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ANALYSES OF JET AND BOUNDARY LAYER NOISE
(TURBULENCE NOISE)

O. F. Bschorr
Entwicklungsring Siid GmbH, Miinchen

Summary

The problem exists of gaining information on
the intensity and spectrum of turbulence-generated
noise, This task is solved by assuming that:a
homogeneous, isotropic and (quasi-)stationary
turbulence field is subject to a canonical
distribution,

With this postulate it is possible to apply the
terms and solution techniques of statistical
thermodynamics to a turbulence field, In parti-
cular, a '"turbulence temperature', a '"turbulence
entropy" and laws which are analogous to the
First and Second Laws of Thermodynamics will be
introduced.

The analysis is limited to the acoustic
component of turbulence and has the following
results for the linearized case:

1. The sound intensity radiated by turbulence
increases as the 8th power of a characteristic
turbulence velocity.

J ~ v

2, The frequency f)4 of the maximum of the
spectral intensity increases in proportion to the
second power of a characteristic turbulence
velocity.

3. The intensity iys of the maximum of the
spectral intensity increases as the 6th power of
a characteristic turbulence velocity.
~ yb

m

4. The ratio between the spectral emission

.coefficient € (f) and the spectral absorption
coefficient @ (f) is equal to the <pectral intensity,

i) =3

e (f)
The v8 law is identical to the Lighthill law
developed in another way. In optics, analogous
relationships apply for the black body.

1, Introduction

1l Background

The turbulent mixture of a jet engine or rocket
blast with the ambient air causes high acoustic
energies to be released. Thus, aircraft engines
with afterburner can release an acoustic power of
100 kW, The acoustic power of the known large-
size rockets amounts to several MW, Thus, every
increase in engine output results in an over-
proportional increase in acoustic power.

The alternating pressures of such sound
intensities are so high that with the lightweight
construction used for aircraft, they are a danger
to airframe and structure. A number of fatigue
failures due to acoustic loads are known. The noise
effect on the electronic and hydraulic airborne
instruments is just as dangerdus. At critical
vibration levels, malfunctions occur, causing
position and homing indicators as well as
navigation and control systems to fail, It is there-
fore essential that knowledge be acquired regard-
ing the nature and the laws of turbulence noise.

Research efforts concerning turbulence noise
were started rather late (~ 1950), The actual
impetus was provided by the use of jet and rocket
engines. As Lighthill (7) mentioned in his paper,
""On Sound Generated Aerodynamically', this
problem had been ignored.

In this connection, it should be noted that the
theory of turbulence itself is not yet complete, Of
course, by applying statistical methods it was
possible to develop valuable relationships which
qualitatively describe the internal structure of
turbulence, but which hardly provide any
quantitive description, Only by limiting the sub-
ject to homogeneous and isotropic turbulence, was
G. I. Taylor (2) able to obtain concrete results by
means of this method. In particular, T. v. Kirmdn
(3), A. N. Kolmogoroff (4), W. Heisenberg (5) and
C.F. v. Weizsidcker (6) have furthered the
development of turbulence statistics,

In 1951, J. E, Moyal (9) stated that turbulence
is composed of two different components; by means
of Fourier-analysis he identified a longitudinal
(=acoustic) and a transverse (=eddy) element,

J. M, Lighthill (7, 8) proved that quadrupoles



are the source of turbulent sound generation. The
most important result of Lighthill’s work, which
states that the emitted acoustic power increases

as the 8th power of a characteristic turbulence
velocity, was subsequently examined and confirmed
by several authors: E, J, Richards (10),

H. M. Fitzpatrick, R. Lee (11), J. M. Tyler,

E. C. Perry (13), L. W, Lassiter, H. H. Hubbard
(14) and H, v. Gierke (15).

Particularly at English institutes it was
possible to further modify the theory of turbulence
noise, In the U. S. A.,, Powell (19, 23),

H. S. Ribner (17) and D. M. Phillips (18) worked
on this problem, Dyer and Heckel (30) have applied
thermodynamic relationships to statistical
vibration phenomena. By introducing ''vibration
temperature'’, it became possible to describe the
vibration energy of systems with multiple degrees
of freedom,

1.2 Analogy: Turbulence/Statistical
Thermodynamics

The rigorous equations for a viscous,
compressible medium are not linear, and therefore
the mathematical treatment of turbulence is very
complicated and laborious. In order to keep the
work within reasonable bounds, simplifications,
linearizations and omissions will be made so that
results are valid only within a limited area.

On the other hand, a theory which is based on
the micro-condition of turbulence, that is, which
considers the fate of every individual particle in
the medium, requires a high level of mathemat-
ical effort, It would correspond to the effort that
would be required to obtain the pressure a gas
exerts upon a wall by summation of the individual
impacts of each molecule against the wall, For
this purpose, with known position and velocity of
every molecule, the force would have to be cal-
culated by application of the impact laws. This
would be hopeless for molecular systems from the
very start, even if the Heisenberg uncertainty
principle did not exist, and if an exact deter-
mination of position and velocity of the molecules
were possible.

The analogy between random statistical
molecular movement in thermodynamics and
random statistical turbulence movement justifies
the attempt to apply the Laws of Thermodynamics
to turbulence, This analogy becomes even more
striking if the turbulence volume is thought of as
being subdivided, and if these partial volumes are
assumed to be the '""molecules' of turbulence.
These "molecules' exert forces against each other
and mutually transfer potential and kinetic energy.
Qualitatively, their behavior corresponds, for
instance, to that of HO molecules of water in the
liquid state,

Based on this conformity, it is assumed that
a "turbulence temperature', a '"turbulence entropy"
and a "first and second law of turbulence dynamics"
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may be postulated for turbulence, analogous to
temperature, entropy and the First and Second
Laws of Thermodynamics, respectively,

Independently of the simple idea of assuming
that a turbulence quantity consists of partial
volumes, i, e., of ""molecules', a more rigorous
analogy may be presented. As is known, a
turbulence volume may be assumed to be a sum of
longitudinal (=acoustic) and transverse (=eddy)
waves through Fourier-analysis. Planck (35) has
shown that waves may also be assigned temperature
and entropy. In addition, it may be assumed that
it would be reasonable to assign a ''turbulence
temperature' and a "turbulence entropy' to the
waves which form turbulence,

The question then arises as to how this
"turbulence temperature' may be clearly demon-
strated. For this purpose, it is necessary to
return to the idea that the volume of turbulence
is divided into small partial volumes. As a result
of the turbulence motion, these partial volumes
have a certain velocity, for instance, similar to
the thermal molecular velocity of H2O molecules.
The magnitude of the velocity, that is, the mean
value of the velocities of the individual partial
volumes is a measure of the '"turbulence
temperature'., Thus, a volume with no turbulence
will have a ''turbulence temperature'' of zero, and
the greater the turbulence motion is, the higher
the turbulence temperature will be.

Unfortunately, it is not possible to provide a
similarly clear demonstration for '"turbulence
entropy''. Let it merely be mentioned that
"turbulence entropy' may be attributed to the
probability of the turbulence condition in the same
way as thermodynamic entropy is related to
probability,

2. Problem

It is the purpose of this paper to investigate
the acoustic component of turbulence., This
limitation was made, since only the acoustic
energy portion of turbulence can be radiated to the
outside, whereas the non-acoustic portion has no
remote effect. Using the terms '"'turbulence
temperature' and "turbulence entropy' as defined
in Section 3, an attempt will be made to acquire
information on the intensity and spectrum of
turbulence noise.

A theoretical approach analogous to that which
led to the determination of the laws of thermal
radiation will be applied to a turbulence volume,
This will result in the determination of relation-
ships for turbulence noise which are analogous
to the Stefan-Boltzmann law of radiation, Wien’s
displacement law and Kirchhoff’s law of absorption
First of all, it should be stated that the law of
radiation, determined in this way is identical to



the Lighthill law determined in another way. It will
not be possible to clarify the complete spectral law
of turbulence noise, This is similar to the case of
thermal radiation whose spectrum also cannot be
determined solely by means of thermodynamics,
but first requires application of the quantum
theory. Nevertheless, it will be possible to again
determine the law of radiation by means of the
hypothesis upon which this paper is based, and to
determine for the first time a law of similarity

of turbulence noise, information on the position
and level of the maximum spectrum, and a re-
lation between the emissivity and absorptivity

of turbulence fields.

3. Working Hypothesis

3.1 Assumptions

The dimensions of the investigated turbulence
volume are presumed to be large with respect to
the prevailing sound wavelengths in order to
eliminate the influence of natural resonances. The
turbulence in this volume is to be homogeneous,
isotropic and stationary. In addition, the derivation
will be limited to low turbulence velocities,

In the case of homogeneous turbulence, at all
points in the volume, the mean turbulence
velocity, the mean pressure, that is, in fact, all
mean values of turbulence magnitudes are to be
equal, Fields of turbulence occurring in jet en-
gine streams are not homogeneous in this sense,
since they have a high turbulence at the exhaust
nozzle which decays downstream and finally dis-
appears completely. However, such non-
homogeneous fields can partially be regarded as
homogeneous portions.

Isotropic turbulence is understood to mean
that all directions in the turbulence volume under
consideration are equally legitimate., The turbu-
lence field of the jet stream is not isotropic, since
it has a preferential direction, i, e., the direction
of flow, By means of a system of coordinates
moving with the flow, i,e., through a Galileen-
transformation, such a field can be made isotropic.

In the case of stationary turbulence, the mean
turbulence velocity and mean turbulence pressures
are equal during the observation period. Notwith-
standing this strict regulation, the investigation
can also be extended to a quasi-stationary field of
turbulence, the decay rate of which is low with
respect to the speed at which turbulence
equilibrium is attained,

The restriction to low turbulence velocities is
made in order to simplify the mathematics, How-
ever, the relationships gained in this way are
correct to the first approximation. Any number of
higher terms may be taken into consideration if
sufficient effort can be expended on calculation,

3.2 Working Hypothesis: Canonical Distribution

of Turbulence Enerpgy

Let a closed system consist of identical and
mutually independent particles. Let each of these
particles have a quantitative dimension, for
example a certain energy. This energy may be
freely transferred from one particle to another.
However, the total energy of all particles is con-
stant, Such a system can be presented in various
permutations due to the free transferability of
energy. On the average, however, that distri-
bution of the energy to the individual particles will
occur which has the greatest probability, Such a
system is designated as the canonical totality and
the distribution as the canonical distribution,

Gibbs demonstrated that such a canonical
system behaves macroscopically just like a
thermodynamic system, The distribution modulus,
for instance, which is a typical feature of the
canonical distribution, has the same parameters
as the thermodynamic, absolute temperature
scale. The probable condition can be attributed
to the entropy of the thermodynamic system.

These relations become evident when it is re=-
called for example, that gases consist of
individual particles - the molecules of which move
independently from one another and freely transfer
their energy by impact, while the total energy of
all molecules remains constant, A detailed analysis
shows that temperature, entropy and the thermo-
dynamic principles apply not only to the so-called
""ideal gas'' but generally to any complex systems
(e.g., van der Waals forces, fluids, solids,
frozen degrees of freedom). The hypothesis is pro-
posed that a closed, homogeneous, isotropic and
stationary turbulence volume represents a
canonical system and that the turbulence energy
is subject to a canonical distribution,

D -
e
e

velocity of a
correlation volume

closed turbulence
volume

correlation volume



The turbulence volume under consideration is
separated into partial volumes, which are identi-
cal with one another. Since it was assumed that
the homogeneous and isotropic condition exists
throughout the turbulence field, it is possible to
realize this uniformity. Initially, the number of
individual partial volumes is arbitrary. Due to the
requirement that all particles in a canonical system
be independent from one another, a certain volume
size is specified, It may be designated '"correlation
volume', and is defined as that volume beyond
which correlation ceases to exist between adjacent
correlation volumes. The combined mass at the
center of gravity of a correlation volume is desi-
gnated m.

Due to the forces acting between the individual
correlation volumes, the turbulence energy may
be freely transferred from one particle to another,

As the turbulence field under investigation is
assumed to be stationary, the condition that over-
all system energy be constant is satisfied. It is
thus evident that all characieristics of a canonical
system — identical independent particles, free
transfer of energy, constant overall energy - are
realized in the assumed homogeneous, isotropic
and stationary turbulence field. Thus it is possible
to postulate canonical distribution for such an
idealized turbulence quantity, and a '"turbulence
temperature' a ""turbulence entropy'" and a "lst
and 2nd law of turbulence dynamics' may be de-
rived in analogy to statistical thermodynamics.
These functions will have the same characteristics
as temperature, entropy and the laws of thermo-
dynamics. Macroscopically, a turbulency quantity
is fully defined by these characteristics.

"Turbulence Temperature' @

The first taskis to relate the still unknown
condition dimensions, '"'turbulence temperature'
and "turbulence entropy' to measurable turbulence
values. It is appropriate to express the '"turbulence
temperature' as a function of a characteristic
turbulence velocity or of a kinetic turbulence
energy.

The turbulence volume is subdivided into N
correlation volumes of equal weight, Due to their
turbulent movement, Nj correlation volumes are
assumed to have the kinetic energy €], N cor-
relation volumes the kinetic energy £, etc, The
pairs of related values N], €;; N2, £€2; N3, €3 ...
are for the time being unknown, It is only known
that the total number of correlation volumes
Nj, Ny ... mustbe N, i.e .,

{”M' =N (3.1)
and that the sum of the energies of the particles
is always equal to E, i.e.,

: EHNH:E

n

(3.2)

As is known, distribution of the number of
possible cases W and of the equal energy values
Nj, Ny ... to the N correlation volumes is

N
We R as. !

As free exchange of energy between the
correlation volumes is possible, in dynamic
equilibrium that distribution will result, for which
the probability for W is the greatest. Itisappropriate
to examine the maximum value of [nW in the
place of the maximum W. Such a procedure is
permissible as both functions are monotonic.

("W=inN!-X InN,! (3.4)

In accordance with Stirling’s formula we may

write for value N:

InN!'= Nin N-N (%)
The equation (3,4) thus changes into
IhW= NinN-ZN, InN, (3. 6)

By means of Lagrange multipliers, the maxi-
mum of W can be ascertained, taking into
consideration the boundary conditions of equations
(3.1) and (3.2). The calculation results in

- &
N=N e 5" (3.7)

The parameter © is the distribution modulus.
Gibbs has shown that the distribution modulus has
the same characteristics as the absolute thermo-
dynamic temperature, Therefore, © can be
identified with the "turbulence temperature'’,

Y , is a trivial parameter in this connection
which may be construed as "free energy'.

The turbulence temperature @ and the free
energy ¢ are established by the boundary
conditions (3. 1) and (3.2). By inserting (3. 7) into
(3. 1) we obtain:

-¢
Le 2% 2 (3.8)
Inserting (3.7) into (3. 2) we obtain:
2' En
Lee™ o ’FE“’ (3.9)

The parameter ¢ , which is of no interest
here can be eliminated from equations (3. 8) and
(3.9), resulting in the following equation for the
mean particle energy

(3. 10)



The equation (3. 10) shows in the numerator the
derivation of the denominator so that

€ = -d—réjlnfegt

In order to display the essential point, a finite
number of discrete energy values €, €3 covesss
was used in the above presentation, But actually
a continuous multitude of € -values exists, In
such case it is not permissible to define and count
cases in the described manner.

(3.11)

Passing the limit from the discrete € -values

to the continuous € -values gives:

(3. 12)

q. qy, q, are the pulse coordinates defined:

g, =myv
iy =

9: = m¥Y; (3.13)
Equation (3. 12) formally agrees with
equation (3. 11). The summation is merely re-
placed by an integration, The expression
e e

e =2Lmv’=e

(3. 14)
in the exponent of equation (3. 12) represents the
kinetic energy of a correlation volume,

Solution of the integrals defined in equation
(3.12) gives

£= 3— ) (3. 15)
The mean kinetic energy of a correlation volume
can be stated directly

€= " mv : (3- 16)
2

where ;2 is the mean square translation velocity

of the correlation volumes,

Equating 3. 15 and 3, 16 gives the desired
relation between the ''turbulence temperature
and a characteristic turbulence velocity V.

0= % mv? (3.17)
Since the mass of the correlation volumes is

initially unknown, and since unknown proportiona-

lity factors also occur in various integrations,

equation 3, 17 will be used in the further derivations
in the form:

0~ v? (3. 18)

which states that the "turbulence temperature''@
is proportional to the square of a characteristic
turbulence velocity.

"Turbulence Entropy" I

It has become evident that the turbulence
temperature and the canonical distribution modulus
have the same characteristics, The "turbulence
entropy' can also be attributed to the probability
of the turbulence. If two turbulence quantities with
the probabilities W] and W, are combined,
according to the laws of statistics, the overall
system has the probability,

W= m g W2 (3. 19)

or,

InW=InW +(nW, (3. 20)

The logarithm of probability is the sum of the
respective values of the partial quantities, The
entropy has just the same parameter. As is known,

S=5+5, (3.21)

where S is the entropy of the overall system and
S] and Sy are the entropies of the partial systems,

Analogous to the well known Bolizmann's
relation,

S=KinW

In thermodynamics the "turbulence entropy' of
a turbulence quantity is

(3. 22)

I~ InW (3. 23)

This "turbulence entropy'" I satisfies the same
conditions as the entropy function in thermo-
dynamics, In the ensuing derivations, the following
relation will be especially required

dI = 109 (3. 24)

"1, and 2, Laws of Turbulence Dynamics"

According to the principle of the conservation
of energy, the relation for a turbulence quantity
analogous to the First Law of Thermodynamics
can be written directly

d@ = df;+ dA; (3. 25)

This states that if a turbulence energy dQ; is



introduced, its portion dO,- will augment the
internal turbulence energy, whereas the portion
dA,; performs external work. The subscript i
denotes a certain phase since in multi-phase
systems, for instance, a turbulence field composed
of a longitudinal (=acoustical) and a transversal
(svortex) phase, this relation is valid for all
phases., As the present analysis deals only with
the sonic phenomena of turbulence, it is under-
stood that the relation

dQ=df + dA (3. 26)

without subscripts, signifies the acoustic compo-
nent,

If equation (3. 26) is inserted into equation
(3. 24) then

gL _fi%:ﬁ (3.27)

4, Derivation of a Radiation Formula

4,1 Relationship between Sound Intensity and

Density of Sound Energy

In an isentropic radiation field between the
radiation intensity J and the radiant density U the
following relationship exists

U=4L (4.1)

The analogous equation is also valid for the
spectral density

urt)= 4K i) (4.2)

4.2 Determination of Sonic Radiation Pressure

As is known,when a sound wave impinges upon
a surface, it exerts a pressure, the so-called
sonic radiation pressure. In general, any transfer
of energy by radiation (sound, light...) is
associated with a pulse transfer, which results in
a pressure effect with changes in the direction of
radiation, Knowledge of the sound radiation
pressure [ is required for derivation of the
radiation formula, Assuming the sonic speed c to
be independent of the amplitude, the basic equation

2
3E(st) _ 28 .
at: -cf_é.l.s(f.ﬂ (4. 3)

provides the solution for the deflection

E=Esinw(t-s/c) (4.4)

The particle velocity E° is obtained by
differentiation of E vs. time

E=-Ewcosw(t-s/c) (4.5)

The sound pressure for coplanar waves is

P~=pck’

P~ = Ew pc cos w (t-s/c)
(4. 6)

In this case the local coordinate s does not
apply to a fixed point in space as in the linearized
theory, but to a moving volume element,

If E is the deflection of the volume element
from the stationary zero-position x, then

s=x+E (4.7)

Accordingly the sound radiation pressure ]
of a coplanar wave at normal incidence is

r
- _Lj 4.8
= 7 oﬁd(w?} (4.8)
n=Lw f wt- Wsinwt) dwt
L= s wee cos( b wt) )
In this equation the unessential spatial
coordinate x was assumed to be 0,
The integration of equation (4. 9) gives the
Bessel function of first order.
M= wpcj ¢4) (4. 10)
Definition of Bessel’s function (J;) gives:
K
Ew (-1) wky 1o 2k
H5E2) = F grtieein (46%)
(4.11)

Limitation to low turbulence makes it un-
necessary to consider higher terms of the Bessel
series.

n = '}' Ew’p (4. 12)

The term §,w is the particle velocity ampli-
tude. It is known that the sound intensity J results
from the particle velocity,

J-?’pcfgow)’ (4.13)

The sound radiation pressure [, at normal
incidence becomes

=% (4. 14)



With'a sound wave impinging upon a surface at
angle @ the radiation pressure is [

Ng= N,cos?a = 'E':L cos’a (4.15)
After loss-free reflection the pressure of the
reflected wave has exactly the same value as the
impirging wave., The reflection pressure [1 ,
which an isotropic sound radiation exerts upon a

loss-free reflector can be ascertained by integration

over the hemisphere.

/2
N=-=2/Nda=¢nfMNsinada (4. 16)
o
. 4n
ns4 P (4. 17)

It should be remembered that in isotropic and
homogeneous radiation the following relation exists
between the sound intensity J and the density of
sound energy U

U=4nd (4. 11)
Resulting therefrom is the sound radiation
pressure [l in an isotropic sound radiation with

the density of sound energy U.

n-= u (4. 19)

o i)
3

4.3 Derivation of the Radiation Formula

The train of thought by
which Boltzmann found
the law of thermal
radiation will now be
applied to turbulence
noise.

A cylinder of volume V is closed by a movable
piston. The cylinder and piston walls are to reflect
a sound wave without loss, The cylinder volume
contains homogeneous, isotropic and stationary
turbulence in equilibrium having a turbulence
temperature ® . The cylinder volume V has
dimensions which are large with respect to the
wavelengths, Let U be the density of sound energy.
The overall sound energy ¢ of the system is

d=U-V (4. 20)

When the piston moves and the cylinder volume
is reduced by d V, the density of energy U and the
overall energy # change by d U or dff respectively.
The relation is described by the total differential
of equation (4. 20).

db=UdV+ VdU (4.21)

In addition, the piston performs the workd A
against the sound radiation pressure [1 in the
cylinder.

dA =NdV (4. 22)
The change of volume d V is, in the general
case, accompanied by a change d L in the
"turbulence entropy''I . According to the "first
and second laws of turbulence dynamics'' and the
equation 3,27, the relation dI between the change

of energy dff, the external energy dA and the
"turbulence temperature'" © is
dr - 99:dA (3.27)

5]

After eliminating d® and dA according to
the equations (4.21) and (4. 22) we obtain

(4. 24)

i3 (U#ﬂgjdV#VdU

For the time being, the density of sound
energy U is an unknown function of "turbulence
temperature' ©

u=uro (4.25)

The differential d U in the equation (4. 24) can
thus be eliminated by means of equation (4. 25)

au

duU = 35~ do (4. 26)
This results in
dE = onﬂ)dé/oVﬁde (4.27)

From the mathematical viewpoint, ''turbulence
temperature''® has the attributes of an integral
denominator. For this reason the entropy
differential dL must be a so-called total
differential. We remember that such a differential
with the variables V and © has the format

dza-g-“-; dh%de (4. 28)

The comparison of the equations (4. 27) and
(4. 28) shows that

1 . 3L
-‘5; T, (4. 29)
and
-g— %-ga g% (4. 30)

Partial differentiation of equation (4. 29) by
80and of equation (4. 30) by 3V gives:

o3+ $2)-(Uuen) 3%
CR y

avae

(4. 31)



and

lay. 2’ (4. 32)
B30 203V

As the sequence of the differentiations can be
altered in continuous functions (U is a continuous

function of the variables V and © ) without incurring

a change of the deduced values,

2L ... 8%

4. 33
avae = aeav ( )
Equating (4. 31) and (4. 32) gives
de _ an
u+n
(4. 34)

Substituting the radiation pressure [ in
accordance with equation (4. 19) by the density of
sound energy U

= .5. u (4. 19)
and

dn = g- du (4.19")
gives

49 . 1 du

[] $ U (4. 35)

Integration of (4. 35) leads to the result that
the density of sound energy U increases in pro-

portion to the 4th power of '""turbulence temperature'

U~ e (4. 36)
Using the equation (4. 12)
U = %’f J (4.1)

we gather that the sound radiation intensity J also
increases as the 4th power of '"turbulence
temperature'" @ ,

4

hat, (4. 37)

Using the equation (318) @~ v? and sub-
stituting the characteristic turbulence velocity v
for the '"turbulence temperature'" © , we obtain the
v® law which Lighthill found by quite another
method in 1952: The sound intensity J emitted by a
turbulence field is proportional to the 8th power of
a characteristic turbulence velocity,
(It is impossible, as is also the case with the
Stefan-Boltzmann law of radiation, to define the
still unknown proportionality factor in equation

(4. 38) by means of previous assumptions, In
section 6. 1 the attempt is made to ascertain the
various characteristics by dimensional analysis).

5, Deduction of Spectral Formulas

5.1 Adiabatic Process

The equation for "adiabatic' process of the
turbulence field is required in the following de-
duction. This means that - as is the case with
thermodynamic adiabats - the turbulence volume
is changed without the exchange of turbulence
energy from or to the outside, The "turbulence
entropy'" I along an adiabatic curve remains
constant.

dZ =0

In section 4, 3 a cylindrical volume V was
changed by dV, without gain or lost of turbulence
energy. The change of '""turbulence entropy' is
here described by equation (4. 34).

(5. 1)

LU+ dV+ VdU (4. 34)
dl R
According to equation (5. 1),
= LUs1)gVeVdU 5.2
0 - (5.2)

and after substitution of the radiation pressure
according to equation (4. 19) and the density of

sound energy U according to equation (4. 36) we
read:

0. Foav.ivodo
E ] (5. 3)

The integration of equation (5. 3) provides the
relation being sought between volume V and
"turbulence temperature'" @ during an adiabatic
process

dL=0=3dV+3Vdo

il
I~Vo (5. 4)

5, 2 Deduction of a Spectral Formula

The analyses of Wien on the displacement law
for thermal radiation, with reference to the
theory of canonical distribution of turbulence
energy on which this paper is based can also be
applied to turbulence noise. The following train of
thought is of interest in this connection:

’;‘d’.. fdf A cylindrical volume V
w3 f) contains a homo

geneous,
B isotropic, stationary

¢ turbulence field which is
PP [ oy in equilibrium and has a
S" "turbulence temperature"
tw




and the spectral sound intensity /(f@). A piston
with area F moves into the cylinder at the (low)
velocity w.

Let the cylinder and piston surfaces be
absolutely soundproof.

The reflection of the sound waves on the moving
piston changes the spectral distribution as a
result of the Doppler effect. Furthermore, the
piston performs work against the sound radiation
pressure. No turbulence is to be gained or lost
during the whole process, i.e., the process is to
run "adiabatically', In order to determine the
change of spectral distribution during this process,
an energy ''"balance' will be established, covering
a fixed frequency range, i.e., fromf to f +df ,
and the sound energy d°E_ emerging from this
frequency range and the energy d”E + entering
into this frequency range will be ascertained:

a) the sound energy d6E_ emerging from the
frequency range from  f to f+ df

The energy of all sound waves with frequencies
from f to f+df which strike the piston emerges
by reflection on the moving piston during the time
dt from the range df . This energy is raised into
another spectrum range by the Doppler shift.,
Starting the analysis from a surface elementd F
of the piston surface and considering the sound
waves striking d F at angle of incidence
in the solid angle element dQ , the emerging
energy is:

d E.=i(f©)df dUcos adF dt (5.5)

b) The incoming sound energy d6E + in the fre-
quency range f to f+ df

S' B
f

~

2

A sound wave with the frequency £’
starts from point S*, This wave strikes at angle
of incidence @ , the piston moving at velocity w,
and is reflected. Seen from the fixed observation
point B, the wave appears to come from S* . The
virtual point S* appears to move with a velocity
2w towards S'. The velocity component towards
the observation point B is 2 wcos d .
According to Doppler, an observer at point B
perceives the frequency initially starting at S’ as

the frequency f. We recall that relation between
F.and f. is:

f=f ! (5. 6)

1-2 w/c cosa
As the piston moves very slowly, we can equate
the angle of incidence with the reflection angle. In
view of the small value of w, as a lst approximation.
we may write

f=1(1+2%cosa) (5.7)
for the equation (5. 6). In consequence of the
Doppler effect, a frequency interval df’ is trans-
formed into another frequency range df.
Differentation of equation (5. 7) results in the
following relation:

df=df' (1+2 % cos a) (5.8)
The sound radiation of the range from f' to
f'+ df', which, due to Doppler shift caused by
reflection on the moving piston, enters the range
f to df, also undergoes a change of intensity,
since the piston is working against the radiation
pressure. A wave with the intensity i(f; 8)
and the spectral range df’ which is reflected on
the piston at the incidence angle @ from a solid
angle element df¥exerts the radiation pressure

an :

a’n=2 LEO)dE "f ' 40 cos’a

In addition to the energy i(f’ @) df' df) cosd dF dQ dt
which is transferred by reflection into the ob-
served spectral range from f to f +df
further energy is added by the piston, Thus, the
overall energy d"E_ is

(5.9)

dE=i(f.0)df'df) cos & dFdt+ T dF w dt
(5. 10)

If we replace df' by the equation (5. 8) and d3|'|
by the equation (5.9), we read:

d°E;= i(£/9) df dfl cos a dF dt (5.11)

The overall change of energy, dbE, in the
examined spectral range is

€= dE,- dE. (5.12)

By use of the equations (5.5) and (5.11)

dE=Li(10)-i(f,0)]dfdlcosd dF dt (5. 12)

As it is assumed that the piston speed is low,
there is not much difference between the



frequencies f' and f before and after the
reflection on the moving piston, so that we can
write as a first approximation:

i(£0)-i(£0) = -Qgﬁff-ﬁl (F-F) (5. 13)

The equation (5. 6) permits cancellation of the
difference  f-f and we obtain

i(£0)-i(10)=2 LOL f ¥ cosq (5. 14)

Insertion of the equation (5. 14) into the
equation (5. 12) gives:

o€ = 2t ¥ cosa 238 df d dF at (5. 15)

The energy quantity dbE includes only that
radiation in the solid angle element df
Integration over the hemisphere gives the energy
d%E containing the radiation from all directions,
Assuming the solid angle element to be a spherical
ring, we write d) =2 sinada

/2

d's =ant ¥ 2JLO) 4t oF gt [coshsinada
0 (5. 16)
since all directions are of equal value due to the

isotropical radiation. The integration gives the
relation:

d'Es 48 2 2ULO) gf gt (5. 17)

Integrating furthermore the whole piston area
by

JdF=F (5. 18)

and interpreting the term F.wdt as a (cylindrical)
volume element 8V with the base F and the height
wdt

6V = Fwdt (5. 19)

gives the result:

de = 4nt L 2LEOL arey (5. 20)

dZE is the change of energy suffered by a
sound radiation in the frequency range from f to
f + df with an adiabatic volume change of BV.
This change of energy d2E must be equal to the
change of internal acoustical energy dzﬂ which the
system undergoes with an adiabatic change of
volume

d’E= o’ (5.21)

10

The internal acoustical energy dzﬁ within the
frequency range df is

dO=6(Vu(fe))df (5.2
0= VEu(f.8)df+u(f,0) 6 Vdf (5.23)
Equating (5. 20) and (5. 23) gives

£3Lf _CL ﬂ_gﬁlavwaume)-urr,e)w (524)

Using the equation (4,2)

ute)=4%irt,0) (4.2)
gives
du(t,0)= L di(t,0) (5. 25)
and

f—f—‘—l’a’,’ 2 v QULO) jire)  (5.26)

If, according to the "adiabatic" cquation (5. 3)

dv _ dae
-‘7-—36 (5. 3)

the volume is replaced by the turbulence tempera-
ture, we obtain the relation

s aia(;.el "%ﬂ +3i(10)  (5.27)

The solution
: igrL
i(f,0)=0 G(GJ (5. 28)

satisfies the partial differential equation (5. 27),
where G (f,0) is a still unknown function of the
variable f/8. It is fundamentally impossible to
provide a full clarification of the spectral function
with the proposed means. The situation is quite
similar to that of black body radiation where the
spectrum could not be determined solely by
thermodynamical means, but only after introduction
of the quantum theory. To apply such a theory to
turbulence, does not appear to be physically
sensible.

Despite the uncertainly of the spectral function
G(f/@) , it is possible to obtain two valuable
characteristics of the turbulence noise spectrum.
The frequency f,, at which the spectrum has a
peak value is obtained by differentiating the
equation (5. 28) on the condition that

M =0 (5_ 29)

’ :%%%@2 =0 (5. 30)



The maximum is located at a certain value of
G(4,/8) = const. From this results the position of
the maximum

b~ 0 (5. 31)
The height of the intensity peak iy is,
according to equations (5.28) and (5. 31),
iy= 0°G (£,/0)=6" const
(5. 32)

b~ 0’

Substitution of the turbulence temperature in
the resultant equations (5.28), (5.31) and (5. 32)
according to the equation

o~1v? (3.18)

leads to the result:
i(f,v)=vég(f/v)
fo~ v

K el
Iy v

spectral Intensity i

Maximum

Frequency f ——=

Integration of equation (5. 33) with v constant
throughout all frequencies from 0 to o0 must,
for validity of the results, necessarily lead to the
radiation formula J~v? derived in Section 4. 3.

The integral J -‘-:ff(f, v) df is the overall
intensity J emitted throughout all frequencies

J= 7!{!, v)df :7 vig(t/vé) df
. ’ (5.36)

= v:j gltvi)d t/v?

The function g (f/v) has an unknown but fixed
value for all quantities of f and v , where f/v?
remains constant,

Therefore,

j-y(f/v’) d f/v?= const.
(]

Thus

J~y? (5.37)
Since the J~v? law established by Lighthill
using a completely different method has been con-

firmed experimentally, it is surely proper to
ascribe a higher degree of probability to the
results presented here derived from a different
working hypothesis,

6. Appendix

6.1 Dimensional Analysis

The proportionality factors of the Stefan-
Boltzmann and Wien’s laws for black body radiation
could not be determined by thermodynamics means
alone. It was not until formulation of Planck’s
quantum theory that this uncertainly could be
eliminated.

Similarly, the hypothesis on which this paper
is based permits various solutions, However, the
number of permissible solutions can be limited
by dimensional analysis,

Up until now only the canonical distribution
property of the turbulence field model has been
used, By introduction of a sound velocity ¢, a
medium density p (medium pressure and
temperature are already determined by ¢ and
therefore represent no new independent parameters)
and a characteristic length d, the turbulence field
can be further specified.

If dimensional analysis is performed for a
model so defined, instead of the formulae

J o~ y? (4.48)
i~ vgart/vd (5. 33)
f,~ Ve (5. 34)
. ]
'MM v (5. 35)
the expanded relations will be obtained
J~pcty? (6. 1)
i~ pctavigrfdcv?) (6.2)
o vid' ¢! (6. 3)
i~ pactv® (6.4)

The emission formula J~p ¢t V’agrees with the
known Lighthill law,

6.2 Extension to the non-linearized case

For the derivation of the emission and spectrum
formulae, of necessity only low turbulence velo-
cities were permitted.



By means of this limitation it was possible to
neglect the higher terms compared to the linear
term. In the following part, this limitation shall
be eliminated in order to obtain a relation for the
emission formula valid for any velocity.

The calculation performed in section 4, 3 re-
mains essentially the same., For the emission-
pressure [l appearing in equation (429 ),

de _ dfi

@~ ua
(4.29)

only the higher terms of the expansion from

to U need be taken into consideration. If the ra-

diation pressure 1 is given by a general series

= "%— U+ O:U24 GJU.J..... (6.5)

the differential equation will be obtained with

= (F+2 a,U+30,0%..) dU (6.6)
LGs (‘.’!’ +2al) ’3aaU2)dU (6.7)
" Ju.qUiqu’.
By means of the series
U = by b,0+5,0%b,0"....¢50"  (6.8)

the following will be obtained by comparing the
coefficients

by =b, =b,=0,=0 (6.9)
b, = const

by = bg=b, =0

b, = - E‘I a, b

b, = by = by, =0

b, =g ‘&?f%‘%’a‘i}

by; = by = by =0

If, according to equation (3. 18) the "turbulence
temperature'" © is replaced by the characteristic
turbulence velocity

e ~v? (3. 18)
and/or
= zv? (6. 10)
then
U= bz*v-Z o, i 2v"
3 2, B X
0'?@‘(0_,-51%12 Vicon (6.11)
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If the density of acoustic energy U is expressed
by sound intensity I in accordance with equation
(4. 1)

U:—“L_!J (4. 1)

the emission formula
cb, 2L Z8 6
J = vz (Z4ve- v; a, bz°v

(6. 12)
.v%?bfra,—ga;)z"v.’.‘...)

is obtained.

In the first term of the series expansion it is
again possible to see the known Lighthill v®
law. If the distribution of the sound emission
pressure [1 in the range of higher intensities -
i.e., if the coefficients aj, a3, a4 of the series -
n
aU (6. 5)
are known, the emission law valid for any velocity
is given,

6.3 Determination of Emission Formula by the
Debye-method

To determine the specific heat and/or the
thermal energy of a solid, Debye has provided a
very elegant method which, in a modified form,
can be applied to a turbulence field. According to
Debye, the thermal energy of a solid is the
oscillation energy of the various natural vibrations.
According to Rayleigh and Jean s, the number of
these eigenvalues is obtained by counting the
possible standing waves.

dn= 4nVF(L . &) df (6. 13)
] [
dn is the number of the natural frequencies of a
body with volume V contained in the frequency inter-
val df. ¢, and c; are the propagation velocities of
the longitudinal and transverse wave.
Since according to Planck every standing wave may
be considered an oscillator and the oscillator
energy can be calculated by means of the quantum
theory, the internal energy of the solid is thus
determined. Debye further assumes that the
number of oscillators is limited whereby he obtains
the T" law of internal energy at low temperatures T,
named after him, and the Dulong-Petit law appli-
cable to high temperatures.

The turbulence volume shall be handled in a
similar way. The number of longitudinal, that is,
the acoustic eigenvalues would be obtained by the
equation (6. 13):c, = c = velocity of sound. Since,
however, no obvious formulation is known for
eigenvalue energy, the calculation of the turbu-
lence noise is based on the empirical spectral
formula established by P. M. Morse and K. V.
Ingard (40), in departure from the Debye method.



This equation established for a maximum is as For very high turbulence velocities, the

follows: emitted sound intensity I is proportional to the
second power of the turbulence speed, that is,
proportional to the turbulence energy. This relation

{ 2
i(.L)= (1/1, is qualitatively correct, since a proportionality in
fy (-g- - -g—(f/{‘)u)" (6. 14) excess of the second power for high speeds results

in the contradiction that the sound energy exceeds
the total turbulence energy.
With regard to the formulae derived in
section 5.2 A

ot 2
fu~ v bzw. f=k v (5. 35) 9. Symbols
iy~ v
the spectral distribution is as follows: ¥ 1 X
aj, a, coefficients of a power series
bg, by coefficients of a power series
5 22 c velocity of sound
; f/k v
i(fv)~ ?V-.fi_L_ (6. 15) o
(9 > G ({/k/j'-j" d characteristic length
frequency
By analogy with Debye, an upper frequency gl ) unknown function’
limit fG is established and justified in that the high 1 4 i Gt
frequency eigenvalues are not fully excited because - SRECH-RS Souns Anwe ey
of the high attenuation. The sound intensity I of the k Boltzmann constant
turbulence field results from integration of k L 2 3
equation (6, 15) from zero in the limit frequency fg B e
1 length
= (6
J &= f" (f,v)df m mass of a correlation volume
0
n 01,2, 3,..
2
v,f%ﬂff t/kv)d t/k v? . dn number of eigenfrequencies
0 r9 4 % (#/k)) (6. 16) q impulse coordinates
For small turbulence speeds v, the integration . position coordinate
limit is t time
fe :
Fg} 0o u spectral density of sound energy
For this purpose the integral in equation (6. 16) v mean, characteristic turbulence velocity
has a constant value so that w piston speed
e va X Ve Z cartesian coordinates

for v=0 (6. 17)

z dimensionless number
For the other extreme case of very high A K
turbulence velocities, that is, WO
f E total energy of canonical system
Hf‘ 0 F area
the spectral function in equation (6. 15) becomes G unknown function
I total sound intensity
. f/kv?)? 9 /v
lim M) 9P v ;
v b § Bessel function
thvi=0(g + &trhv Y 57 K crRe
(6. 18) Ny, Np ... number of particles with same energy
The total sound intensity I for this case is N st )4
O area
. 3 2 i
J~[Gittv)df = {_g_J _k%]?rzd, Q quantity of sound energy
0 o S thermodynamic entropy
2 (6. 19) ;
™Y for v=m 8] total density of sound energy
\4

volume
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e M ma a =

O 0 e MmO £ ©

-

(1)

()

(3)

(4)

(5)

(6)

(7)

(8)

number of possible permutations
coefficient of absorption
angle of incidence
energy quantity
emission coefficient
free energy
displacement

density of medium
angular frequency
turbulence temperature
turbulence entropy
internal sound energy
solid angle

sound radiation pressure

sound radiation pressure with vertical
incidence
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