disappeared. Despite the larger cylinders
the incident shock was too highly curved to enable
an accurate measurement of its angle. TFigure 11
shows a very weak and highly curved reflected
shock. The incident and Mach shocks are almost
continuous.



—_ M, =2.8

FIGURE 10b - MACH REFLECTION JUST AFTER ONSET

LYL. BDIAM. Y2 ia.
CYL CTR.TO CTR. DIST.

M =28

1/2 e

FIGURE 11 - UPPER LIMIT OF MACH REFLECTION, JUST
BEFORE DISAPPEARANCE OF REFLECTED
SHOCK

V1I. Conclusions

Equations of compatibility are derived for
first derivatives across curved shock waves in
flow with planar symmetry. This has been done
where the flow is curved, has a pressure grad-
ient, and is rotational. The equations show
that for a uniform irrotational upstream a
straight shock always produces a uniform irro-
tational downstream flow. For a curved shock in
uniform flow exceptional points are found, where,
behind the shock, the pressure gradient is zero,
the flow is straight and no finite strength wave
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reflection is possible.

The compatibility equations, when applied
to regular reflection of oblique shocks, show
that below a freestream Mach number of 1.6 the
sign of the reflected shock is the same as the
sign of the incident shock. Above 1.6, if the
incident shock is strong, the shocks are curved
in the same sense, but if the incident shock is

weak, then they are curved oppositely. Weak
incident shocks have small curvature. Strong
reflected shocks have large curvature. The

pressure gradient on the wall, behind the point
of regular reflection, has the same sign as the
incident shock curvature. The pressure gradient
becomes very large when the reflected shock nears
its maximum strength,

For Mach interaction, at Mach 2.8, the zero
curvature points occur at the following incident
shock strengths p,/p,: incident shock - 1.0,

3.05, 6.65, 7.074; reflected shock - 3.95, 7.05;
Mach shock - 6.45. The slip layer behind the
triple point is straight for pz/p1 = 3.35 and
6.45.
for pz/pl =

Pressure is constant along the slip layer
1.12, 6.45 and 6.55.

At Mach 2.8, a smooth transition from regular
to Mach reflection is possible only at
pz/p1 = 3.35. Experiments confirm transition at

this pressure ratio.

Above pz/p1 = 7.074 Mach interaction is no

longer possible. A smooth supersonic patch is
postulated for the range of incident shock
strengths 7.074 to 7.140. The patch is bounded
by a shock with an inflection point and a sonic
line. Two characteristically different supersonic
patches appear above and below a freestream Mach
number of 1.691.

Smooth transition from Mach interaction to
flow with the supersonic patch occurs at
pz/pl = 7.074 when the reflected shock becomes a

Mach wave. This is confirmed by an independent
calculation, using the compatibility relatioms,
which show that the reflection coefficient becomes
zero at 7.074.
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Appendix

Derivation of Equations of Compatability for First

Derivatives of Flow variables across a Curved
Shock

Equations relating derivatives of flow var-
iables in frout of and behind a curved shock wave
are derived from three basic sets of equations:
a) partial differential equations of con-
servation of mass, momentum and energy relating
gradients of flow properties at points of con-
tinuous flow in front of, or behind, the shock;
b) the Rankine~Hugoniot equations relating flow
variables immediately in front of and behind the
shock; c¢) geometric relations between deri-
vatives along the shock direction and along and
normal to the streamlines. The derivation out-
lined here follows along the lines of Lin and
Rubinov (17), except we here include a term which
accounts for vorticity in front of the shock wave.
The method will be to take derivatives of the
Rankine-Hugoniot equations along the shock
direction o; to relate these derivatives, through
geometric relations, to flow variable gradients
along and normal to the streamline, and finally
to eliminate some of these gradients by using the
continuum flow equations, First the Rankine-
Hugoniot equations are written as

£,9,8in6 = pzqzsin(e-é) Al
2 25 = 20402
p, t 0,q7sin®s = P, + p,q58in (6-8) A2
q,cosb = qzcos(e—é) A3
2 _y=lo

qlqzsinesin(e—é) = a cos?8 Ad

* w4171

.where q is the velocity and § is the deflection
angle of the flow through the shock (§ = 62 - 6]).

The subscripts 1, 2 and * refer to conditions
before and after the shock and to the point where
the Mach number is one. From these we find

2
P, = P, + pl[ql(l - ;Iicos2e) - ai] A5

or p, = p, + plqifsinze - %sinZStan(G—G)] A6
and pzq%/plq% = sin26/sin2 (6~8) A7

Secondly we write the geometric relations,
relating derivatives along the shock (wrt. o),

to derivatives along and normal to the streamline
direction. For a typical variable, say the pres—
sure p, we can write for the derivatives upstream
of the shock

dp| _ [3p { 3p
(30]1 (Bn sinf + 2s cosf A8
1 1
and downstream,
2l _ (2| Lince- 3p -
(30]2 (Qn 251n(6 §) + Py 2cos(e 8). A9
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Using the equations of motionm,

2q _ _1l3p 1
qu o 98 Al0
3 3p
— = - 1
Po3s on All
l_:_!i 2 . _ 38 Al?
q s an

with the definition of vorticity,

_ 38
T

faat
I}
gl

and the energy equation in the form

9 _ 2. .38 x=1
n M p[ Pye + p £ Al3

we can eliminate derivatives in a direction normal
to the streamlines from equations A8 and A9,

p| L, g2]38 3p
[QOJ °1q1(as sinb + s cos® Al4
1 1 1
3p) _ _ _ sin2s (@g} b1 cos(os Fﬂ{
(8c]2 2cos (6~8) }3s ) plq% ) 3s N
AlS

We obtain similar expressions for (36/30) and
~ 1,2
(3p/30) 5
bl

Differentiating A6 with respect to distance along
the shock (o):

2

a

1 19p 38 op 1 (3p *

= e |r— +~—- - —

———f( ]2 (35]151"6 + (as]lcose o1 30 X b q

+ —2~{39 b+ -Z*—Sin?_e(?—e— - | 16
q; 30 y+1 30 30 1
where b = 1 + (2/(y+1))cos?e
c = (2/(y+1))sin28
36 .
5;—15 the shock curvature

Using Al4 and similar equations for 8§, p and g
to eliminate the ¢ - derivatives from Al6, we can
equate (Bp/Bc)2 in Al5 and Al6, to obtain an

equation of the form

A 13 A
_3p] M1 fas - [ 3e] 2 (8], 38,
[ Bleplq§+(as 1B1+i;£1 3s 2plq§ 3sp 2 3a

Al7



where the coefficients are

Ay = (2/(y+1))cos8(l-y)/2 + (3M2-5)s1n?6)
B, = (2/(y+1))sine((nf-A)sinZe + (5-y)/2)
E) = -(2/(r+t1))sin’e ((y-1)12+2)
Al8
A2 = cos(6-98)
B2 = 5in28/2cos(6-6)
C = (2/y+1)sin26

A similar treatment of equation Aé yields the
following equation:

Al E A
[- EE] '—124-[&6—] B'+ lE':(_B.E] 2 +(3_6_] B'+&C'
1

as 1P19] as 1 q, 1 98 25:33 ds 2 2 ¢
Al9
where the coefficients are

Al = 1+ (M%—Z)sinz(e—d)

Bé = sin26

C' = sin26/2cos(6-6)

Ai = M%coszecosﬁ - (M%—l)cos(29+6) 420

Bi = Mﬁsinzesiné + sin(2646)

E) = -s1n%8s1n8 (2 + M2 (y-1))

These are the required relations of compatibility

where equations Al7 and Al9 can be treated as

two equations in any two unknown derivatives,

The known derivatives in this case being specified
by the boundary conditions of the problem and the

coefficients being found by calculating M,, 6 and

§ from the oblique shock relations.
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