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Abstract

Comprehensive investigation of two configura-
tions of stiffened cylindrical shells subjected to
internal pressure are made and illustrated by C-5A
fuselage-type examples. One configuration has
equally spaced longitudinal stringers and circum-
ferential rings, while the other has uniform circum-
ferential reinforcing bands (straps) added between
every two rings. The skin, stringers, and rings
are treated as distinct individual elements. The
interactions among the elements are coupled by re-
quiring compatible deformations along all element
intersections. Numerical results for stiffened
shells with, and without, reinforcing circumferen-
tial straps based on C-5A fuselage material para-
meters and dimensions are shown as plots of dis-
placements and of inner and outer fiber stresses at
various locations. The plotted results show that
the straps, which are located midway between every
two rings, used on C-5A fuselage are highly effec-
tive in equalizing stress levels throughout the
stiffened shell, with associated reduction of maxi-
mum stress levels. This reduction will produce
significant benefits in fatigue strength perfor-
mance where fuselage pressurization and de-pressur-
ization are predominant, and in resistance to dam-
age propagation.

Nomenclature

a Shell radius

Ag Ring cross-sectional area

b Stringer spacing

Dj Plate rigidities of skin

€jj Strain tensor

Modulus of elasticity

F Airy stress function

I Moment of inertia of the stringer cross-
sectional area

IR Moment of inertia of the ring cross-
sectional area

Kij Curvature tensor

L Ring spacing

Mg Bending moment in stringer

M j Stress couples in skin

My Bending moment in ring

Nij Stress resultants in skin

P Internal pressure

P Skin normal loading function (along out=-
ward normal is positive)

P =Ta"p Axial load

q Load between skih and stringer

2Q Load between skin and ring

Ry Ring mid-surface radius

Ty Normal stress resultant in ring

ty Effective shell thickness in skin
material

[ Also consultant, Lockheed-Georgia Company, Marietta, Georgia.

Vs Transverse shear in stringer

Ve Transverse shear in ring

v Circumferential ring displacement

w Radial skin displacement (along inward

normal is positive)
Stringer displacement

w: Radial ring displacement (along inward
normal is positive)

X,¥ Longitudinal and circumferential co-
ordinates

vy 3 Poisson's ratio

Xij Change of curvature tensor

AR Lame constants

Introduction

Cylindrical shells stiffened by longitudinal
stringers and rings have been used widely for vari-
ous structural pusposes. Due to the complexity of
the configuration the structure has been analyzed
in the past by considering an equivalent homogene-
ous orthotropic shell with effective extensional
and flexural stiffnesses as may be seen in’almost
all references(l- The discussion on the deter-
mination of the rigidity properties may be referred
to(10,11),  Such idealization yields results which
are quite acceptable for general stability and free
vibration analyses when only the buckling load and
the natural frequencies are needed respectively.

If one wishes to investigate the actual behavior of
the structure or to design the structure in order

to provide adequate strength or fatigue endurance,
it becomes necessary to know the actual deformation
of the shell and the actual stress distribution in
the structure, and the analysis based on the ideal-
ization of the structure to that of an equivalent
homogeneous orthotropic shell becomes undesirable.
Bartolozzi has discussed the general solution
for the free vibrations of longitudinally stiffened
cylindrical shells by treating the shell and string-
ers as individual components. No numerical example
is given. Egle and Sewall(13) have studied the free
vibration of orthogonally stiffened cylindrical
shells with stiffeners treated as discrete elements.
Beam modal functions are used to represent the de-
formation of the stringer as well as the shell in
longitudinal direction, and Rayleigh-Ritz procedure
is utilized. The present study is concerned with
the deformation and stress analysis of orthogonally
stiffened cylindrical shell subjected to static
internal pressure. The shell, stringers and rings
are treated as separate structural components. The
interactions among the elements are coupled by re-
quiring compatible deformations of the shell, the
stringers and the rings. Series solutions satisfy-
ing the governing differential equations of the
three basic components are used to solve the pro-
blem. The convergence of the resulting series for
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calculating the deformation of the structure is
excellent; however, the convergence of the series
solution for calculating higher derivatives of the
deformation is sometimes not rapid due to the trun-
cation of terms in the series in actual numberical
computations, The quantities which involve higher
derivatives of displacements, such as stress cou-
ples, are therefore calculated by using a finite-
difference technique. The displacements used in
these finite-difference expressions are computed
first according to the series solution and hence,
any desirable mesh size may be used. Small defor-
mation and linear theories are used in the analysis,
and the closed end effects are evaluated separately
and then superimposed upon the solution correspond-
ing to an open-ended cylinder subjected to normal
loading.

Analysis

Cylindrical shells which are orthogonally
stiffened by uniform and equally-spaced stringers
and rings are considered for analysis. In a modern
large vehicle design such as the giant C-5A air-
plane, intermediate circumferential bands are pro-
vided between every two adjacent rings of the fuse-
lage for more effective structural performance and
fail safe considerations. Non-uniform skin thick=-
ness in the longitudinal direction is therefore
accounted for. Furthermore, the shell is consider-
ed to be long and the effects of the supporting
conditions at the remote ends are negligible. As a
result, the deformation patterns between every two
adjacent stringers and every two adjacent rings are
considered to be identical throughout the shell
structure, and therefore, only one typical portion
needs to be analyzed. The basic structural compo-
nents involved in the analysis as shown in Figure 1
are the shell, a stringer and a ring. The boundary
conditions at the edges of the components are the
vanishing of slope and transverse shear.

The general solutions according to linear the-
ories for each component will first be obtained in
terms of the interacting forces. The interaction
among the components will then be coupled by re-
quiring compatible deformations along the inter-
sections. The analysis and equations governing
the behavior of these components without considera-
tion of closed-end effects are first presented, and
the effects of closed ends on the deformation and
stresses will be discussed separately. More detail-
ed derivations and discussions may be referred
to(l4

Open Ended Cylindrical Shells
1. Stringer: The following system of equations
are taken directly according to the elementary

beam theory
o IO 5
s

d"ws 4
El ( sty ity ¥ B (“’Vs’“s) L
dx x dx

d
d
where E is the modulus of elasticity, I is the
moment of inertia of the cross-sectional area, Wg
is the transverse displacement, Vg is the trans-
verse shear, and Mg is the bending moment; the sub-

script s corresponds to the stringer, and the sign
convention is shown in Figure la. The solution
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Fig. 1 Typical Section of Stiffened
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W =W W, (2)
= + cos @ x
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Corresponding to the loading
@
qO
q(x) = ¥ z qy, €OS @ x (3)
m=2,4

is seen to satisfy the differential equation given
ig equati?n (1) as well as the boundary conditions
Wg(0) = Wg(4) = Vg(0) = V_(4) = 0. gqp represents
the Fourier coefficient o% the interacting load,
q, Oy = ; Wgp corresponds to the rigid body dis-
placement of the stringer. Since the transverse
shear forces are zero at x=0 and x=1, one may con-
clude the 90/2, the mean value of loading on the
stringer, must be zero.

2. Ring: The equilibrium equations are

dTr ”
—=E.ZL-0, )
dy Ro
dVr Tr
Ty+F=-2Q’ (5)
o
er
-T§+Vr=0, (6)

By using stress-strain and strain-displacement
relationships, the following expressions are ob-
tained:

v
Tr - EAr ( dy B i_\ (7
0r
av_ dzwr
o= - e (g —5) (3)
r r Rody dy2 ’

Some symbols and sign convention are shown in Fig-
ure la. Ap is the cross-sectional area of the ring,
and Ip is the moment of inertia of the cross-sec-
tional area.

By eliminating V, between equations (4) and (5)
and then substituting equations (7) and (8) into
these results and into equation (6) yields the
following relationships:

%y

a

r r T
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A
N R RY
R dyk a2 r a dy E (10)

By eliminating V_ between equations (9) and (10)

one obtains
4 aw

r *
+ B
1 dys 2

(11)
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where

* R
Bl = EIR - RZA (12a)
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- EL,
B, = 2 — (12b)
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The loading function, 2Q(y), is considered in
the series form

2Q = Qo + 2 Q; cos ng ) (13)

(N S

n=2

and the radial displacement W. is represented by
the following cosine series which satisfies the

boundary conditions dW./dy = V. = 0 at y = 0 and
y = b:

@
- gy oy
Wr wro + wrn cos == (14)
n=2

Since Q, represents the average uniform loading
intensity on the ring, hence, the average ring de-
formation becomes

Q aR

% S |

EA
ro R

(15a)

Substituting equation (14) into equation (11) and
compare like terms of the resulting series, the
Fourier coefficients wrn are found to be

2Q,
W= (EE;E-:_E;TEE (15b)
1'n 2/°n »
and hence the general solution becomes
@
M = § o B 5 )
r~ FA A Rl

B e (Blsn LY

Other quantities Ves Tt and M. may be obtained
respectively from equations (6), (7), and (8) in
conjunction with equation (16).

3. Shell: A typical portion of the shell under
investigation is shown in Figure 1. The origin is
chosen at midway between two rings and midway be-
tween two stringers. Linear bending theory for a
cylindrical shell with non-uniform skin thickness
along x-direction is considered. For convenience,
tensor notation is used and the system of basic
equations corresponding to normal loading are pre-
sented below. Similar derivation for uniform shell
may be seen in (15-16), and the elasticity equa-
tions in tensor notation may be referred to any
standard text book such as

Nyj, =0 (17
Q 4+ KNy, -P=0, (18)
L TR (19)
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where Nij are in-plane stress resultants, Q; are

transverse shear stress resultants, K is the
curvature tensor, P is the normal Ioaéing function,

are stress couples, e;; is the strain tensor,
t ls the shell thickness, g is the Kronecker
delta, E is the modulus of e{asticity, v is the
Poisson's ratio, p is the Lamé constant, u,; are
in-plane displacement components w is the normal
displacement, D = Eh3/12(1-v ) is the plate rigid-
ity, Xj; is the change of curvature tensor, and a
is the radius of the cylinder. The relevant com-
patibility equation is

€1a%5b%1j,ab - S1a®5bX15"ab (24)

where ¢, 1is the permutation symbol.

ia

Substitution of equation (21) into equation (24)
and introducing into the resulting equation the
Airy stress function, F, such that

N,,=V%F,, -F,., ,
2 Zyij Y.y (25)
one obtains
1
vy - - s " (26)
where
4 4 2 2
ok g v g VTR (65
Ay 9x oy 9x ox
(27)
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Elimination of Q; between equations (18) and
(19) and substitution of equations (22) and (25)
into the resulting equation leads to the following

equation:
TWegr,, -P (28)
where
4 2 2
P (e g (2
By 3x Dy 3 ‘ox
224 a0 3%
5) |+ 20v) £ o 22— (29)
axdy” ?
and
b A
P=p+ qx)o(y - ‘2') + 2Q(y)e(x - 3) (30)

where 6(y-y,) is the singularity function.

Equations (26) and (28) are the governing diff-
erential equation of the shell. The constant, 2,
used in last term of equation (14) is merely for
convenience.

For a uniform cylindrical shell stiffened by
intermediate uniform circumferential bands, the ex-
tensional ~stiffpess, 1/Et, and the flexural rigidity,
D, of the sgéll are

(s { 1\ g
\Poge) = E:\Di.fzz;_u(x - Li-l) - u(x - Li)J (31)
i=1

where N represents the number of intervals of con-
stant skin thickness between x=0 and x={/2, and

u(x - x,) is the unit step-function. and re-
duce to the well-known biharmonic operator V' for a
shell having uniform skin thickness, i.e.

4 _ 1=4 4

BEY" = 297 = ¥ (32)

The zero slope and vanishing of transverse
shear as boundary conditions involve odd deriva-
tives of normal displacement with respect to x and
y along the edges x=0,4 and y=0,b, respectively.
These boundary conditions suggest that the general
solution of equations (26) and (28) may be taken
in the following double cosine series form:

@
W= Z z W o cosaxcosBy, (33)
m=0,2 n=0,2
and - -
F= z z F o €08 @ X cos Bn)“
m=0,2 n=0,2
1
-5 [ v, Bt dx & (34)
where
m nn
@ =7 and Bn i (35)

m and n take on even integers because of symmetry
about x=£/2 and y=b/2. Therefore, the region
bounded by x=0, £{/2 and y=0, b/2 only need be con-
sidered.

Since the series solution will be used in the
analysis, the loading function shown in equations
(28) and (30) will be expanded into appropriate
series as follows:

@
' o
P = } / Pmm cos amx cos Bny

@ (-]
Ty ™
+ 1. Pon cos Bny + L.Pmo cos a x + Poo
n=2,4 m=2,4 (36)
where
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Note that the following relationship
f" £(5) 8(8-5)) d€ = £(5,) (38)

has been used.

The solution corresponding to a shell structure
with uniform skin may be obtained directly from
the general solution for shells with intermediate
circumferential straps. However, unnecessary
errors will be inherited in such limiting case be-
cause of series expansions of skin stiffness used
in the analysis. Therefore, a separate solution
for a shell with uniform skin thickness will be pre-
sented first and a general solution corresponding
to shells with straps will be presented subse-
quently.

4. Shell with Uniform Skin: For this case, the
linear operator shown in equation (32) will be used
in the governing differential equations (26) and
(28). The last term in equation (34) will simply
be Et/2a Wyo- By substituting equations (33), (34)
and (36) in conjunction with equations (32), (36)
and (37) into equations (26) and (28), and by col-
lecting like terms in the results, one may express
the coefficients of w in terms of loading coeffi-
cients as follows:

W = - amn ( Qn cos UL EEE cos Ll
mn D&s + Et a4 4 2 b b/,
2 m
a
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2 Q
a 5
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where
2.l 2
m = ¥m id Bn (40)

Expressions similar to equations (39) may also
be obtained for the coefficient of the stress
function, F.

By matching the displacements between the shell
and stringer along the intersecting line according
to equations (2) and (33) in conjunction with equa-
tion (39), one obtains the following relationships:

o nm
Jremer g w Wl (e 29)
= DB:L n oo Et L/,

(41)
and

T Detuiled expressions may be referred to (14),

(Dah + Et){ %

=0. (42)
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n
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In a similar manner, the following relationships
are obtained according to equations (16) and (33)
in conjunction with equation (39) in order to sat-
isfy the condition for compatible deformeation be-
tween the skin and the ring:
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Q,» Q,, and W, are eliminated in equations (41)
through ?44) and & system of an infinite number of

simultaneous equations results: 5
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6mj is the Kronecker delta.

In practice, only a finite number of equations
(47) will be considered. After having solved for
qy» 925----qy» the following quantities can be cal-
culated:
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Since only a finite number of terms is taken in
the series which accurately represents the displace-
ment w, there is no assurance of the convergence of
the higher derivatives of this truncated series.
Therefore, the stress couple Hij, bending moments
Mg and M, transverse shears Qy, Qy, Vg and V., and
the ring stress resultants T, are calculated by
using a finite-difference tcchnique.

5. Shell with Straps: For this case, the skin

is considered to have non-uniform thickness. The
variation of the skin thickness takes the form
shown in equation (31). Substitution of equations
(33), (34), and (36) into equations (26) and (28)
results in the following equations:

and
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The following quantities appearing in equations
(50) and (51) are further expanded into Fourier
series:

p e |
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In conjunction with equation (31), the Fourier co-

efficients, Agpg.-..€gng, represented by the general
set of symbols Aonos Aonss Appo and Appg become

Aono-l')‘ (1 11),
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where N represents the number of intervals of con-
stant skin thickness between x=0 and x=£/2. The
corresponding distance for each region is denoted
by ‘-i.

Substitution of equations (20), (26), (27),
(28) into equations (24) and (25) in conjunction
with equations (21) and (29), and collection of
like terms in the resulting equation lead to the

following relationships:
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By requiring compatible deformations of the

skin, the stringer, and the ring, i.e.
b
¥ ("’ z) R (63)
and
L ).
T (z' Y} =W, (64)

Equations (2), (16) and (33) in conjunction with
equations (56) through (62) are substituted into
equations (63) and (64). After a lengthy mathe-
matical mnisulation (detailed derivation may be
referred to (14 ) the following system of relation-
ships is obtained:
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Equations (65) and (66) represent a set of in-
finitely many simultaneous algebraic equations. In
the actual numerical calculation, only a finite
number of terms will be considered. After W are
determined, the displacements and internal loads
will be calculated in the same manner as discussed
in the previous case.

6. Closed End Effects: When the cylindrical
shell subjected to internal pressure is closed at
both ends, a total axial load of P=ma“p will be
carried_by the stringers and skins. The stresses
due to P are smail when compared to the effects
due to lateral pressure alone. The following

analysis without consideration of shear lag effect
will be quite acceptable.

It is well known that the normal displacement
of a thin cylinder, without consideration of con-
straints of rings and stringers, subjected to lat-
eral pressure alone is

2
P
b5 Et . (68)

The corresponding final deformations, considering
the effect of the constraints of the ring and the
stringer, may be written as
pa’

v=WEE . (69)
The reduction or addition of deformation, as well
as stresses due to the constraints of the stringers
and rings, may be indicated by the parameter,
o (x,y), or

w-w

Sowo-1 . (70)

%ol

Substitution of equation (68) into (69) yields

@ (x,y) =

w= (1w) s (1) B2 (71)

The state of stress and deformation, w, without
consideration of the constraints of the ring and
the flexural constraint of the stringer due to
axial load P or pa/2 intensity along the circum-
ference, may be derived by satisfying the equili-
brium conditions and the compatibility of linear
strain of the skin and the stringer. The following
results are obtained:

= el

xx As
(1 + ——)t ’

bt (72)
and
- paA
Nxa . xan = As\
Zt(l + EE) (73)

The corresponding circumferential stress is

g _=0.
yy
As a result, the contraction of the skin in the
radial direction corresponding to zero hoop stress
becomes
W= ____!223.___,
A

2 Et (1 + bt) )

The increase or decrease in the displacement due to
constraints of the ring and the flexural rigidity
of the stringer is aw. The parameter, @, has been
defined in equation (70). The final displacement,
w*, of the skin due to the axial load P becomes

(74)

* e 2
w = (low)ws= (1) BEE (75)
2(1 .5t 5e



*
The corresponding circumferential stress, o,
becomes yy

*
LN

av *
= As pa = avo_ (76)
z:(1+ =)
which is considerably smaller than the hoop stress
corresponding to lateral pressure alone.

From the above discussion, it is interesting
to note that the deformation and stresses due to
the effect of axial load may be determined as soon
as the solution for an open-ended cylindrical shell
is obtained.

Numerical Examples

Typical arrangements and dimensions of C-5A air-
plane fuselage are selected for example solutions.
The material parameters and dimensions common to
all cases 1§ated in Table 1 are p=1 psi, £=20",
v=0.3, E=10" psi, the mesh size Ax=Ay=0.25". The
symbol, tg, shown in the table represents the thick-
ness of a titanium strap and Es is its width. The
straps are placed symmetrically along the mid-line
between two adjacent rings. The numbers shown in
the last "Remark” column represent depths of the
rings.

SYM.
10" | 10"

R L
f—'x Strap
l

)

Ring
b/2 b/2
]
-——""-"jr--'“‘-—‘
Stringer

Fig. 2. Geometry and Dimensions
for Example Problems

TABLE 1. Data for Numerical Examples

a b Ro I AB AR IR t ts(Ti) 288221
Case in in in inﬁ 1n2 in in? in in in Remark
1 143 7.8 138.9 0.051 0.1881 0.721 6.56 0.07 0 0 8" Ring
without
strap
2 143 7.8 138.9 0.051 0.1881 0.721 6.56 0.07 0.02 4.5 8" Ring
with
strap
3 143 7.8 138.9 0.051 0.1881 0.600 3.92 0.07 0.02 4.5 6" Ring
with
strap
The results for the displacements and inner and T I !
outer fiber stresses along longitudinal and circum-
ferential directions (see Fig. 2) corresponding to - —
the combined effect of lateral pressure and axial L —
load at the following locations are plotted in Fig. P
3 through 12: 20— '~~..___\ P
i 6" Ring— 8" Rin ~
1. along mid-line between adjacent stringer 8 __....__—.___:_."gi:h.\_,
0 .~
(y=0), i 8 a= 143 in. p =1 psi iy
Ll
2. along stringer ( y=b/2), e 2
; 3 10— Free Expansion 22— = -0.02914 ing
3. along mid-line between two adjacent ring g t
(5] . e e L Without strap (Case 1)
4. along quarter-line of ring spacing (x=£/4), —s—sm With strap (Case 2 ind 3)
5. along center-line of ring (x=£4/2). L | 1
.0 3 10
X in Ring

Fig. 3 Displacement of Skin Along Mid-
line Between Two Adjacent Stringers (y=0)



20 r

-w X 10° 1n,

l T
.S  Ring—, 8" Ring 20 - 1 -
Bt b — T e ¢ c— "
I — 6" Ring 8" Ring—
a a =143 in. p=1 psi - e e I
B 2 o ety e e o = ey o e
“o 10} Free Expansion - 2%: = -0.02914 in| . a =143 in., p =1 psi, b = 7.8 in.
=
x _10 |- 22 | 0.02914 tn. ]
s | T Without Strap (Case 1) - Free Expansion “o— = -0.02 n.
. With Strap (Case 2 .and 3) | L R Without Strap (Case 1) a
_+_s_ With Strap (Case 2 and 3)
1 1 1
0 5 1 ) 1 1 1
x in. Ring 0 0.5 1.0
Fig. 4 Displacement Along Stringer (y = 3.9") y/(ij Stringer
Fig. 7 Displacement Along Center Line
of Ring (x = 10 in.)
| ' T
T I |
- - a= 143"
e p=1psi
e RN — —~———— Xy = 0 il
20} S g i
~
| 6" Ring 8" Rina__. i VR - 20k N i
P e L == » N
~a = 143 in., p=1 psi, b = 7.8 in. ™ c“n -///,’\ A
2 ' L \ /,
| Free Expansion B2= = -0.02914 = SISt thies L
10 Et il [ pp— fj_b—_—_-
e s inner er —
----- Without Strap (Case 1) R1ok——- _’{1___ ‘-—*"—“" /I\
© Oxx_outer fiber—/\\
= _._._ With Strap (Case 2 and 3) - & Vs s f—
g =l = xi_iszi_f}ber.’ 2
| | 1 -=-- Without Strap (Case 1) \
0 0.5 1.0
y/(%) Stringer -5 . Wiltp Strap ((.'.!ase 2 and 3) \
0 2.25 5 A\ 10
Fig. 5 Displacement of Skin (x = 0) x in. NRing
Fig. 8 Stresses Along Mid-line Between
Two Adjacent Stringers (y=0)
| I L} p
T T T a = 143
— e e p=1psi
"'T-oyy inner fiber ~ T - 0 =
- = ~
e L 20k 7" Without Strap(Case ﬁ\ )|
20} "‘*-.,__‘_ ¥ - _. With Strap (Case 2 andé\
o~ \
| 5 6" Ring; Ri_g_—a_= oy 'S - g~ Oyy outer fiber \\ T
n = 143 in., p= 1 psi, b = 7.8 in. x
2
10} Free Expansion % = -0,02914 in. _] E
----- Without Strap (Case 1) E
-_._._ With Strap (Case 2 and 3)
; 1 | 1
0 0.5, 1.0
Y/iij Stringer

Fig. 9 Shell Stresses Along Stringer

Fig. 6 Displacement of Skin Along Location (y=3.9")

Quarter-line of Ring Spacing (x = 5")

10



a = 143"
p=1psi
™ Txy = 0 //‘
\\\ b - 7.8“ /
~ /
- 20 \\ P4 —
w ~ //
[=9 N ,,
o~
's Jyy outer fiberf
—
s ks ¢ ?ﬁ * = 33— %
"""""(
;& fib =
EIO —---n--fiy__fffr nner }}bef
- JXX oucer fiber}-—"‘- e N
§ }I'_.‘-'-‘._—: .—*"'—'='.._ =
© "
----Without Strap (Case 1) N
_._.WithlStrap (Case 2 and 3)
1 1
0 0.5 10
fb' Stringer
y/\2/
Fig. 10 Stresses Along Mid-line Between
Two Adjacent Rings (x=0)
T ] T
a = 143"
- p=1 psi =
ol T b=7.8"
& s, )
g 20 N il
o \\ ’/
— ~ ,/
x N\ -
B —.[cyy outer fiber—""x” —
x — o = =———m 1|
I —-” \
;‘10 n---r._-""-gyy inner fiber™ \ ]
el OXxX outer fiberé
& f —— = l—?
;5 OXX inner fibe:;,-——
5 B J— =
[ em= Without Strap (Case 1) \\“'
._+ With Strap (Case %
- L ,and 3)
0 O.; ) 1.0
b Stringer
y/A3) &

Fig. 11 Along Quarter-line Between

Two Adjacent Rings (x=5")

=0
20 i

Ya outer fiber
1 = _Y _________

" ---- Without Strap (Case 1)
_. With Strap (Case 2 and 3)
0 L L

oxx, Oyy X 10-2 psi

T T
a=143" p=1 psi
b= 7.8"

e — - - & .Lnu_fibe?

Oxx outer fiber

Fig. 12 Skin Stresses Along
the Ring (x=10")
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_Discussion

The solution of cylindrical shells with uniform
as well as non-uniform thickness orthogonally
stiffened by uniform stiffeners subjected to in-
ternal pressure is obtained by treating the stiff-
eners as separate elements. The deformation and
stress condition can be calculated for any point in
the structure. Numerical examples based on C-5A
fuselage material parameters and dimensions are
presented. The results indicate that the variation
of displacement of the shell along the longitudinal
as well as the circumferential directions is sig-
nificant for the cases where the circumferential
bands are not included; as a result, large bending
stresses are introduced. For a shell with inter-
mediate bands, however, the variation of displace-
ments and stresses along the circumferential di-
rection is negligibly small, and the variations
along longitudinal directions are small but detect-
able. As a result, stress levels are equalized and
maximum stress levels are reduced. This reduction
will increase the fatigue endurance where fuselage
pressurization and de-pressurization are predomi-
nant, and in resistance to damage propagation. In
short, it appears that the insertion of circumfer-
ential bands is structurally effective according
to the cases considered. While the example pro-
blems consider only one strap located midway be-
tween every two rings, the analysis and computer
program for IBM 7094 are prepared for multiple
straps at variable locations.
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