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A STUDY OF THE SPECTRAL GUST ALLEVIATION FACTOR *)

E. Huntley
University of Sheffield, England

Abstract

Results are presented of a theoretical study
of the spectral gust alleviation factor K,
assuming & rigid aircraft and using the Dryden
model of turbulence. For the aircraf't responding
only in heave an explicit expression for K in terms
of the single parameter HgC, is derived. The
effects of incompressible unsteady aerodynamics for
various aspect ratios are systematically studied
and are shown to be less significant than previous
studies suggest.

The effect of the pitching degree of freedom is
investigated for aircraft both with and without
tailplanes.

The importance of turbulence scale length L is
clearly demonstrated.

The relation between K and the discrete factor
F is considered and the relevance of the ratio
F/K to the consistent estimation of loads on a new
aircraft via the discrete and spectral techniques
is discussed.

The RMS response ratio op/oy_ is shown to
depend only upon the two parameters usc/L and V/L
and from observations of the operating conditions
of a wide range of transport aircraft it appears
that they all have a similar sensitivity to gusts
with o o,,s = 0,016 g units/ft/sec using L = 1000

.

1. Introduction

A great deal of research effort is going into
the measurement of turbulent air velocities in
relation to aircraft flight. There is a contin-
uing need to review our knowledge of aircraft res-
ponses to air turbulence in order to appreciate
the significance of the new information as it be-
comes available and in order to demonstrate which
parameters in the problem are of most importance
and therefore deserving of the closest study.

At the present stage of aircraft development we
can see dramatic changes in aircraft speed, size
and shape. Increased aircraft size, speed and
height of operation imply larger values of the
gust mass parameter up than hitherto; they also
mean that structural glexibility is becoming
increasingly significant. Change of shape towards
the slender configuration involves us not only in
new appraisals of aircraft aerodynamics, steady
and unsteady, but also in different modes of stru-
ctural distortion from those typical of current
subsonic turbojet transport aircraft. Because of
the large number of parameters involved the task
of sorting out which parameters are really

significant (as opposed to those which may safely
be neglected) is likely to be a lengthy one.

In 1953, Zbrozek (1) did a systematic study of
the discrete gust alleviation factor taking into
account the effects of unsteady 1lift functions for
various aspect ratios and subsonic Mach numbers.
Although power spectral techniques have been estab-
lished for several years for the study of aircraft
responses to random turbulence there does not appear
to be a corresponding definitive study of the spec-

tral gust alleviation factor although various aspects

have been discussed in many a?udie , some of which
are listed in the References (2-14),

One of the troubles in the past has been the mag-
nitude of the computations involved which although
by no means insurmountable, has nevertheless made
parametric stydies Sedious to perform. In recent
publications (15-17) the author has described new
techniques which simplify response analyses of lin-
ear systems for deterministic or random inputs.
Since aircraft dynamics can, in many circumstances,
be adequately described by a system of linear time-
invariant ordinary differential equations, the res-
ponse of an aircraft to discrete gusts or random
turbulence can be easily studied by the application
of these techniques.

This paper should be regarded as a first stage
of a study of aircraft responses to random turbul-
ence based on stationary random process theory. It
serves partly as an illustration of the techniques
mentioned above but also gives some fundamental
results for the acceleration response of the rigid
aircraft.,

The greater part of it is based upon Ref 20 in
which only the heaving degree of freedom was con-
sidered and all sections with the exception of
Section L are based upon that assumption., Subse-
quent work on the pitching degree of freedom is
included in Section 4.

2, Background theory and s of the
seria.lsttrix technigue
We shall make the following basic assumptions:

(i) that the vertical component of the random
velocity field may be regarded as a stationary
random process with zero mean and a power
spectral density function described by the
Dryden model (i.e. with an 1 ?high fregquency
power law),

(ii)that it is a Gaussian process,

(iii)that the aircraft can be idealised as a linear
system,

* This research was begun when the author was a member of Aerodynamics Department, R.A.E,



(iv)that spanwise variations in gust velocity may
be neglected.

Assumptions (ii) and (iii) together imply that
each response variable must also be a Gaussian
process., The statistical analysis is then consi-
derably simplified for in order to define meaning-
ful statistical quantities such as the number of
times per second a given response variable will
cross a specified level it is sufficient to know
its mean square value together with that of its
derivative. ['I'hiu defines Ny when the variable
concerned is c.g. acceleration], Consequently we
are interested primarily in the mean square respon-
ses of a linear system subjected to a stationary
random process with zero mean and known power spec-
tral density function,

Most of the theoretical work done so far has been
by spectral analyses using the standard result

Soo(®) = [H)I%s,, () (1)

where |}{(w)|’ represents the system frequency res-
ponse function modulus squared; S (u) and
S (w) are the input and output apé%tra respectiv-
efg. For the complete aircraft system taking into
account flexibility and unsteady aerodynamics the
frequency response function can be a most compli-
cated function. To obtain the response mean
square value the equation
1
IS I
R Soo(u)du

-0

is used. Although it is possible to evaluate
this integral analytically by contour integration,
generally speaking this is impractical for all but
the very simple cases, Determinantal expressions
for o2 have been given by several authors* but
frequently the integration is done numerically
which then brings in questions of step length,
cut-off frequency, and so on,

Another alternative is to replace equation (1)
by the equivalent convolution relation in the time
domain in terms of autocorrelation functions:

$oolt) = f top (T)8y, (t-7)ar

(t) and ¢__(7) are the input and output auto-
c lation fdnctions respectively. m T) is
the system autocorrelation function defined by

¢hh('r) = [”

(2)

n(t)h(t+r)dr

where h(t) is the system unit impulse response.
() and |H(w)|?® form a Fourier Transform pai:

80 that
[H(w)]? :/Q%h(f)e-‘jmd‘r

1—[Q [6(w)| %% aw

%h('r) =om

-

The mean square value is given by
c: = ¢°°(0) (3)

The author has ahovmﬁs) how equation (2) can
be interpreted as a transformation of the input
autocorrelation function by the system to give the
output autocorrelation function. The system trens-
fer function is factorised into first order and
second order factors, in both numerator and denom-
inator, and the original system is replaced by a
chain of filters each representing just one factor
in the transfer function. The transformation of
¢..(T) by the original system is then replaced by
tﬂ successive transformations of ¢, (r) as it
passes through the various filters.,”™ It is demon-
strated that for a very large class of input auto-
correlation functions the transformation effected
by an elementary filter is simply calculated by a
single matrix operation - hence the description as
the serial/matrix method. An explicit formulation
of the output autocorrelation function is obtained
and the mean square response given by equation (3).

As a simple demonstration of the method, Appendix
A contains the derivation of mean square responses
of a first order system when the input autocorrel-
ation function is one representing random turbulence.
More complicated cases are analysed by the use of
comprehensive computer programmes written in
ALGOLU ),

3, Vertical scceleration response and
spectral gust alleviation factors for
the heaving aircraft.

In this and all sections other than Section 4
we shall be concerned with the dynamics of an air-
craft free to respond only in heave. The most
significant measure of the response is that of c.g.
acceleration, through its mean square value op.
Rather than work with the dimensional quantity
¢, g&/ft/sec it is preferable to use the non-dimen-
l::lc:ml spectral gust alleviation factor K, defined
¥

L pVa_ K A nSKa' (&)
2W/s € &

where ng is a statical standard of normal acceler-
ation; op is in g units,

We now establish the forms of the input auto-
correlation function.

3.1 Autocorrelation functions for vertical gust

velocity

A summary of most of the expressions for power
spectra and autocorrelation functions of random air
turbulence currently in use is provided by Tn,ylo:j(ﬂ)
For the Dryden model, which gives a gmr spectral
density function proportional to 1/0? at high
frequencies, the autocorrelation function for
vertical gust velocities is

02 £ (x) = o E-lzl .xp[zld]. (5)
E & g 2L L

* The recent paper by Pullar(18) contains a survey of this development.



r is distance in feet, L is scale of turbulence in
feet and subscript w, denotes vertical gust velocify.
fy.(r) is the normalised autocorrelation function
wi r.,s(o) = 1.0,

For an aircraft flying through the turbulence
with velocity V, the random input to the aircraft
has a power spectral density function which depends
upon frequency  in radians/sec where w = fIV,zand
an autocorrelation function depending upon time lag
T in seconds, Thus replacing r in equation (5)
by Vr we obtain

- f's(-r) - [1’:_:. m] - E fm:] ;

Now suppose that the time variable in the equation
of motion for the aircraft is non-dimensionalised
y the use of the time parameter t, where

= W/gpSV. Then, to be consistent, the time lag
T must be divided by the same parameter. If
E = 7/t, we have

@ (B o[- Ziel].

When we come to consider unsteady lift it is
easier to work in terms of non-dimensional distance
flown rather than time., Using the mean chord c
as the unit of distance and writing y = r/c the
autocorrelation function becomes

a:sf'gty) = c:gE - ilyl}nE ilyl:l- (7)

2 Aircraft equation of motion

The following assumptions are made:

(i) the aircraft is rigid

(ii) the aircraft is free to heave but not to
pitch

(iii) unsteady aerodynamics are neglected (in this
section and in 3.3).

The equation of motion, in non-dimensional form,
is then

aya a A
(s DF=-28 (®)
where A = t/% is non-dimensional tige, D = a/an,
W is aircraft heaving velocity and W, vertical
gust velocity (each being non-dimensfonalised by

aircraft speed V).
Taking Laplace Transforms
HG(’) = G(a)ﬁs(s) =(-a/2)/(s+a/2).

Heaving acceleration may be represented non-
dimensionally by

<|c>

"
n=n

8o that

- = Dw

and

ty(e) - HeL . & s ®)

#B(a) 2 s+a/2 ’

Spectral t alleviation factor, no unsteady
1ift

To obtain the mean square value of 3, we use
the result derived in Appendix A with A = a/2,
k = a/2, b = Vt/L, so that

e, (T 9/ (0B

We now introduce the gust mass parameter “5

defined by
- 2W/s

pgoae

(10)

“y {11)

Since £ = W/gpSV it follows that

gsc/l. = 2V8/aL . (12)

Also

on/on = &8(o /o),
g (1

so that
2 aon an
K=_Wé‘1__n ,g‘ﬂ_ (13)
a on

pPVa g‘t\ OG a
g g

and, finally, from eguations (10), (12) and (13)

u c ue e
K=I:-L(2-5-+5)/2(-L+1) (1)

L L L
Within the stated assumptions, the spectral gust
alleviation factor is seen to be a function of a
single mass-scale parameter uge/L. This
simultaneously characterises the ratio of inertia
to aerodynamic forces, through u,, and also the
aircraft scale to turbulence scale through c/L.
K is plotted against uge/L in a linear-log plot
in Fig, 1 This agrees with the plot given by
Ta,ylort”) who does not however guote any expres-
sion for it,

Taking typical current values of u.c as lying
between say 250 and 1000 ft and the turbulence
scale length as 1000 f't, K is seen to vary betwee:
0.5 and 0.8, Since modern aircraft tend to have
larger values of ugc/L than in the past the trend
is towards larger values of K. The relevance
of scale length L is fully discussed in Section 5.

The contribution from unste lif't

The equation of motion for the heaving aircraft
(equation 8) may be represented by the block
diagram shown in Fig. 2(a). Since unsteady lift
was neglected this meant that the force produced
by w, acted instantaneously. Thus a constant
gain factor a/2 was sufficient to represent the
transformation trog gust velocity to force. The
same was true for w.

-3 -
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FIG. 2 BLOCK DIAGRAMS FOR RESPONSES OF
HEAVING AIRCRAFT

If we now wish to allow for unsteady lit't, we
have to include an additional transfer function
Hy(s) to provide the necessary lag in response to
N
#,. Similarly a transfer function Hz(s) is needed
for the response to w. The situation is then as
shown in Fig. 2(b).

The transfer function for h becomes
a o el (s)
Hp(e) = ffly = $—s
g s + 2 Hz(s)

Now the lag in duction of force following a
change in W or w is associated with the classical
Wagner and Kussngr functions respectively. These
are most conveniently expressed in terms of non-
dimensional distance travelled so we shall make a
transformation from an equation based on non-
dimensional time (A or t/t) to one based on non-
dimensional distance (y or x/c or VEA/c.) Use

p to denote the Laplace Transform variable zssocia-

ted with y so that

f(p) .-_i—%f(s) and p = s/cﬁ .

The transfer function for A then becomes
H
Alp) a_opH() alf 2

Gs(p) _ 2'p+ﬁ H,(p) ¥ 2"1M-:—g H, (p)

Hia(p) = . (15)

The Kussner function, normally denoted by ¥(y),
represents the transient response to a unit step
in W, whereas H,(p) denotes the Laplage Transform
of the response to a unit impulse in wg.
Consequently

H,(p) = p ¥(p)

where

¥(p) = £ [¥(y)] .

Similarly the Wagner function, #(y), repregents
the transient force following a unit step in w.
[There is in addition an air inertia term which we
shall neglect since it is only of the order of 2%
of the aircraft inertia term]. Hence

Hz(p) = p #(p) .

Jelyo1, Results for infinite aspect ravi.

In the classical case of infinite aspect ratio,
M = 0, these functions ca.rj be approximated by the
following expressions:(19

#(y) =1 - 0.165 exp(=0.09y) - 0.335 exp(-0.60y)
¥(y) =1 - 0.50 exp(-0.26y) - 0.50 exp(-2.0y).
(16)
Hence,
-]
p ¥p) = 0.50p% + 0,561p + 0,054
(p + 0.09)(p + 0.60)
and

(p+0.26)(p+2.0)



‘1—(0.500p'+0. 561 po0.0S-!..]

g

(17)
For a particular value of 1/ug the expression in
braces has to be factorised into second order and/
or first order factors. The computer programme
then deals with the problem from this stage onwards
and performs the analysis along the same lines ill-
ustrated by the simpler problem in Appendix A.
The appropriate input autocorrelation function is
that given in equation (7) but with normalised
gust velocity.  Thus,

$,; ) = aﬁgh-%i-lyllaxp[- flvll . (18)

Even without any further analysis it is apparent
from the two equations (17) and (18) that K can
depend only upon ug and c/L.

The results of the calculations are tabulated in
Ref. 20 and are shown plotted here in Fig. 3(a).
A set of curves for different values of c/L are
produced running below and more or less parallel to
the basic (no unsteady 1lift) curve. For the most
extreme case treated with c¢/L = 0.05, the unsteady
lift contribution is a reduction in K of around
0.08, or & 12% reduction at uge/L = 0.5.

Jslys2, Results for other aspect ratios

For these calculations the gust velocity is
assumed constant across the span at any instant.
Consequently variations in aspect ratio affect
only the unsteady lift functions., The expressions
used are those given by Zbrozek in his discrete
gust alleviation factor study 1).
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Results for AR = 6 are shown in Fig. 3(b). The
unsteady lift effect may be seen to be reduced in
comparison with the effect for infinite aspect ratio.
Thus a typical value for 4K is 0,05 for ¢/L = 0.05,
corresponding to mz change in K when usc/L = 0.5.
Results for AR = 3(20), not shown here, indicate
even less effect of unsteady lift and in most circum-
stances it could probably be ignored.

Jelie 3. The separate effects of Kussner and
Wagner functions

It appears that severgl previoys studies (in
particular those by Fungl(2), Ha.llltwi and Taylor(11))
are based upon the assumption that the Wagner =
function may be ignored whilst retaining the Kussner
function. The results of calculations made to test
this hypothesis are shown in Fig. L.

It may be seen that the two functions tend“to
work in opposite senses., Thus keeping the Kussner
function whilst ignoring the Wagner function results
in an overestimate of the effect of unsteady lift.
This is seen more clearly in Fig. 5 which shows K
cross-plotted against c¢/L for one value of ugc/L.
For the infinite aspect ratio case the af‘f‘ecgc
the Wagner function is quite important, relatively
speaking, since it is around 33% of the Kussner
effect. However for finite aspect ratios its
effect is less important being, for example, only

16% of the Kussner effect for the AR = 6 case.

The results shown in Fig. 10.1 of Ref. 11 for
infinite aspect ratio and neglecting the Wagner
function appear to be identical with those presented
here,

Jslolss Comparisons with other calculations

The earliest ayate?nsic calculations appear to
be those done by Fung 2 , though & more comprehen-
sive set of results asd on Fung s approach are
given by Press et al,(3), These have been re-
l.nn_ysa? 3nd are shown in Fig., 6. Pratt and
Bennett (6 give a set of design charts covering the
effects of pitch as well as unsteady aerodynamics,

-5
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Theair data for the heaving-alone case agree sub-
stantially with those by Fung and are based on the
same assumptions so we can deal with both sets of

data simultaneously.

It is apparent from Fig., 6 that these earlier
results follow the established trend with increas-
ing uge/L but that the unsteady aerodynamic forces
have a much greater effect. (Fig. 7). Fung
assumed that Wagner effect could be neglected so
we nr.'lght have expected closer agreement between
Fung s and Hall's results. It can be shown that
the remaining discrepancy is aeeoc:l.ated witr Tung s
inaccurate approximation to the Kussner function.

The overall conclusion from this work is that
the effect of unsteady aerodynamic lift functions
is appreciably less than had been suggested by
earlier studies, In the earlier work two assump-
tions had been made regarding the form of these
functions and both assumptions had worked in the
same sense 30 as to considerably overestimate the

pyc/L=1-0
T
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GUST ALLEVIATION FACTOR

v

effect upon the spectral gust alleviation factor.
Further, we should remember that the comparison
Just made was based on unsteady lift functions for
infinite aspect ratio and that for a finite aspect
ratio the unsteady aerodynamic functions assume
even less importance,

4. Spectral gust alleviation factor for the pitching
aircraft

4e1 Tail-less aircraft

We make the assumptions:

(i) that the aircraft is rigid [the effects of
static aeroelasticity could be included by
using quasi-static derivatives

(11)
(iii) unsteady aerodynamic effects are neglected.

that the phugoid is neglected

The equations of motion are then

(D+af)i-9=-a/2® ,
A . (19)
(u+xD)w+(D+v)q=-wws,

where A = tﬂ is the non-dimensional time parameter,
w, ¥, v are concise derivatives defined by

w = =um,/ip, x = -ng/ip and v = - 9 Taking
Laplace sforms and solving for W() and q(s)
obtain:

N

- o ()
ws(s) s*+2% s+l 2 a’+2;wns+v:
and

s.(_)_ ,) s

w (a) 2 a’+2};wnaw:
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where
2mn=a/2+v+x
2 _8
ﬁJn-—EV+U.

The transfer function for normal acceleration
follows from

A =nf/V = -(0F - 9)
f(s) = -[sW(s) - Q(s)].

Consequently,

so that

a3 a

E{E.).. a L 2 8

- o - + &p4g) B,
wg(s) 2 s +2@na+wn 2 s +22;wns+wn

In these expressions we can identify the various
terms such as s3/(s%+2Zw s+w?®) as the transfer
functions of a second order ystem. Mean square
responses of this system have been determined for
input random processes having autocorrelation
functions of the form of equation (6). The
resulting closed form expressions are presented in
Table 1 using the notation o2, o2 and o2 to repre-
sent displacement, velocity #na Eccelerfiion mean
square responses.

2
Displacement, b(b+2‘9"n)2+“n(}b*h?.'wn)
0%8 hwa(bs‘_z'b@ +ws)a
n n n
2 2
Velocity, b(b “szﬂn'!-}w )

a;/o’ h@n!h ’+2bcun+w: ke

Acceleration,| b[(b *+302) (Wb _+02)+12b “a:’w:]

a;/ o?

wn(b’+2b.:wn+w;)’
System: H (s) =
* 8420 s+u?
Input by (&) = *(1-2l&] Jexp(-vlE] ).

TABLE 1. Mean square responses for the second
order system
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RESPONSE OF SECOND ORDER SYSTEM

005 01 02 05
Ugt Sa
L ¢
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RESPONSE OF SECOND ORDER SYSTEM

A A A
The mean square responses for w, q and n are
then given by:

2 P a
o B o
—_ =(=) —=4(=v+ew) — ,
oA 2 o? 2 o?
w
[
o®a a o°
*
(e 2
o 2 a?
g
and
o 8 =0 o,
- .(2) [_!+ oven | W 2
O’A 2 U. 0’
w
g



This last expression gives the spectral gust
alleviation factor K. It is now convenient to
introduce new symbols to represent the various

terms contributing to the damping ratio Y. Thus
e N R

where
;a a{2
— = ete. (20)

Z af2+va+y
(2/&)04\/04\ .

2]
SENE ) S

For most aircraft the first term in this bracket
is the predominant one so as a first approximation

we can say K = o,/0 and use the expression given in
Table 1 with b = VE/L.

Hence, since K =

or

K is then dependent upon three main parameters,
namely, b defined above, undamped natural frequency
wy and damping ratio . The number of independent
parameter groups may be reduced to two in more than
one way but probably the most profitable for air-
craft which are moderately well damped is the
followin Dividing numerator and denominator of
o’/a by ?2&: )® then

" % _ {a[(a’ 2 %" )(2a+~( )3*30:’]}
*a 2[q? +a+z (2)’]’
where
o il vt
Z@n Zt:wnL

This may be written as

2V€72__; 2 i
al'af2 +v+y Lz °

Hence this first approximation to K depends only
upon damping ratio ¥ and the new combined parameter
{u c/I.& /Y which takes into account how the damping
fﬁroea riginate.

Fig. 8, which gives the acceleration root mean
square response of a second order system may now
be interpreted as an approximate plot of spectral
gust alleviation factor. It may be seen that for
values of a < 2 the assumption, for a given con-
figuration, that all the damping comes from the
heaving motion, or that zh/'?; = 1, results in an
overestimate of the gust levintion factor.

It is apparent from Fig. 8 how the results for
the aircraft with two degrees of freedom go over
into the results for the aircraft responding only
in heave. Assume that aircraft pitch inertia
increases without any change in aircraft mass i.e.
the radius of gyration increases via the inertia
parameter iB' In the limit as =+ o any concise
aerodynamic derivative term such &s v or yx, having
iB in the denominator, tends to zero, Hence as

-af2,
,;a/z+1 %

This produces the curve marked Z = « in Fig. 8 and
the abscissa of this plot is then simply u c/L.
This is the same curve as was obtained dirﬁotly for
the heaving aircraft.

g

w +0
n

It may also be noted that the second term in
equntion (21), hitherto neglected, tends to zero
since 2;5 e

Let us now go back and consider the magnitude of
this second term. We have

ala® + 2a + f (1_;)3}\%

25w 0‘).:/0 = J

n 2 1 dyaye
[a® + a+ i (C) J
and this is shown plotted against a in Fig. 9, for
several values of Z. Unlike o,/0, this term in-
creases in magnitude with increfised damping ratio.
However it should be borne in mind that large ¥ is
likely to be associated with values of X /¥ near
unity and hence the term (1 - zgi()’(&:n og’/{a)" may
still be appreciably smaller th 0? " Except for
the very small values of a.

Once this second term is taken into account the
combined parameter (u o/L)((g/;) is no longer so
convenient to use. ©It is Better to separate the
mass scale pa.ra.meter u /L from the damping param-

eters Z and For B constant value of u ¢/L
(taken in thi% case to be 1.0) one can use fhe data
in Figs. 8 and 9 to plot firstly K against and

then to derive the carpet plot EFig. 10) of K for
constant values of and writi for
£+ 50 X " S

In Fig. 10 the continuous lines are lines of

constant - ; the dashed lines are lines of
constant Z%.x Since +Z,,, = & vertical lines
are lines of constant V*XThe continuous line
denoted = O corresponds to a vertical section
through curves of Fig., 8 at a value of
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(u O/L)-(Za/?:) = 1.0. It corresponds to the
aagumption that all the damping comes from the
heaving freedom and none from pitching.

It may be noted that for a given value of the
mass-scale parameter the alleviation factor decreases
on the one hand, with increasing damping ratio & for
constant damping due to heave and, on the other
hand, with increasing rotary ing £ for con-
stant Z. In all cases as the total ing
increases, K approaches the value indicated for the
aircraft responding only in heave.

One may also judge from Fig. 10 that for many
aircraft with moderate damping (say Z 2 0.5) the
pitching degree of freedom contributes an increment
in K of no more than about 0.04, a percentage
increase of 5%,

4.2 Aircraft with tail

In this section unsteady aerodynamic effects
are not being considered. However the time delay
between a gust arriving firstly at the wing and
then the ta.il.can be accounted for fajrly easily
using Zbrozek s guasisteady equations(4):

(Deaf2)d - § = -a/2 35

(w+xD)W + (D+9q = =[0 - v_—xDJ%

T g
where v, is the rotary damping coefficient due to
the tail alone. By analogy with equation (20) we

write

v
Sy ST
Vi a/2 +v + x

It can be shown that for the tailed aircraft
o? % + Zym 3 3
b d v T 2
' ( Z ) a4 d):l

o?
With a reasonable assumption for the magnitude

of the downwash at the tail one can show that the

contribution of the second term in equation (22)

is approximately twice as large as in equation (21)

The effect of this on the carpet plot of K is

shown in Fig. 11, derived on the assumption

:“T k"

It may be seen that the general level of values
of K is raised in comparison with those for the
tailless aircraft (Fig. 10). As an estimate one
might say that the pitching degree of freedor now
gives rise to an increment in the alleviation
factor of around 0.07, a percentage increase of

.

5. The importance of scale length L

We have seen that K is primarily dependent
upon the combined mass-scale parameter u c/L, and
only slightly upon aircraft scale directly,
through the parameter c/L. Now although it has
been the practice over the last decade or so to
take L = 1000 ft as the standard scale length for
turbulence at heights above 1000 ft, it has been
su.ggested(usﬂj that as spectra are measured to
lower and lower frequencies due to improved
instrumentation, at the same time estimates of L
shiulg be revised upwards., In fact Houbolt et
a1l1l quote values of L near 5000 ft for spectra

(22)

K=

11
x
2
o
s
=z
(=]
< L
-
=09
w
-
-l
<
.
wn
=2
© 0'8}— HEAVING ALONE -

o7 1 1 L 1

c 0-2 0-4 0% 0-8 10

9
FIG.1l THE EFFECT OF PITCH ON SPECTRAL
GUST ALLEVIATION FACTOR, AIRCRAFT WITH
TAILS

of storm turbulence.

On increasing L, both parameters uwgc/L and o/L
are decreased. It may be seen from ﬁig. 3(a)

that the gust alleviation factor is therefore redu-
ced and the effect of unsteady lift upon K is like-
wise smaller. Assuming, for example, that pitch
and the unsteady 1ift effect are neglected then for
an aircraft with uge = 500, we see that K = 0,667
for L = 1000 ft but only 0.364 for L = 5000 ft.
Thus at first sight it appears that the effect of
greater scale length is entirely beneficial since
it reduces K.

However, this point must not be taken in isolat-
ion since any estimate of L from experimental data
is tied up with the simultaneous estimation of oy .
If L is over-estimated, so, also, is o, and in &
a calculation of aircraft loadsthese twh effects
tend to compensate, Consider Fig. 12 in which are
shown two spectral plots of Sy_(f1) with the same
high frequency content, one foP L = 1000 ft,
oy, = 1.0 ft/sec and the other for L = 5000ft,

oy = 5 ft/sec.  Now suppose that in an experiment
a Sample record is taken from a process in which
Ly = 1000 ft and the root mean square gust velocity
is specified by oy 4 but that, because of instru-
mentation difficulEies, one succeeds only in obtain-
ing the spectrum beyond, say, fl = 2 x 10"5 rads/ft.
It is then apparent that since the knee of the
curve is poorly defined and could easily be lost in
experimental scatter, several different pairs of
values of L and oy _ could be found which would give
a spectrum adequatﬁly representing the data. 1In
general, with L = Lp, say, the corresponding root
mean square velocity would be given by

L

:
2
o =0 —
() -
g e

(23)

W ,2

In particular with Lp = 5000 ft, the corresponding
estimate of o, _ o would be 5 On,1, @8 indicated in
Fig. 12. &

Now consider the effect that this uncertainty
would have upon gust load estimation. We know

29,




that o, is proportional to the product Kow
(equation 4). Consider an aircraft with A c = 500
flying through turbulence for which In =1 't
and o, 4 = 1.0 ft/sec. The correct value of
Kow, wBuld be 0.667, neglecting unsteady lift

(Fig. 3(a))s. For different pairs of estimates of
Ly and oy _ 2, obtained in the manner described
above, otfiér values of Koy may be obtained. These
are plotted against estimafed scale length Lo in
Fige. 13. [Other curves are included for a lighter
and a heavier aircraft]. It may be seen that
although K itself decreases with increased L, the
product Koy actually increases at first and then
levels off Por L > 10* ft.

The asymptotic vglue as L,* o is easily shown
to be  (3mge/2000)Z using equations (14) and (23).

If the data in Fig. 13 are cross-plotted against
uge for various values of L the curves shown in
Fig., 14 are obtained. These provide a gool illus-
tration of the relative importance of accurately
knowing L for different types of aircraft. For the
lighter aircraft with ugc around 250 ft it matters
very little, as far as rigid body loads are concer-
ned, what value of L is assumed. However, at the
other end of the range for, say ugC = 1000 ft,
errors of up to 40% in estimates of op could arise
from uncertainties in the value of L.

The exercise just described was repeated using
L4 = 2500 ft as the basis and the results of this
caloulation are presented in Fig. 15. The errors
in Koy, that would result from incorrect estimates
of Lp Trom sample records of the process are seen
to be much smaller than those mentioned in the
previous paragraph. Again taking the values for
4 ¢ = 1000ft, the errors can be seen to lie roughly

the range *15%.

There is therefore a strong argument for incr—
easing the standard length L used in the model of

T T
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turbulence from the present value of 1000 ft to
one in the range 2000-3000 ft (as is suggested in
proposed F.A.A, criteria). L is known to be at
least 1000 ft (for heights above 1000 ft) and is
probably less than 6000 ft so that a standard
scale length in the range 2000 to 3000 ft would
not only accord better with the experimental
evidence but would also reduce the possible errors
arising from assuming an incorrect value.

6, Discussion on gust alleviation factors, discrete
and spectral

6.1 Discrete gust alleviation factor

For the
data (Bullen

sis of gust - c.g. acceleratiou
the discrete gust concept is used
following a procedure 1 down in AP 970 based
on the paper by Zbrozek(1), This uses a discrete
gust alleviation factor F determined by computing
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BASIS: L = 2500 ft.

I

(25)

e
Sk e Gyl
R uc

E

this function is shown as the continuous line in

Figs 16. It may be seen that F shows a similar
0-8f = increase in magnitude with increased ugc/R as that
Ko\;& previously noted for K.
06— = When unsteady lift is taken into account it is
not possible to get a simple closed expression for
F but nevertheless it is beneficial to plot the
04f - results obtained numerically against uzc/R for
various values of ¢/R. The results for infinite
aspect ratio shown in Fig. 16 were computed from
02 -1 the transfer functicn 5A%p) derived for the spectral

|

1

JINS g

1000

2000

calculati?ns bus using the deterministic input ALGOL
programme 15,17).  The curves for various values
of ¢/R in the main lie below those for the no unst-
eady lift case, particularly at the higher values

of uge/R. For finite aspect ratios the curves are
all found to bunch closer to the basic curve as was
observed in the curves for the spectral factor and
as one might expect from a knowledge of the unsteady
lift functions.

F1G.15 VARIATION OF KO%WITH Hqc FOR
VARIOUS ESTIMATED SCALE LENGTHS

the peak acceleration of the aircraft when respond-
ing in heave to a 100 ft ramp gust. Then
n.—.ﬁ‘—l’w
ow/s €

6.2 Comparison between discrete and spectral gust
alleviation factors

(2u)

Neglecting unsteady 1ift, we have in Fig. 17
compared F as a function of uge/R with K plotted as
a function of uge/L. To indicate the significant
parts of these curves, typical values of ugc are
inserted most of which have been taken from Hall's
paper. These range from 169 foraDC3, through 300
for a DC4, to 660 for a Comet I and 1500 for a
Boeing 720; they are presented in Fig., 17 as values
of pge/L assuming L = 1000 ft and uge/R assuming
R = ?00 f't.

where n is the peak acceleration in g units.

[For stressing calculations aircraft firms will,
of course, do more extensive calculations of
discrete gust responses involving more modes and a
variety of gust shapes and lengths.]

Zbrozek produced a series of curves for various
ramp lengths, However, for the case when unsteady
1ift is neglected, it is apparent either by
analogy with the analysis presented here for the
spectral gust alleviation factor, or by direct
consideration of the equation of motion that his
set of curves of F against ug for various values
of R/c (ramp length to chord ratio) could be re-
placed by a single curve of F against uge/R. It
is easily shown that in this case

This figure shows a somewhat striking similarity
in shape between the two curves. If the curve for
F is shifted to the left by some constant amount
then it is possible to nearly superimpose one curve
upon the other; if the best fit is made within the
range of current values of usc/L this means in effect
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plotting F not against w.c/R but against ugc/2.5R.
Having done this, the differences between g:e two
curves for asc/L > 0,30 are, on the whole, less
than 3.

Thus at this stage we can say that F and K are
both heavily dependent on ugc and alsc on the shape
or structure of the turbulence, In both the
deterministic ramp type gust model and in the spec-
tral model there is a length parameter (R or L)
which is not yet completely identified. We have
demonstrated a sort of equivalence between R and L
in that for the assumed models of turbulence, for
a given aircraft (i.e. prescribed ugc) the same
values of K and F are obtained when L = 2,5R.
that we are not saying anything about the actual
structure of the turbulence; we are merely indicat-
ing possible computational advantages of being able
to infer values of K knowing F and vice versa. In
the next section plot we shall explore further the
relation between F and K to see whether these simi-
larities do throw light on present methods of
analysis of gust loads.

Note

6.3 Estimation of loads on a new aircraft

We take as the starting point a measured distri-
bution of crossings of acceleration levels from an
existing aircraft or, rather, a multiplicity of
them from several aircraft. These distributions
can either be converted directly to give estimated
distributions of loads on the new aircraft or used
to give an intermediate gust model. In either case
two different classes of conversion process are
used; that based on the discrete gust °°n°°£§ and
the other on the random process concept(U:1 .

Let us consider the direct conversion of' acceler-
ations.

In the discrete gust load process the only
paraceter embodying the aircraft dynamics is F.
The actual conversion process of loads from air-
eraft A to aircraft B then simply involves horizon-
tal scaling using the factor (ngF)p/(ngF)s. When
using the spectral gust load process two parameters
are required, namely & horizontal scaling factor
(n,K)37(nsK)A and a vertical scaling factor
No @ o,A (Where N measures the crossings of zero
acdeleration). Héwever if No does not differ
significantly from aircraft to aircraft the spectral
process also involves primarily horizontal scaling.

Hence from measurements in a given aircraft A,
and calculations of F and K for aircraft A and new
aircraft B, two different estimates of the loads
on the new aircraft would be obtained by the two
scaling processes, If however, Fp/Fj = Kp/Ka,
i.e. if (F/K)g = (F/K)a the two estimated distri-
butions of loads on B would be identical, %n
fact as pointed out by earlier writers(13,14), and
as we shall now show, F/K does not differ appreci-
ably from aircraft to aircraft. This explains why
the conversion of loads from one aircraft to another
via the discrete gust concept, although based on
somewhat questionable assumptions, has worked well

in the past.

6.4 Comments on the ratio F/K

In tne previous sections we have established
that one important parameter concerned in the
obtaining of consistent conversion of loeds from
aircraft to aircraft is the parameter F/K. If the

values of F/K are tne same for the old and the new
aircraft then either discrete gust load conversion
process or the spectral method will produce the same
estimated distribution of loads on the new aircraft.

Fig. 18 shows curves of f/K plotted against the
parameter ugc for various values of the ratio
where R is the ramp length used in estimating F, L
the scale of turbulence used for K. The same
assumptions are made in both cases, namely, no
pitching and no unsteady aerodynamics.

In the United Kingdom the 100 ft ramp has been
taken, somewhat arbitrarily, as the standard; L,
with little better foundation has been taken as
1000 ft. Thus the applicable curve is that
labelled R/L = 0.1, Between successive aircraft
for ugt greater than, say, 250 the change in F/K
has been slight and this helps to explain why
satisfactory estiuates of gust loads on a new air-
craft have been obtainable on the discrete gust
hypothesis, Even if spectral techniques had been
sufficiently developed only small improvements in
estimates of loads on new aircraft would have been
achieved.

Now although the spectral approach to the estim-
ation of gust loads is well-established, in aircraft
firms it has not aupplanted the discrete gust
approach and both methods tend to be used side by
side. Hence it may still be thought worthwhile if
some comments were made regarding the other curves
in Fig. 18 and, in particular, if consideration be
given to the guestion what, with hindsight, would
have been the most satisfactory value assumed for
R. Most of the counting accelerometer data in the
U.K. has been converted to discrete derived gusts,
N("gd)' by the use of discrete gust alleviation
factors based on the 100 ft ramp, However no one
claims that the distribution N('sd) actually repre-
sents the distribution of true gust velocities which
a meteorologist would recognise. N(wgq) provides
a convenient half way stage to unify and collate all
the information available from a variety of test
aircraft. Supposing now that the 300 ft ramp
length had arbitrarily been chosen as the standard
so that all the discrete gust data would have been
processed using dif'ferent values of F, and resulted
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in different distributions of discrete derived
gusts. Keeping L = 1000 ft and taking the appro-
priate curve marked R/L = 0.3, it may be seen that
F/K remains sensibly constant. If one assumes
that the most satisfactory model of turbulence is
the spectral model and uses this as a basis one
might then argue that all the distributions of wgs
should lie closer together.

As a corollary to this discussion one might
argue further that since there is a proposal to
assume larger values for L one ought at the same
time to increase the standard length R used in the
discrete gust load conversion process. Otherwise
the smaller values of R/L would imply larger values
of F/K and consequently accentuate differences
between the two methods of load estimation for a
new aircraft.

7. The dependency of gust loads on the
main parameters

In the main this paper is concerned with the
calculation of the spectral gust alleviation factor
K. With the assumptions of a rigid non-pitching
aircraft it has been shown how K depends on just
the two non-dimensional parameters uge/L and c¢/L.
We now go a stage further to see how op/oy, depends
upon these and any other parameters througﬁ the use
of the equation e, = nBKa,s.

on/ oy, depends not only upon K but also upon the
conatant§ occurring in the statical standard
ng = pVa/2d/S. However, this can be re-srranged
to give ng = V/gugc. Thus

[+] U c
b 4 ¥ ] ks s .8
2tk (.9
'8 g

At this stage we can afford to leave unsteady 1lift
out of the discussion knowing that in any practical
case and a particular value of ugc/L, K can be
obtained by reducing the K for no unsteady lift by
a suitable percentage, depending upon c/L.

(26)

-1
In this case we can absorb the (ugc/L) term
in with K and considﬁrcthe new combination
1 .x(-s—).
c L
ugﬂ-
This is shown plotted against uge/L in Fig, 19, the
ordinate being displayed as (Lg?V).(cn/u' )« The
trend is twoards the lower right hand corﬁar since

upc values are progressively increasing, mainly
due to increased operating height.

The effect of the aircraft speed parameter, V/L,
can now be demonstrated by plotting as in Fig. 20,
curves of on/ow. ageinst wge/L for various values
of V/L. Since®this is a fﬁg-log plot these curves
are all obtained by vertically shifting the
basic curve for V/L = 1.0.

Here we see that although increased ugc/L values
leads to reduction in gust loads, increased
operating speeds, of course, accentuates them and
the orders of magnitude of the two effects are
clearly indicated in this figure. To give a guide
as to which trend predominates the operating points
of various transport aircraft are inserted on the
graph, Most of the data are taken from Hall s
paper but to bring the list up to date additional
data are inserted for the Boeing 720, and two
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supersonic transport configurations.

This figure is interesting as an illustration of
the fact that despite the vast range of types
covered (a twenty fold increase in ugc/L, a ten
fold increase in speed between DC3 and S.S.T.)
nevertheless values of o,/c, all lie close to a
mean of, about, 0,016, Thif is of course just
another way of saying that they have all been
designed to meet a similar gust requirement.

8, Discussion

As the rirst stage of a study to be made of air-
?raft responses to random turbulence based on stat-
ionary random process theory, this paper presents
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results for various aspects of the spectral gust
alleviation factor, The assumption is made that
the aircraft is rigid or, at least, that aerocelas-
tic effects can be satisfactorily taken into account
on a quasi-static basis,

For the absolutely basic case of a non-pitching
aircraft and ignoring unsteady aerodynamics, a
simple formula is given in Section 3.4.1. for K in
terms of a single parameter uge/L. This very sig-
nificant parameter reflects, through ug, the rela-
tive importance of inertia as opposed %o aerodynamic
forces and simultaneously, through c¢/L, the relative
scales of aircraft and turbulence. When unsteady
1lift is included it is found in all cases to be
beneficial and, for infinite aspect ratio, reduces
K by probably no more than 10%. For small aspect
ratios the unsteady lift effect is much less and
typically would be no greater than around 5%.

These results are based on unsteady lift functions
for incompressible flow. Judging by the unsteady
1lift functions shown in Ref. 1 for subsonic com-
pressible flow we might expect greater reductions
in the alleviation factor for flight at high
subsonic speeds,

In Section 3.4.3., unsteadx aerodynamic effects
are broken down further and Kussner function and
Wagner function separately discussed., It is
shown that taking the Kussner function alone and
ignoring the Wagner function results in overestim-
ates of the beneficial reduction in K arising from
the unsteady aerodynamics., The contrary effect
of the Wagner function is around 33%,0f that of
the Kussner function for infinite aspect ratio but
much less than this for finite aspect ratios.

It is shown that the two simplifying assumptions
regarding the form of the unsteady lift functions,
made in previous calculations(2,6 , led to consi-
derable overestimates of the effect of unsteady
aerodynamics. This would now appear to be of
very minor importance with regard to rigid body
motions.

In Section 4 the effect of the pitching degree
of freedom is discussed. Some generalised curves
are presented which make it a simple matter to
estimate the spectral gust alleviation factor for
a specific aircraft. It is shown that for a tail-
less aircraft with unsteady 1lift neglected, the
important variables are the mass/scale parameter
ggc/L, short period damping ratio ¥ and the
parameter s, depending upon lift curve shape and
representing the damping from heave.

From calculations at a value of uge/L = 1.0, it
appears that for the most part K is greater for the
pitching aircraft than the non-pitching aircraft.
The alleviation factor is seen to decrease either
as total damping ratio Z increases for a constant
value of damping from heave Ly, or as rotary
damping Zys+y increases for a constant value of Z.

It is estimated that for a tailless aircraft
having a value of uzc/L around 1.0 and moderate
damping ratio the pitching degree of freedom will
contribute a 5% increase in the alleviation factor.
For an aircraft with tail this figure may bs nearer
10%. In this latter case general conclusions
regarding trends are more difficult to state.

In the discussion in Section 5 on the relevance
of turbulence scale length L the question of meas-
urement accuracy of L is brought in. Since the
measurement of L depends critically on the long
wavelength part of the spectrum it is difficult to
put a precise value on L, but there is evidence to
support the contention that the present standard of
1000 ft is too low and should be replaced by a value
in the range 2000 to 3000 ft. It is therefore
important that we clearly realise how significant
such a change would be with regard to aircraft
response, It is shown firstly that an increase in
assumed scale length L means a decrease in the value
of the gust alleviation factor. However, uncerta-
inty in the value of L from experiment is associated
with uncertainty in oy, and the two have to be taken
together when estimatigg gust loads. It is demon-
strated that in the case of a light aircraft (say
ugt = 250) these uncertainties may mean no more than
a 10% variation in estimates of gust loads. How-
ever, for a heavier aircraft (say uge = 1000) there
may be anything up to variation, Since L is
known to be at least 1000 ft (for heights above
1000 ft) and probably less than 6000 ft, replacing
the standard length of 1000 ft by a value in the
range 2000 to 3000 ft would not only accord better
with the experimental evidence but would also con-
siderably reduce the possible errors arising from
the use of an incorrect value,

The root cause of the difficulty in estimating
loads on a very large aircraft such as the Boeing
720 or the 3.S8.T. is, of course, the fact that so
much power comes from the very long gust wavelengths
where the spectrum is ill-defined. There is also
a further difficulty to contend with, namely the
greater contribution from the pilot. In this study
we have been assuming stick-fixed aerodynamics but
in the next stage the pilots contribution or that of
an autopilot may be studied by the addition of some
suitable transfer function in the block diagram.

Ihe relation between the discrete and spectral
gust alleviation factors is discussed in Section 6.
It is shown firstly that the discrete factor F may
be very conveniently plotted against ugc/h, where
R is ramp length in ft, and, for the case when un-
steady lift is neglected, a simple expression is
derived for F. Again when unsteady 1lift is included
it leads to a set of curves for various values of
¢/R lying in the main below the basic curve.

One might have expected the general trend of K
and F with increasing Hgt to be similar to each other
but it is slightly surprising to find the graphs of
the two factors to be quite so similar in shape., It
is demonstrated that in the conversion of loads from
one aircraft to another an important factor leading
to consistent estimations by the spectral and dis-
crete gust techniques is that both old and new air-
craft should have the same values of the parameter
F/K. In Fig. 18 it is shown that F/K depends only
upon uge and the ratio of the two scale lengths R
and L used in the two gust models. For the normal
standard lengths of R = 100 f't and L = 1000 ft, F/K
has varied little from aircraft to aircraft in the
past which at least partly explains why loads have
been satisfactorily predicted by the discrete gust
conversion process., The spectral technique would
have provided only slight improvement.

Agreement between spectral and discrete gust
methods would have been even closer had a longer
standard ramp length been used, say R = 300 ft,
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since this would have resulted in almost negligible
variation in F/K with ugc. Perhaps it should be
stressed that whilst this somewhat arbitrary defin-
ition of a standard ramp length may be satisfactory
in order to produce consistent c.g. acceleration
estimates it will almost certainly not be adeguate
when discussing structural responses. For example
structural responses of slender aircraft at low
speed are known to be very sensitive to ramp length
in the range 100 to 200 ft,

Lastly, in Section 7, the estimation of normal
accelerations for a new aircraft is discussed. It
is shown that to estimate an/ang, using the relation

on/Owg = ngk

there are basically only two important parameters,

namely uge/L and V/L. Curves are presented showing
on/ow, @8 & function of wge/L for various values of
V/L. © It appears from observations of the trend of

ugt and V for a very wide range of transport aircraft
that they all have approximately the same sensitivity

to gusts, namely
on/aW = 0,016 g units/ft/sec

(assuming L = 1000 ft). This constant value
probably simply reflects the fact that the aircraft
considered have all been designed to satisfy some-
what similar gust strength requirements.
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Appendix A

Mean square response of the first order system
(Method of Ref. 16, Part I1I).

Consider the system described by the differential
equation

(Dek)x(A) = A y(1)

where A is a non-dimensional time parameter,

D = d/dA, A is & constant, y(A) and x(A) are rar‘om
processes,

Taking Laplace Transforms,
x(s A
Hx(s) . y{s; T os+k
and
x(s) _ sh
Hi(s) Ty(s) T os+k

We shall concentrate on the second of these two
transfer functions.

Now assume that the stationary input process
y(A) has autocorrelation function given by

#5(®) = 20131zl Jexpl-b]z| ]

where £ is a non-dimensional time lag based on the
same time parameter as A; c§ is the mean square
value of y. The mean square value of the response,
o2, is obteined by calculating the transformations
of ﬁi(g) as it passes through the following system,
$(&) 3, (&)

¢, (&) ¢,(&)

8y, (8) NG

Input function, ¢, () s-watrix

a’[1,-%] oVl 2b -b? 0
1z1e P& |2 2y b

Output function, 3)2 {z)

u; st. -2b2, —] u, (&)
2 bigl
1o =0 18
Input function 1 ﬂ S+k z-ma.trix
B 1
¢, (&) 0 0 0 5
1 -b
0 T . -
) -2b 1 k%4b?
(k*-b7)7 k%537  k(k%-p3)7

The function qs}(g) is then given by

U,E, il 7l 1 L N bkg§k=-b*1:| u, (€)

¥ (k2-b2)2’ 2(k%b?) 2(k?-b?)? e-blel
Igle_bigl
oklEl

The scale constant filter merely wultiplies ¢_(E) by
A%,  Putting £ = 0 in #,(E) we then obtain tHe
expression for the mean square value for X, which
after simplification becomes

Symbols
a Lift curve slope
c Wing mean chord
D Operator d/dA
F Discrete gust alleviation factor
f(r) etc. Normalised gust autocorrelation
function (Eqn. 5)
g Acceleration due to gravity
h(t) System unit impulse response function
|H(w) | Frequency response function modulus

System transfer functions
Pitch inertia coefficient
Spectral gust alleviation factor
L Scale of turbulence
Ny Number of positive zero crossings per
mile
N(n), N(ws) Number of positive crossings per mile
of arbitrary levels of n or wg.
ts

H(s), H(p)
ig

n C.g+ normal acceleration in g un

n Non-dimensional normal acceleration
ng Statical standard of normal accelerat-
N ion (Egn. &)

q Non-dimensional rate of pitch

P, 8 Laplace Transform variables

R Ramp length in discrete gust studies, f't.
r Distance, ft.

S Wing area

Sn(u),soo(w) Input and output spectra respectively
t Time, secs.

£ W/gpSV, unit of time, serosecs.

v Aircraft forward speed

w Aircraft weight

w

Adrcraft vertical velocity
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Laryrs Terms contributing to

3.

b

5

6.

7e

8.

9.

10.

1.

12.

=%

ié:gs‘#co (r)

€ D v g 9‘
o o

Gust vertical velocity

Non-dimensional velocities

Gust velocities used in gust models

Distance travelled in ft.

x/c, non-dimensional distance travelled

Non-dimensional time (Appendix A)

2W/3/pgea, gust mass parameter

T/t, non-dimensional time lag in
autocorrelation function

Air density, slugs/ft?

Rem,s value

Time lag, secs.

System autocorrelation function

Input and output autocorrelation
functions

Wagner function

Laplace transform of #(y)

Kussner function

Laplace transform of ¥(y)

Gust spatial frequency (Radians/rt)

i, frequency in radians/sec.

Concise aerodynamic derivatives
(equation 19)

Short period mode undamped natural
frequency

Short period mode damping ratio

v
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