IC AS Paper No. 68-32

PROPAGATION OF THE SONIC BOOM IN THE
REAL ATMOSPHERE
by
Antoni Tarnogrodzki
Gasdynamics Group
Technical University of Warsaw
Warsaw, Poland

The Sixith Congress of the International Council of the Aeronautical Sciences

PROPAGATION OF THE SONIC BOOM IN THE REAL ATMOSPHERE

Antoni Tarnogrodzki
Group of Gasdynamics
Technical University of Warsaw

Abstract

By virtue of linear theory of a sonic boom, the pattern of shock and rarefaction waves occurring in the supersonic flow past an aircraft,may be treated as a wavefront.If intensity of a sonic boom is not analysed, the problem of propagation of a sonic boom is merely geometrical problem.

This paper prasents the analitic method of determination of a wavefront and application of that to the following models of an atmosphere: 1/still honogeneous atmosphere,2/still atnosphere with gradient of sound velocity,3/still atnosphere with temperature gradient,4/homogeneous atmosphere with vertical wind velocity distribution and 5/atmosphere with gradient of sound velocity and vertical wind velocity distribution.

I.Introduction

Sonic boom is caused by the shock waves occurring when an aircrait /rocket,projectile/ plies at the supersonic speed.As it is well known, sonic boom may be a danger to the other aircrait in the air and to the people and objects on the ground. In order to determine the range of a sonic boon it is necessary to know how do the shock waves propagate. Propagation of the shock waves depends on the history of a flight and atmospheric conditions,mainly on the temperature gradient and wind velocity distribution.

General theory of a sonic boon is presented in paper of Tarren and Randall ${ }^{(1)}$. In this theory there are intıoduced the notions
of a waveiront and rays. The ray may be treated as a path of element of a wavefront. Influence of temperature gradient on propagation of a sonic boon was investigated in above nentioned paper,in another paper of Warren ${ }^{(2)}$ and by author of present paper ${ }^{(3),(4)}$ as well. Influence of wind velocity was considered by Dressler and Fredholm ${ }^{(5)}$.

The aim of the present paper is the investigation of influence of temperature gradient and vertical wind velocity distribution on propagation of a sonic boom. It is assumed that a flight path lies in the vertical plane that is parallel to the vector of wind velocity.propacation of a sonic boom is considered merely in the plane of a flight path. Intensity of a sonic boom is not analysed.

II. Symbols

a -sound velocity
a_{A}-value of a at altitude of aircraft
$\overline{\mathrm{a}}=\mathrm{a} / \mathrm{a}_{\mathrm{A}}$
k -non-dimensional coefficient /Table 1/
1 -coefficient /Table 1/
t -time
$\overline{\mathrm{E}}$-non-dimensional time/Table 1/
t_{A}-time corresponding to the certain po-
${ }^{\text {A }}$ sition of an aircraft
$\mathrm{w}=\mathrm{w}_{\mathrm{G}}{ }^{-\mathrm{w}} \mathrm{A}$
w_{A}-value of w_{G} corresponding to the altitude of aircraft
w_{G}-wind velocity relative to the ground $\overline{\mathrm{w}}=\mathrm{w} / \mathrm{a}_{\mathrm{A}}$
x, y-Cartesian coordinates moving at the speed w_{A} relative to the ground
$\overline{\mathrm{x}}, \overline{\mathrm{y}}$-non-dimensional coordinates /Table 1/ x_{A}-horizontal coordinate of an aircraft x_{G}-horizontal axis connected with the ground
$C=1 / \sin \left(\alpha_{\mp} \Gamma\right)$, where upper and lower signs apply to the regions, respectively,above and under a flight path
H-altitude of an aircrait
H_{O}-altitude of an atmosphere with temperature gradient /Table 1/
$M=U / a_{A}$-Mach number of an aircraft
U -flight speed relative to the air
V -normal velocity of a wavefront that is measured in x, y-coordinates
$\alpha=\operatorname{arc} \sin 1 / \mathrm{M}-$ Mach angle
$\varepsilon= \pm 1$, where upper and lower signs apply, respectively, to the aft- and headwind Γ-angle of climb
φ-angle between normal to the wavefront and x -axis
ψ-angle between tangent to the ray and x -axis
Ψ_{A}-value of ψ corresponding to the altitude of an aircraft

III.Assumptions

In atnosphere there is a vertical temperature gradient,i.e. $a=a / y /$ and vertical wind velocity distribution,i.e. $\mathrm{w}_{\mathrm{G}}=$ $=w_{G} / y /$. The value of ${ }_{W}{ }_{G}$ at altitude of an aircraft is equal to w_{A}. The flight path lies in the vertical plane $/ \mathrm{x}, \mathrm{y} /$, x -axis is horizontal and moves at the speed w_{A} relative to the ground. In x, y-coordinates the wind velocity is equal to $w / y /=w_{G} / y /-$ $-w_{A}$. Vector of wind velocity lies in $/ x, y /-$ plane.

At the instant t_{A} an aircraft is at the point $/ x_{A}, 0 /$,its Wach number is equal to $M \geqslant 1$, Nach ang le α, altitude H and angle of climb Γ.According to the definition of a ray, at the point $/ x_{A}, 0 /$ the angle between the tangents to a ray and a plight path is equal to $/ \frac{\pi}{2}-\alpha /$, the angle between the tangent to a ray and x-axis is equal to /Figure 1/

$$
\begin{equation*}
\psi_{A}= \pm\left[\frac{\pi}{2}-(\alpha \mp \Gamma)\right] \tag{1}
\end{equation*}
$$

Where the upper and lower signs apply to the wavefronts proparating, respectively,
above and under the tangent to a flight path.

FIGURE 1.

IV.General Snell's Law

Let us consider Figure 2. The normal ve_ locity of a wavefront measured in $x, y-c o-$ ordinates is equal to

$$
\begin{equation*}
v=a+w \cos \varphi \tag{2}
\end{equation*}
$$

One exists the relation between V and $\varphi^{(5)}$. After suitable nodifications this relation may be expressed in the form

$$
\begin{equation*}
\mathrm{V} / \cos \varphi=\mathrm{const} \tag{3}
\end{equation*}
$$

and that is fulfilled along a ray.Substituting (2) to (3) and calculating the constant from the condition that at the beginning of a ray there is $\mathrm{w}=0, \mathrm{a}=0$ and $\varphi=\psi=\psi_{A}$, we get the following formula that will be called the general Snell's law

$$
\begin{equation*}
a / \cos \varphi+w=a_{A} / \cos \psi_{A} \tag{4}
\end{equation*}
$$

where Ψ_{A} is determined by (1). The rays are not orthogonal to the wavefront and they are the segments of space lines.Two rays for that the angle Ψ_{A} lies in $/ x, y /-$ plane are the segments of plane lines; these rays will be called, respectively, upper and lower ray /Figure $1 /$.

If $\mathrm{w}=0$, then formula (4) takes the form of ordinary Snell's law
$a / \cos \psi=a_{A} / \cos \psi_{A}$

FIGURE 2.

FIGURE 3

V.Method of Determination

of a Wavefront

In $/ x, y, t /-s p a c e ~ t h e ~ p a t h ~ o f ~ e l e m e n t ~ o f ~$ a wavefront is the segment of line going through the point $/ x_{A}, 0, t_{A} /$ Projection of this segment into $/ x, y /-p l a n e$ is called a ray,projection into $/ \mathrm{y}, \mathrm{t} /-\mathrm{plane}$ will be called a path of a wavefront in $/ \mathrm{y}, \mathrm{t} /-\mathrm{pla}-$ ne.

It is seen from Figure 2 that along a ray the following relations are satisfied

$$
\begin{align*}
& d x=a(\cos \varphi+w) d t \tag{5}\\
& d y=a \sin \varphi d t \tag{6}
\end{align*}
$$

Eliminating from (5) and (6) by means of (4) the angle φ, we obtain differential equation of rays

$$
\begin{equation*}
d y / d x=f(x, y) \tag{7}
\end{equation*}
$$

and differential equation of paths of a wavefront in $/ \mathrm{y}, \mathrm{t} /-\mathrm{plane}$

$$
\begin{equation*}
d \mathbf{y} / \mathrm{dt}=\mathrm{g}(\mathbf{y}, \mathrm{t}) \tag{8}
\end{equation*}
$$

Let us assume that the solutions of (7) and (8) are known. Considering the ray emanating at the time t_{A} from the point $/ x_{A}, 0 /$, we can determine by means of solutions of (7) and (8) the coordinates x, y of any point of a wavefront at any instant $t>t_{A} /$ Figure $3 /$. Let x_{G} denotes the horizontal axis connected with the ground. At every instant $t>t_{A}$ the coordinate x_{G} of a wavefront propagating along a ray emanating at the instant t_{A} at the point $/ x_{A}, 0 /$, expresses as follows

$$
x_{G}=x+w_{A}\left(t-t_{A}\right)
$$

where x is determined by means of solutions of (7) and (8).This procedure is shown in Figure 3.

VI. Parametric Equations of the Path of Element of a Wavefrant

In order to find the solutions of (7) and (8), we shall derive the parametric /parameter $\varphi=-\pi / 2 \div \pi / 2 /$ equations of the path in $/ x, y, t /-$ space of element of a wavefront. These equations will be in the forms

$$
\begin{align*}
& x=x(\varphi) \tag{9}\\
& y=y(\varphi) \tag{10}\\
& t=t(\varphi) \tag{11}
\end{align*}
$$

The expressions (9) and (10) are parametric equations of a ray and they satisfy the differential equation of rays (7); the expressions (10) and (11) are parametric equations of the path of a wavefront in $/ \mathrm{y}, \mathrm{t} /-\mathrm{plane}$ and satisfy (8).

Resolving (4) with respect to y,we get immediately the parametric equation (10) of coordinate y.Differentiating (10) with respect to φ,we receive the following expression

$$
\mathrm{d} y / \mathrm{d} \varphi=\mathrm{y}^{\prime}(\varphi)
$$

By means of (6), (10) and (10^{\prime}) we obtain the relation

$$
\begin{equation*}
d t / d \varphi=y^{\prime}(\varphi) / a(\varphi) \sin \varphi \tag{11}
\end{equation*}
$$

and by means of (5), (10) and (11)-the relation

$$
\mathrm{dx} / \mathrm{d} \varphi=\mathrm{y}^{\prime}(\varphi)[\operatorname{ctg} \varphi+\mathrm{w}(\varphi) / \mathrm{a}(\varphi) \sin \varphi]
$$

The expressions $\left(9^{\prime}\right),\left(10^{\prime}\right),\left(11^{\prime}\right)$ will be called the differential equations of coordinates of the path of a wavefront. Integrating (9^{\prime}) and (11^{\prime}), we get the parametric equations of coordinate x and t of the path of a wavefront.

VII. Parametric Equations of a Wave-

front in Straight Level Flight at Constant Mach Number

In this case of flight we shall derive directly the paranetric equations of a wavefront in the forms

$$
\begin{align*}
& \mathrm{x}=\mathrm{x}_{1}(\varphi) \tag{12}\\
& \mathrm{y}=\mathrm{y}(\varphi) \tag{10}
\end{align*}
$$

Parametric equation of coordinate y is identical as in previous heading. With regard to the wavefront the following condition is fulfilled

$$
\begin{equation*}
d y / d x=-\operatorname{ctg} \varphi \tag{13}
\end{equation*}
$$

Talcing into account (10^{\prime}), we obtain from (13) the differential equation of coordinate x of a wavefront

$$
\mathrm{dx} / \mathrm{d} \varphi=-\mathrm{y}^{\prime}(\varphi) \mathrm{tg} \varphi
$$

and after integrating-the parametric equation (12) of coordinate x of a wavefront. By means of (4) and (13) we derive the differential equation of wavefronts

$$
\begin{equation*}
\mathrm{dy} / \mathrm{dx}=\mathrm{h}(\mathrm{x}, \mathrm{y}) \tag{14}
\end{equation*}
$$

Parametric equations (10) and (12) of coordinates of a waveiront satisfy the differential equation (14).

It should be noticed that the wavefront described by (10) and (12) noves at the speed w_{A} relative to the ground.

VIII.Models of an Atmosphere

The nethod oi detemination of a FavePront described in the headings $V, V /$ and $V I I$, will be applied to the following inodels of an atmosphere:
$1 /$ still homogeneous atmosphere $-\mathrm{a}=$ const, $\mathrm{w}_{\mathrm{G}}=0$
$2 /$ still atmosphere with gradient of so- assume the notation und velocity
$a=a_{A}\left[1-y /\left(H_{0}-I\right)\right], \quad w_{G}=0$

3/still atmosphere with temperature gradient
$\mathrm{a}=\mathrm{a}_{\mathrm{A}}\left[1-\mathrm{y} /\left(\mathrm{H}_{0}-\mathrm{H}\right)\right]^{1 / 2}, \quad \mathrm{w}_{\mathrm{G}}=0$

4/homogeneous atmosphere with vertical wind velocity distribution
$\mathrm{a}=$ const, $\mathrm{w}_{\mathrm{G}}=\varepsilon \mathrm{a}(\mathrm{y}+\mathrm{H}) / 1, \mathrm{w}=\varepsilon \mathrm{ay} / 1$

5/atmosphere with gradient oi sound velocity and vertical wind velocity distribution
$a=a_{A}\left[1-y /\left(H_{0}-H\right)\right]$
${ }_{W}=\varepsilon a_{A} k(y+H) /\left(\mathrm{H}_{\mathrm{O}}-\mathrm{H}\right), \mathrm{w}=\varepsilon a_{A} k y /\left(\mathrm{H}_{\mathrm{O}}-\mathrm{H}\right)$

IX. Propagation of a Sonic Boom

With regard to the models $2,3,4,5$ oi an atmosphere it will be introduced non-dimensional quantities: coordinates $\bar{x}, \bar{y} ;$ time \bar{t}, sound velocity \bar{a}, wind velocity \bar{w}; their scales are tabulated in Table 1. Ve shall

열	$\overline{\mathbf{x}}$	$\overline{\mathbf{y}}$	\bar{t}	$\overline{\mathbf{a}}$	-
1	x	y	t	a	0
2	$\frac{x}{H_{0}-\mathrm{H}}$	$\frac{y}{H_{0}-\mathrm{H}}$	$\frac{a_{A} t}{H_{0}-H}$	1- $\overline{\mathbf{y}}$	0
3	$\frac{x}{H_{0}^{-H}}$	$\frac{y}{H_{0}-\mathbf{H}}$	$\frac{a_{A} t}{H_{0}-\mathbf{H}}$	$(1-\bar{y})^{1 / 2}$	0
4	$\stackrel{x}{1}_{(1>0)}^{1}$	$\frac{\mathrm{y}}{1}$	$\frac{a t}{1}$	1	$\varepsilon \overline{\mathbf{y}}$
5	$\frac{\mathrm{x}}{\mathrm{H}_{0}-\mathrm{H}}$	$\frac{y}{H_{0}-\mathbf{H}}$	$\frac{a_{A} t}{H_{0}-\mathbf{H}}$	1- $\overline{\mathbf{y}}$	$\begin{array}{\|c\|} \varepsilon k \bar{y} \\ (0<k \leqslant 1) \end{array}$

TABLE 1.

$$
\begin{equation*}
C=1 / \sin (\alpha \mp \Gamma) \tag{15}
\end{equation*}
$$

where upper and lower signs apply, respectively, to the upper and lower ray.

In Table 2 there are tabulated the differential equations of rays (7), paths of a wavefront in $/ \mathrm{y}, \mathrm{t} /-\mathrm{plane}$ (8) and wavefronts (14).Equations (7) and (8) correspond to any flight, quantity C defined by (15) may change along a plight path.

In the case of model 1 of an atmosphere the equation (14) corresponds to the straight flight at constant Mach number and there is $C=$ const along a flight path. For models $2,3,4,5$ the equation (14) corresponds to the straight level flight at constant Mach number and $C=M=$ const along a plight path.

In Table 3 there are represented the differential equations $\left(9^{\prime}\right),\left(10^{\prime}\right),\left(11^{\prime}\right)$ and

	DIFFERENTIAL EQUATIONS OF		
	$\begin{array}{rl}\text { R A } \\ \mathrm{Y} & \mathbf{S} \\ \mathrm{d} / \mathrm{y} \overline{\mathrm{x}} & = \\ \end{array}$	$\begin{gathered} \text { PATHS_OF A TAVRPRONT } \\ \text { IN }(\bar{y}, \bar{t})-\text { PLANTS } \\ \mathrm{d} \overline{\mathrm{y}} / \mathrm{d} \overline{\mathrm{t}}= \pm \end{gathered}$	$\begin{gathered} \text { WAVEPMONYS } \\ \text { (C=CONSY, M}=\text { CONST }) \\ \mathrm{d} \overline{\mathrm{y}} / \mathrm{d} \overline{\mathrm{z}}=\mp \end{gathered}$
1	$\left(c^{2}-1\right)^{1 / 2}$	$a\left(1-\frac{1}{c^{2}}\right)^{1 / 2}$	$\left(c^{2}-1\right)^{-1 / 2}$
2	$\left[\frac{c^{2}}{(1-\bar{y})^{2}}-1\right]^{1 / 2}$	$(1-\bar{y})\left[1-\frac{(1-\bar{y})^{2}}{c^{2}}\right]^{1 / 2}$	$\left[\frac{x^{2}}{(1-\bar{y})^{2}}-1\right]^{-1 / 2}$
3	$\left(\frac{c^{2}}{1-\bar{y}}-1\right)^{1 / 2}$	$\left[(1-\bar{y})\left(1-\frac{1-\bar{y}}{c^{2}}\right)\right]^{1 / 2}$	$\left[\frac{x^{2}}{1-y}-1\right]^{-1 / 2}$
4	$\frac{\left[(c-\varepsilon \overline{\mathbf{y}})^{2}-1\right]^{1 / 2}}{\varepsilon \overline{\mathbf{y}}(c-\varepsilon \overline{\mathbf{y}})+1}$	$\left[1-\frac{1}{(c-\varepsilon \bar{y})^{2}}\right]^{1 / 2}$	$\left[(M-\varepsilon \bar{y})^{2}-1\right]^{-1 / 2}$
5	$\frac{(1-\bar{y})\left[(c-\varepsilon k \bar{y})^{2}-(1-\overline{\mathbf{y}})^{2}\right] 1 / 2}{(1-\bar{y})^{2}+\varepsilon k \bar{y}(c-\varepsilon k \bar{y})}$	$(1-\bar{y})\left[1-\frac{(1-\bar{y})^{2}}{(C-\varepsilon k \bar{y})^{2}}\right]^{1 / 2}$	$\left[\frac{(m-\varepsilon k \bar{y})^{2}}{(1-\bar{y})^{2}}-1\right]^{-1 / 2}$

TABLE 2.

	DIFFERENTIAL EQUATIONS OF COORDINAPRS OF PATH OF A WAVEPRONT TAVEFRONT ($\mathbf{M}=$ CONST)				
	$\mathrm{d} \overline{\mathrm{x}} / \mathrm{d} \varphi=$	$\mathrm{d} \overline{\mathbf{y}} / \mathrm{d} \varphi=$	$\mathrm{d} \overline{\mathbf{t}} / \mathrm{d} \varphi=$	$\mathrm{d} \overline{\mathrm{x}} / \mathrm{d} \varphi=$	$d \bar{y} / \mathrm{d} \varphi=$
2	C $\cos \varphi$	C $\sin \varphi$	1/008 4	$-\operatorname{Msin}^{2} \varphi / 008 \varphi$	$M \sin \varphi$
3	$2 \mathrm{C}^{2} 20 \mathrm{~s}^{2} \varphi$	$c^{2} \sin 2 \varphi$	2 C	$-2 M^{2} \sin ^{2} \varphi$	$M^{2} \sin 2 \varphi$
4	$\varepsilon\left(\sin ^{2} \varphi-\operatorname{coss} \varphi\right) / 003^{3} \varphi$	$-\delta \sin \varphi / 00 s^{2} \varphi$	$-\varepsilon / \cos ^{2} \varphi$	$-\sin ^{2} \varphi / \cos ^{3} \varphi$	$-\varepsilon \sin \varphi / \cos ^{2} \varphi$
5	$\frac{\varepsilon k\left(\sin ^{2} \varphi-\cos \varphi\right)+C \cos ^{2} \varphi}{\cos \varphi(1-\varepsilon \cos \varphi)^{2}}$	$\frac{(c-\varepsilon k) \sin \varphi}{(1-\varepsilon \cos \varphi)^{2}}$	$\frac{1}{\cos \varphi(1-\varepsilon k \cos \varphi)}$	$\frac{(M-\varepsilon k) \sin ^{2} \varphi}{\cos \varphi(1-\varepsilon k 0 e s \varphi)^{2}}$	$\frac{(M-\varepsilon k) \sin \varphi}{(1-\varepsilon k 00 s \varphi)^{2}}$

table 3.

	SOLUTIONS OF DIFFERENTIAL EQUATIONS OF R Y S PATHS OFA WAVEPRONT IN $(\overline{\mathrm{y}}, \overline{\mathrm{t}})$ - PLANE				WAVEFRONTS (CmCONST, MmCONST)	
	PARAMETRICAL SOLUTIONS	OTHER SOLUTIONS	PARAMETRICAL SOLJTIONS	OTHEA SOUTTIONS	$\begin{aligned} & \text { PARAMEYRICAL } \\ & \text { SOLUTIONS } \end{aligned}$	$\begin{gathered} \text { OTHER } \\ \text { SOLUYTONS } \end{gathered}$
1		$y= \pm\left(c^{2}-1\right)^{1 / 2} x$ STRAIGET LINE		$y= \pm a\left(1-\frac{1}{c^{2}}\right)^{1 / 2} t$ STRAIGHT LINE		$\begin{aligned} & y=-\left(c^{2}-1\right)^{-1 / 2} x \\ & \text { STRUGHT LTNE } \end{aligned}$
2	$\begin{aligned} & \overline{\mathbf{x}}=\operatorname{csin} \varphi \\ & \overline{\mathbf{y}}=1-\operatorname{coc} \varphi \end{aligned}$ CRCLE	$\overrightarrow{\mathbf{x}}$ $=0$ WHEN $\quad \mathbf{C}$ $=\infty$ STRAIGHT LINE	$\begin{aligned} & \bar{t}=\ln \operatorname{tg}\left(\frac{\pi}{4}+\frac{\varphi}{2}\right) \\ & \bar{y}=1-\cos \varphi \end{aligned}$	$\begin{aligned} & \bar{t}=\overline{+} \ln (1-\bar{y}) \\ & \text { WHEN } \quad C=\infty \end{aligned}$	$\begin{aligned} & \bar{x}=M\left[\sin \varphi-\ln \operatorname{tg}\left(\frac{\pi}{4}+\frac{\varphi}{2}\right)\right] \\ & \bar{y}=1-\operatorname{Moos} \varphi \end{aligned}$ TRACTRIX	$\begin{aligned} \overline{\mathbf{y}} & =0 \\ \text { WHEN } \quad \mathbf{M} & =\infty \end{aligned}$ STRAIGET LINE
3	$\begin{aligned} & \bar{x}=\frac{c^{2}}{2}(2 \varphi+\sin 2 \varphi) \\ & \bar{y}=1-c^{2} \cos ^{2} \varphi \end{aligned}$ CYCLOID	$\qquad \overline{\mathbf{x}}$ $=0$ WHEN $\quad \mathbf{C}$ $=\infty$ STRAIGHT LINE	$\begin{aligned} & \bar{t}=2 C \varphi \\ & \bar{y}=1-c^{2} \cos ^{2} \varphi \end{aligned}$	$\bar{t}=-2(1-\bar{y})^{1 / 2}$ WHEN $C=\infty$ PARABOLA	$\begin{aligned} & \bar{x}=\frac{M^{2}}{2}(\sin 2 \varphi-2 \varphi) \\ & \bar{y}=1-M^{2} \cos ^{2} \varphi \end{aligned}$ CYCLOID	$\overline{\mathbf{y}}$ $=0$ WHEN $\quad \mathbf{M}$ $=\infty$ STRAIGHT LINE
4	$\begin{aligned} & \overline{\bar{x}=}=\frac{\varepsilon}{2}\left[\operatorname{tg} \varphi\left(\frac{1}{008 \varphi}-2 C\right)-\right. \\ &\left.\operatorname{lntg}\left(\frac{\pi}{4}+\frac{\varphi}{2}\right)\right] \\ & \bar{y}= \varepsilon\left(c-\frac{1}{\cos \varphi}\right) \end{aligned}$	$\begin{aligned} & \qquad \overline{\mathrm{x}}= \pm \overline{\mathbf{y}}^{2} / 2 \\ & \text { WHEN } \quad \mathrm{C}=\infty \\ & \text { PARABOLA } \end{aligned}$	$\begin{aligned} & \bar{t}=-\varepsilon \operatorname{tg} \varphi \\ & \bar{y}=\varepsilon\left(c-\frac{1}{\cos \varphi}\right) \end{aligned}$	$\overline{\mathbf{y}}= \pm \overline{\mathbf{t}}$ WHEN $\quad \mathbf{C}=\infty$ STRAIGHT LINE	$\begin{aligned} & \overline{\mathrm{x}}=\frac{\varepsilon}{2}\left[\frac{\sin \varphi}{\cos ^{2} \varphi}-\operatorname{lntg}\left(\frac{\pi}{4}+\frac{\varphi}{2}\right)\right] \\ & \overline{\mathrm{y}}=\varepsilon\left(M-\frac{1}{\cos \varphi}\right) \end{aligned}$	$\overline{\mathbf{y}}=0$ WHEN $\mathbf{M}=\infty$ STRAIGHT LINE
5 $(k=1)$	$\begin{aligned} \overline{\mathrm{x}}= & (\operatorname{c-2\varepsilon }) \operatorname{tg}\left[\frac{\pi}{4}(1+\varepsilon)-\frac{\varepsilon \varphi}{2}\right]+ \\ & \varepsilon \operatorname{lntg}\left(\frac{\pi}{4}+\frac{\varphi}{2}\right) \\ \bar{y}= & \frac{1-\cos \varphi}{1-\varepsilon \cos \varphi} \end{aligned}$	$\begin{aligned} & \bar{y}=0 \quad \text { WHEN } \\ & \mathbf{c}=1 \text { AND } \varepsilon=1 \end{aligned}$ STRAIGHT LINE; $\bar{x}=\overline{+}[\bar{y}+\ln (1-\bar{y})]$ WHEN $C=\infty$	$\begin{aligned} & \bar{t}=\operatorname{lntg}\left(\frac{\pi}{4}+\frac{\varphi}{2}\right)- \\ & t g\left[\frac{\pi}{4}(1+\varepsilon)-\frac{\varepsilon \varphi}{2}\right] \\ & \bar{y}=\frac{1-\cos \varphi}{1-\varepsilon \cos \varphi} \end{aligned}$	$\overline{\mathbf{y}}=0 \quad$ WHEN $C=1$ AND $\varepsilon=1$ STRAIGHT LINE; $\bar{t}=\overline{+} \ln (1-\bar{y})$ WHEN $\quad \mathbf{C}=\infty$	$\begin{aligned} \bar{x}= & (M-\varepsilon)\left\{2 \operatorname{tg}\left[\frac{\pi}{4}(1+\varepsilon)-\frac{\varepsilon u^{\top}}{2}\right]\right. \\ & \left.-\operatorname{lntg}\left(\frac{\pi}{4}+\frac{\varphi}{2}\right)\right\} \\ \bar{y}= & \frac{1-\cos \varphi}{1-\varepsilon \cos \varphi} \end{aligned}$	$\begin{array}{ll} \overline{\mathbf{x}}=0 & \text { WHEN } \\ \mathbf{M}=1 \text { AND } & \varepsilon=1 \\ \text { STBAIGHT } & \text { LINE; } \\ & \overline{\mathbf{y}}=0 \\ \text { WHEN } & \mathbf{M}=\infty \\ \text { STRAIGHT } & \text { LINE } \end{array}$

(12') of coordinates of the path of a wavefront and coordinates of a wavefront $/ C=M$ const along a flight path/.In Table 4 there are tabulated the solutions of differential equations (7), (8) and (14).In the case of model 5 of an atmosphere one can obtain the parametric /parameter φ / solutions merely for $k \leqslant 1$. In Table 4 there are represented the parametric solutions for $\mathrm{k}=1$.

In Table 5 that concerns the model 1 of

TABLE 5.

op diprgasmilal			
	Atwospraze 2	ATMOSRRER 3	atosprabes 4, ε - 1

table 6.

TABLE 7.

X.References

(1) Warren, C.H.E., Randall,D.G., The theory of sonic bangs, Progress in Aeronaut. Sciences, vol.1, Persanon Press 1961, 238-271.
(2) Warren, C.H.E., The propagation of sonic bangs in a nonhomogeneous still atmosphere, Proc.IV ICAS Congress,1964, 177-202.
(3) Tarnogrodzki, A., Approximate analysis
of propagation of a super boom,Symposium on Advanced Problems and Methods in Fluid Mechanics, organised by Polish Academy of Sciences, Tarda 1967 /it is printing/.
4 Tarnogrodzki, A., Propagation of the sonic boom in the still atmosphere with temperature gradient,Archiwum Mechaniki Stosowanej /it is printing/.
5 Dressler, R., Fredholm,N.,Atmospheric scattering of sonic boom intensities, Proc.IV ICAS Congress, 1964,329-350.

table 8.

TABLE 9.

TABLE 13.

