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Abstract


Comprehensive investigationof two configura-
tions of stiffened cylindrical shells subjected to
internal pressure are made and illustratedby C-5A
fuselage-typeexamples. One configurationhas
equally spaced longitudinalstringersand circum-
ferentialrings, while the other has uniform circum-
ferentialreinforcing bands (straps)added between
every two rings. The skin, stringers,and rings
are treated as distinct individualelements. The
interactionsamong the elements are coupled by re-
quiring compatible deformationsalong all element
intersections. Numerical results for stiffened
shells with, and without, reinforcingcircumferen-
tial straps based on C-5A fuselagematerial para-
meters and dimensions are shown as plots of dis-
placements and of inner and outer fiber stresses at
various locations. The plotted results show that
the straps, which are located midway between every
two rings, used on C-5A fuselage are highly effec-
tive in equalizing stress levels throughoutthe
stiffened shell, with associated reductionof maxi-
mum stress levels. This reductionwill produce
significantbenefits in fatigue strength perfor-
mance where fuselage pressurizationand de-pressur-
ization are predominant,and in resistance to dam-
age propagation.

Nomenclature


a Shell radius
AR Ring cross-sectionalarea

Stringer spacing
Di Plate rigidities of skin
eij Strain tensor

Modulus of elasticity
Airy stress function
Moment of inertia of the stringer cross-

sectional area
IR Moment of inertia of the ring cross-

sectional area
Kij	 Curvature tensor


Ring spacing

Ms Bending moment in stringer
Mij Stress couples in skin

Mr Bending moment in ring
Nij Stress resultants in skin

Internal pressure
Skin normal loading function (along out-
ward normal is positive)

p na2p Axial load
Load between skin and stringer

2Q Load between skin and ring
Ro Ring mid-surface radius
Tr Normal stress resultant in ring
ti Effective shell thickness in skin

material

Vs

Vr

Ws

Wr

xpy

Xij

Transverse shear in stringer
Transverse shear in ring
Circumferentialring displacement
Radial skin displacement (along inward
normal is positive)

Stringer displacement
Radial ring displacement (along inward
normal is positive)

Longitudinaland circumferentialco-
ordinates

Poisson's ratio
Change of curvature tensor
Lame constants

Introduction

Cylindrical shells stiffenedby longitudinal
stringers and rings have been used widely for vari-
ous structural pusposes. Due to the complexity of
the configuration the structurehas been analyzed
in the past by consideringan equivalenthomogene-
ous orthotropic shell with effective extensional
and flexural stiffnessesas may be seen in'almost
all references(1-9). The discussionon the deter-
mination of the rigidity propertiesmay be referred
to(10,11). Such idealizationyields results which
are quite acceptable for general stability and free
vibration analyses when only the buckling load and
the natural frequenciesare needed respectively.
If one wishes to investigatethe actual behavior of
the structure or to design the structure in order
to provide adequate strength or fatigue endurance,
it becomes necessary to know the actual deformation
of the shell and the actual stress distribution in
the structure, and the analysis based on the ideal-
ization of the structure to that of an equivalent
homogeneous orthotropic shell becomes undesirable.
Bartolozzi(12)has discussed the general solution
for the free vibrations of longitudinallystiffened
cylindrical shells by treating the shell and string-
ers as individualcomponents. No numerical example
is given. Egle and Sewall(13)have studied the free
vibration of orthogonally stiffenedcylindrical
shells with stiffeners treated as discrete elements.
Beam modal functions are used to represent the de-
formation of the stringer as well as the shell in
longitudinaldirection, and Rayleigh-Ritzprocedure
is utilized. The present study is concerned with
the deformation and stress analysis of orthogonally
stiffened cylindrical shell subjected to static
internal pressure. The shell, stringers and rings
are treated as separate structuralcomponents. The
interactionsamong the elements are coupled by re-
quiring compatible deformationsof the shell, the
stringers and the rings. Series solutions satisfy-
ing the governing differentialequations of the
three basic components are used to solve the pro-
blem. The convergenceof the resulting series for

tAlso corsultant, Lockheed-GeorgiaCompany, Marietta, Georgia. The work was performed during the writer's

fifteenmonth stay in the Advanced StructuralMethods Group at Lockheed Georgia under the Ford Foundation
Residency Program, 1966-1967.
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calculating the deformation of the structure is

excellent; however, the convergence of the series

solution for calculating higher derivatives of the

deformation is sometimes not rapid due to the trun-

cation of terms in the series in actual numberical

computations. The quantities which involve higher

derivatives of displacements, such as stress cou-

ples, are therefore calculated by using a finite-

difference technique. The displacements used in

these finite-difference expressions are computed

first according to the series solution and hence,

any desirable mesh size may be used. Small defor-

mation and linear theories are used in the analysis,

and the closed end effects are evaluated separately
and then superimposed upon the solution correspond-

ing to an open-ended cylinder subjected to normal

loading.

Analysis


Cylindrical shells which are orthogonally

stiffened by uniform and equally-spaced stringers

and rings are considered for analysis. In a modern

large vehicle design such as the giant C-5A air-

plane, intermediate circumferential bands are pro-

vided between every two adjacent rings of the fuse-

lage for more effective structural performance and

fail safe considerations. Non-uniform skin thick-

ness in the longitudinal direction is therefore

accounted for. Furthermore, the shell is consider-

ed to be long and the effects of the supporting

conditions at the remote ends are negligible. As a

result, the deformation patterns between every two

adjacent stringers and every two adjacent rings are

considered to be identical throughout the shell

structure, and therefore, only one typical portion

needs to be analyzed. The basic structural compo-

nents involved in the analysis as shown in Figure I

are the shell, a stringer and a ring. The boundary

conditions at the edges of the components are the

vanishing of slope and transverse shear.

The general solutions according to linear the-

ories for each component will first be obtained in

terms of the interacting forces. The interaction

among the components will then be coupled by re-

quiring compatible deformations along the inter-

sections. The analysis and equations governing

the behavior of these components without considera-

tion of closed-end effects are first presented, and

the effects of closed ends on the deformation and

stresses will be discussed separately. More detail-

ed derivations and discussions may be referred

to(l4).

Open Ended Cylindrical Shells

1. Stringer: The following system of equations

are taken directly according to the elementary

beam theory

d4Ws d3w
s

d2Wa`
(El 4 ' 2 ) 0,11s,Ms) (1)

dx dx3 ' dx

where E is the modulus of elasticity, I is the

moment of inertia of the cross-sectional area, Ws

is the transverse displacement, Vs is the trans-

verse shear, and Ms is the bending moment; the sub-

script s corresponds to the stringer, and the sign

convention is shown in Figure la. The solution

Shell

Stringer

Fig. 1 Typical Section of Stiffened


Shell Structure

Tr

q(x)

Fig. la. Elemental Sections of


Stringer, and Ring
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=

Ws  W + L

•

cos ax
so4

mm...2,4
amEI

(2)

CO

q(x) = -2 + qm cos amx (3)2

Corresponding to the loading

E2
01 = EI

R 2
RoAR '

EIR
02 = 2

Ro .

m=2,4 The loading function, 2Q(y), is considered in
the series form

is seen to satisfy the differentialequation given
in equation (1) as well as the boundary conditions
W5(0) = W;(()= V5(0) = V(4) = 0. qm represents
the Fourier coefficienta the interactingload,
q, am = 32; Wso corresponds to the rigid body dis-
placement of the stringer. Since the transverse
shear forces are zero at x=0 and x=t, one may con-
clude the g012, the mean value of loading on the
stringer,must be zero.

2. Ring: The equilibriumequations are


2Q = Q + ,' 2 Q cos
nil

 
0 n b .

n=2

and the radial displacementWr is representedby
the following cosine series which satisfies the
boundary conditions dWr/dy= Vr = 0 at y = 0 and
y = b:

Wr
rn=W + W

b
cos 1121 (14)

ro •
n=2

(13)

	

dT V
r= 0 ,

dy Ro


dV T
r = 2Q ,

dy Ro

dMr
- + V = 0 ,

	

dy r

By using stress-strainand strain-displacement
relationships,the followingexpressionsare ob-
tained:

dV Wr r
Tr = EAr (--y-

Rd
o•


(4) Since Q0 represents the average uniform loading
intensity on the ring, hence, the average ring de-
formation becomes

Q aR
o o
W -

ro EAR

Substituting equation (14) into equation (11) and
compare like terms of the resulting series, the
Fourier coefficientsWrn are found to be

w -
rn * 2 *N 2

/3113n 132)Bn ,
 

and hence the general solution becomes




2Qn



dVr d2W
Mr = - EIr (R dy2/ ,

dy
(8)

QoaR

rEA

2Qn
, 2„ 2 cos Orly(16)

.n=2,4 (010n - 02)0n

Some symbols and sign conventionare shown in Fig-
ure la. AR is the cross-sectionalarea of the ring,
and IR is the moment of inertia of the cross-sec-
tional area.

By eliminatingVr between equations (4) and (5)
and then substitutingequations (7) and (8) into
these results and into equation (6) yields the
following relationships:

d3Wr dW d2r
IR - AR

r
RoAR 2 0 , (9)

dy dy

d4W A A dV
.r —11w _E.__E. 22

- IR dy4 a2 r a dy E . (10)

By eliminating Vr between equations (9) and (10)
one obtains

' *
d5 d3w

r * r0 ----+ - 21
dy5 2 dy3 dy

(11)

where

Other quantities Vr, Tr, and Mr may be obtained
respectively from equations (6), (7),and (8) in
conjunctionwith equation (16).

3. Shell: A typical portion of the shell under
investigationis shown in Figure 1. The origin is
chosen at midwaybetween two rings and midway be-
tween two stringers. Linear bending theory for a
cylindrical shell with non-uniform skin thickness
along x-direction is considered. For convenience,
tensor notation is used and the system of basic
equations correspondingto normal loading are pre-
sented below. Similar derivation for uniform shell

and the elasticity equa-may be seen in (15,16),
tions in tensor notation may be referred to any
standard text book such as (17).

Nim = 0 ,

Q + K..Nij - P = 0 ,

Qi =

3



4

(32)
1-4 4

EtT4 = –V = V .

and

(25)

one obtains

cos amx cos 0ny

	

. .

	

F = ) T.
F
mn

m=0,2 n=0,2

N = V2F6.. - F,. ,

	

ij lj ij

(34)
1 p

(26) - jjW Et dx dx
a oo

2
e 6 + 214eij

1-v
kk ij

1-1-v
e N - N
ij Et ij Et kk ij

where 6(y-y0) is the singularityfunction.

Equations (26) and (28) are the governing diff-
erential equation of the shell. The constant, 2,
used in last term of equation (14) is merely for
convenience.

Nij

 

+ X ji )

-

(22) _




For a uniform cylindricalshell stiffened by

intermediateuniform circumferentialbands, the ex-




tensional.stiffpess,1/Et, and the flexuralrigidity,
D, of the shell are

/ 1 7
-

i-1
) - u(x - ) (31)

J

i=1

where Nij are in-plane stress resultants,Qi are
transverse shear stress resultants,Kii is the
curvature tensor, P is the normal loaafng function,
l are stress couples, eii is the strain tensor,Mi

t s the shell thickness,60 is the Kronecker
delta, E is the modulus of eiasticity,v is the
Poisson's ratio, p is the Lame constant,ui are
in-plane displacementcomponents,w is the normal
displacement,D = Eh3/12(1-v2) is the plate rigid-
ity, Xij is the change of curvature tensor,and a
is the radius of the cylinder. The relevant com-
patibilityequation is

C. e. e . = e e
j
K W,

la jb ij,ab ia b ij ab

where eia is the permutationsymbol.

Substitutionof equation (21) into equation (24)
and introducing into the resultingequation the
Airy stress function,F, such that

where N represents the number of intervalsof con-
stant skin thicknessbetween x=0 and x=4,/2,and
u(x - x,) is the unit step-function. T4 and 4 re-
duce to the well-knownbiharmonicoperator V4 for a
shell having uniform skin thickness,i.e.

The zero slope and vanishing of transverse
shear as boundary conditions involve odd deriva-
tives of normal displacementwith respect to x and
y along the edges x=0,4,and y=0,b, respectively.
These boundary conditions suggest that the general
solution of equations (26) and (28) may be taken
in the followingdouble cosine series form:

W = Wmn cos amx cos 0ny , (33)
L.

m=0,2 n=0,2




r a2
64

6x2

a2 16y2/

6x2 LEt6x2

(1+v) (--a3-)

6x Et

6x6y2

where

and 0 = 22
n b .

m and n take on even integers because of symmetry

(27) about x=4./2and y=b/2. Therefore, the region

bounded by x=0, 4,/2and y=0, b/2 only need be con-
sidered.

mu
a = --
m ' (35)

Elimination of Qi between equations (18) and
(19) and substitutionof equations (22) and (25)
into the resulting equation leads to the following
equation:

7V-4W=1F - P
a '11

4 ,8 ,
62 1pi 62

+

	

2 2
3x26y2/

	

6x rix

+ 20-v) 2L (
2/

D
6y

6x ,

Since the series solutionwill be used in the
analysis, the loading functionshown in equations
(28) and (30) will be expanded into appropriate
series as follows:

co

/ Prim cos am B
vx cos

n-
n=2,4

+ ' P cos 0Y Pon
n L- mo

n=2,4 m=2,4

where

8 2,
+ V — I

P =
2


m=2,4

Ev

I

•

+ U ,
j,i

- 2 Kijw

2vXkk6ij + (1-v)(X
ij

Xij = W and Kij o 1/a. ,
0 0

where

	

4 . 1 (a4 v
Et 4ay

a2\
v
ay--i)]+ 2

where

(28)

(29)

cos ax + P
m oo

(36)

1
2

M1.1

	

4Q a

	

n mu
2 /n

	

Pmn = –z
s

	

–
b

cos + --- co 22
2 	 2 ,

	

P = p + q(x)6(y - –)+ 2Q(y)6(x - –) (30)
2 2

and



gonr 2Q
P  -- cos --+ --2

onb24 ,

qm 2Q muP=+ --2 cos --

	

mob2 ,

go 4.Qo

	

Poo2bP

n7 mr MP°'
4a4 cos -- cos --mn 	 222 cos
/ 8

+Et 4\(Da4 + ES4 Q°Damnatil)4n
ama2/

o,42 nr

- 0. (42)
,2a cos (7)

qmE b1 
 , Et 41{
b4 '4 Et 4-/

Iam Da +
a
2 n WIWI 1- —2 (I'M(37)

a

Note that the following relationship

f(§) .5(§-§0) d§ ° f(0)

has been used.

In a similar manner, the followingrelationships
are obtained according to equations (16) and (33)

(38) in conjunctionwith equation (39) in order to sat-
isfy the condition for compatible deformeation be-
tween the skin and the ring:

mr
4Qn mu 2

nr) 2
7. cos
1, --(--- cos -- + q cos -27- 4 Qn =
mn 2 2 b m

m=2 DOnt

The solution correspondingto a shell structure
with uniform skin may be obtained directly from
the general solution for shells with intermediate
circumferentialstraps. However, unnecessary
errors will be inherited in such limiting case be-
cause of series expansions of skin stiffness used
in the analysis. Therefore, a separate solution
for a shell with uniform skin thicknesswill be pre-
sented first and a general solution corresponding
to shells with straps will be presented subse-
quently.

4. Shell with Uniform Skin: For this case, the
linear operator shown in equation (32) will be used
in the governing differentialequations (26) and
(28). The last term in equation (34) will simply
be Et/2a W00. By substitutingequations (33), (34)
and (36) in conjunctiunwith equations (32), (36)
and (37) into equations (26) and (28), and by col-
lecting like terms in the results, one may express
the coefficientsof w in terms of loading coeffi-
cients as follows:

a4
w
mn

- - cos

	

8 Et 4

4Q
mn 2qr

	

--- --+ --- cos --
(

n M7 m n

	

4 2 b),Da + --a
mn

a2 m

Won
4

- cos2
Et ( b

=
DOn +

1 	 qm 2Q0

a

+ -- --)
mr

,

a2 Clo\w (39)oo Et kP ,


/ 4 Et\ Qo Ylmqm , (44)
2 


m=2 1:ce+ m=2a

Ymn - 	 8 Et 4
Da + --a
mn

a2 m ,

1 -
m ( EtDa+ --)b

a2

4
m 	.

Q0, Qn, and W00 are eliminated in equations (41)
through T44) and a system of an infinite number of
simultaneousequations results:

[A .][q.]= Lc.]mJ J

where

F 2 / * 2 *\1-1
= s/311 B2/J (2%)

and

2 Q0 r a2
w = a- (p +
oo Et \ LEAR

(43)

+

where

717
COS –2–

4

Cemn







where

a2= a2 + 02
mn n .

CO

- /4 mr la
Amj cos T cos 2 Ymn Yjn Cni

(40)
n=2

Expressions similar to equations (39) may also
be obtained for the coefficient of the stress
function,F.t

By matching the displacementsbetween the shell
and stringer along the intersectingline according
to equations (2) and (33) in conjunctionwith equa-
tion (39), one obtains the followingrelationships:

cr. nr
y. 2 cos T a2 f Q0\

	 Q — +

	

n oo Et
w

, (41)DO4

and

t Dethiled expressions may be referred to (14)•

+ e 6j +
rn m J

a2

Cm = -

mr
2 cos --

2  [7 4. a2
gm = ( 4 Et) L\Ett EARIDa +

m
a2

+ 2 


Yjui
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+ 	 1 

Cn L„4, a2 (a*a2 _ 0*\

"m \"1.'n 2,

j=2

CO

	

1 	 (

EIa

1 7
, (48)jk

2
e - — + y

b/J ( 4 Et

	

Da. + 4
3 a2

	

j k

m3 is the Kronecker delta.

5. Shell with Straps: For this case, the skin
is considered to have non-uniform thickness. The
variation of the skin thicimess takes the form
shown in equation (31). Substitution of equations
(33), (34), and (36) into equations (26) and (28)
results in the following equations:

1 7 I- 4 2 217 

F'On-vamOns cos amx cos 13ny

Et
n2 n=2

4. 1 4

n=2
On Fon cos Ony

Et -

In practice, only a finite number of equations
(47) will be considered. After having solved for
ql , q2,....qm, the following quantities can be cal-
culated:

ari\
2 LEtFmnax rrF2 n=2

fa2-‘131211cos amx cos Bnyl

Qn

cos Onyi

_ a2r F 2
cos anx

2 :Et I. mo
ax

112 n=2

0,

E t /1_Fon "n
n=2

Cn(_on127 ,_11j/2
'31143

j=2

.i(1
n

= C (-1)+j
)

n Yjnqj ,
j=2,4

pmn = (-1)m/2 t2,2.+ (-1)n/2 1 0j j
b 'm

3— 1—
3x bEtrn ai3nF+ 2(1+v)mn

Trp2 n=2

sin amx cos OnY]

W = - P
mnmn

ymm
,

1

a

012
cos amx cos 13ny

Wmn
rrp2 n=2

and

2Qn

on
W - 4

DOT!' ,
M -I-1

Qoa 2
( 1 1`„

= F— , — + A-I' I
2 


Et\ J
R i:2 '\zitD + —)t,

a2,
M

j=2

w - - (cY,4oD (-1)m/2 + ,mo a


7 w _24.
L ISO Um

COS a x ,

n-P2

D y Winnfozni+ pvam2n,21)cos amx cos Ony

m=2 n=2

CO CO

_ 3
2

1-D y w .1a2+va21

ax2
L L mn m

nr2 n=2

cos amx cos Ony

(50)

co

[Da2W cos amx + vD 2W
n on

cos f3ny_
3x

m=2 n=2

CO

a2 (1 + o
W = -

Et \-oo

IC M

W(x,y) = )2 )1Wmn
cos amx cos

n=0,2 m=0,2

N
YY a . (49)

Since only a finite number of terms is taken in
the series which accurately represents the displace-
ment w, there is no assurance of the convergence of
the higher derivatives of this truncated series.
Therefore, the stress couple 114j, bending moments
Ms and Mr, transverse shears Qx, Qy, Vs and Vr, and
the ring stress resultants Tr are calculated by
using a finite-difference technique.

02 CO

+ 2(1-v) 3-rD y a 132W sin amx cos any]
ax m n rim

m=2 n..2

7 -.4
+ D L on W coson Oily

n=2

1 7 a2 F cos amx cos;

	

m mn BnY
rm2

co
1 7 2 ooEtL am Fmmcos amx - P - —
a a2m=2

(51)
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The following quantities appearing in equations
(50) and (51) are further expanded into Fourier
series:

( 1 1 1/X , )cos ax) 6 6
m

	

'Et'Et ono' ono mno
co

y (x 8, 8 ICOscr sx ,ons' ons' mns/
s=2 (52)
co

(1
D) sin amx y (Anins,Einns)sin asx , (53)

s=2

following relationships:

yF (04_va202) + 04
6ono F 0 , (66)

	

n 2 on
in
co

Fmni:t.r(0141_vor2s0121)

 

(a12.1_43152s} 6mns

	

4 2 2\+ 2(1+v) a a 02A j+ FonISn-v8nas,/ 6onsm s n mns

1= - W a2a sn s ,

co

a2a2o =1w a2
mo m s mos a so s ,

CO.




	

(D, D coscrrex) = 1(e ,e )
2 ono nmo
co

+  ' ey cosa x (54)(eons mns)s . 


r=2

In conjunction with equation (31), the Fourier co-
efficients, X-ono• • •€ s , represented by the general
set of symbols, Aon., A.ns, Am, and Amns become

A0110 ,
1=1

	

t smf,
sin 	

rrerti miT41-1

mno
A = 7 A (sin

ma L i  
i=1

A = 7 A fsin (m-s)mns m-s i.
1=1


co
2Qnw (.44.va202\ emno + .4 eono

-
mn\Pn m n. 2 Pn 2 "on , (59)

in

co
bi r.1re4+,..202,)

 

ja2+v,2‘,0,21. e
ronL n re n, m ii, SJ ems ,


rn

2 (1-v) a 02a E ]+ W (04+v02a2) em n s mns on n n s ons

1 2 4Qn sTr 2qr nr
= - - a F - -7-1. c os -2- - 1-7-cos T ,
a s sn
coy w a2a2c 1 2 ii, 2Qo srcos i-t. mo m Et MOO ' - -a as ' so - L
m

_ qr _
b

a2 ons ,

Q
„w00 . 0

1,
.

T P 2 ono2 


A = 1).' A (sin ions sll
i=1

(60)

By requiring compatible deformations of the
qkin, the stringer, and the ring, i.e.

(x, -b) W
2 s ,

and

k2' yi Wr

Equations (2), (16) and (33) in conjunction with
equations (56) through (62) are substituted into
equations (63) and (64). After a lengthy mathe-
matical manipulation (detailed derivation may be
referred to (14)) the following system of relation-
ships is obtained:

07 CO

	

i-1 7 ,- sin (m-s)-+A

i=1

It

- sin (nr1.8)=-1 -7-"Ills

Alms = y Ai(ti L)
1=1

LI
+ (71-;-)-7-7y AiLsin (nrEs) TI

1=1

i)
- sin (ml-s) 1-1- s.

sin(m4-s)-i-rr

(55)

where N represents the number of intervals of con-
stant skin thickness between x=0 and x=2/2. The
corresponding distance for each region is denoted
by Li.

Substitution of equations (20), (26), (27),
(28) into equations (24) and (25) in conjunction
with equations (21) and (29), and collection of
like terms in the resulting equation lead to the

1)Y tDmns_ejnm
_ 02102+va2) JLT

am nl n In/ onm
cos

2
j m

_ A 02 1(.24.\02\ c _ 02e cos 121n n I.\"n j/ jno n owo 2i

7



2 2
"/Iin+ m .„2
1 * 2 * 'onm

010n - 02

k m

El a2 W = 0 , (65)
m mo

co.
7 7 2 2, 'a a 6,,fa2c a26
-_Lsmmosljjom

 

b mmj
m

analysis without considerationof shear lag effect
will be quite acceptable.

It is well known that the normal displacement
of a thin cylinder,without considerationof con-
straints of rings and stringers, subjected to lat-
eral pressure alone is

2
w
o Et . (68)

The corresponding final deformations,considering
the effect of the constraintsof the ring and the
stringer, may be written as

2
w 2E_

Et . (69)

mr'l 1 2
--r1-1--a 6 .? Wcos
2 a s sjJ jn

(It)
-mns \ b.

nrkr
cos -- EI a2 cosW

22 mk

co

+ YD
mns

(2a
cos

b /
nrr

2

a2

cos 121 + 6 I W
2 2 sj jo

a

The reduction or addition of deformation,as well
as stresses due to the constraints of the stringers
and rings, may be indicatedby the parameter,
a (x,y), or
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Substitution of equation (68) into (69) yields
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The state of stress and deformation,;, without
consideration of the constraintsof the ring and
the flexural constraint of the stringer due to
axial load P or pa/2 intensityalong the circum-
ference, may be derived by satisfying the equili-
brium conditions and the compatibilityof linear
strain of the skin and the stringer. The following
results are obtained:
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Equations (65) and (66) represent a set of in-
finitely many simultaneousalgebraic equations. In
the actual numerical calculation, only a finite
number of terms will be considered. After Wmn are
determined, the displacementsand internal loads
will be calculated in the same manner as discussed
in the previous case.

6. Closed End Effects: When the cylindrical
shell subjected to internal pressure is closed at
both ends, a total axial load of P=ra2p will be
carried_by the stringers and skins. The stresses
due to P are small when compared to the effects
due to lateral pressure alone. The following

The correspondingcircumferentialstress is

a = 0 .
YY

As a result, the contractionof the skin in the
radial direction correspondingto zero hoop stress
becomes

w = As
2 Et (1 + --)bt

The increase or decrease in the displacementdue to
constraints of the ring and the flexural rigidity
of the stringer is aw. The parameter,a, has been
defined in equation (70). The final displacement,
w*, of the skin due to the axial load P becomes

..2
w = (1-a) w

-

- 	 (1-a) r-=-
A \ Et . (75)

2(1 + Tts-)

vpa2

(74)
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The correspondingcircumferentialstress, a

becomes yy '

_
*wnu*

10"

SYM.
I., 10"

a= crE=pa = ava (7 6)
YYaAxx

2t(1 + —1)\bt

which is considerablysmaller than the hoop stress
correspondingto lateral pressure alone.
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From the above discussion, it is interesting
to note that the deformationand stresses due to
the effect of axial load may be determinedas soon
as the solution for an open-ended cylindrical shell
is obtained.

Numerical Examples

Typical arrangementsand dimensions of C-5A air-

plane fuselageare selected for example solutions.
The material parametersand dimensions common to
all cases 4sted in Table I are p=1 psi, i=20",
v=0.3, E=10 psi, the mesh size 6x=6y=0.25". The
symbol, ts, shown in the table represents the thick-
ness of a titanium strap and is is its width. The
straps are placed symmetricallyalong the mid-line
between two adjacent rings. The numbers shown in
the last "Remark" column representdepths of the
rings.

Ring

b/2 b/2

Stringer

Fig. 2. Geometry and Dimensions

for Example Problems

TABLE 1. Data for Numerical Examples


I
R
4in.

t


in.

t(Ti)s

in.

6.56 0.07 0

6.56 0.07 0.02

3.92 0.07 0.02

i=2is 1

in. Remark


0 8" Ring
without
strap

4.5 8" Ring
with
strap

4.5 6" Ring
with
strap

1

13— ••• ,

6" Ring.m. 8''Ring--1

a = 143 in. p = 1 psi

2
A— Free Expansion 21— .., -0.02914 inTEt

	 Without strap (Case 1)

._._With strap (Case 2 and 3)

2

Case

a


in.

b


in.

Ro

in.

I

4
in.

As

in?

A
R

in

1 143 7.8 138.9 0.051 0.1881 0.721

2 143 7.8 138.9 0.051 0.1881 0.721

3 143 7.8 138.9 0.051 0.1881 0.600




The results for the displacementsand inner and
outer fiber stresses along longitudinaland circum-
ferentialdirections (see Fig. 2) correspondingto
the combined effect of lateral pressure and axial
load at the following locationsare plotted in Fig.
3 through 12:

along mid-line between adjacent stringer
(Y=0),

along stringer ( y=b/2),

along mid-line between two adjacent ring
(x=0),

along quarter-lineof ring spacing (x=i/4),

along center-line of ring (x=1/2).
0 5 10

x in Ring

Fig. 3 Displacement of Skin Along Mid-
line Between Two Adjacent Stringers (y=0)
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2 1 0
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1
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a = 143 in.p = 1 psi
2

Free Expansion -= -0.02914

 Without Strap (Case 1)

_._._With Strap (Case.2.and 3)

in




a = 143 in., p = 1 psi, b = 7.8 in.

2

Free Expansion= -0.02914 in.Et

 Without Strap (Case 1)

_._._With Strap (Case 2 and 3)

5 10
x in. Ring

Fig. 4 DisplacementAlong Stringer (y = 3.9")

0 0.5 , 1.0
Stringer

Fig. 7 DisplacementAlong Center Line


of Ring (x = 10 in.)

20

0 1 0
Stringer

Fig. 5 Displacementof Skin (x = 0)

a = 143"
p = 1 psi

Txy = 0

\

  ///'\\ ./
d7

Af

0

ilti•

..yay outer fiber . __.. 

ay/ inner fiber-__.....--/4,

oxx outer fiber

i r xxli inner fiber
— —

Without Strap (Case 1)
withStrap (Case 2 and.3) \\

02.255
x in.

\ 10
\ Ring

----

-•-•

d-6" R111_
-

= 143 in., p = 1 psi, b = 7.8 in.-

Free Expansion = -0.02914
Et

Without Strap (Case 1)

With Strap (Case 2 and 3)

Fig. 8 Stresses Along Mid-line Between

Two Adjacent Stringers (y=0)

20

a.

1 0›.%
10

20

0 0.5„

Y/W

Fig. 6 Displacement of Skin Along

Quarter-line of Ring Spacing (x = 5")

1 0

Stringer

6",Rinia62:-.1342a:74=1--:411ftalm=7.0...-4

a = 143 in., p = 1 psi, b = 7.8 in.

na2

Free Expansion

Et
-0.02914 in.

	 Without Strap (Case 1)

_._._ With Strap (Case 2 and 3)


Fig. 9 Shell Stresses Along Stringer


Location (y=3.9")

a = 143"
p = 1 psi

oyy inner fiBei----...N7y= 0

---- Without Strap(Case

_._. With Strap (Case 2 andN1\

,01=1€ • •• •11•1 •••••  

oxx inner fiber

crxxouter fiber

0

2.25 5 10
x in. Ring

oyy outer fiber

ayy inner fiber
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a

TXy

143"
= 1 psi
= 0/4

- 7.8"

Aciryyouter fiber

\ \
2yy inner fiber \

----------- uxx inner tjber'
ko-xxoucer \\

:

----WithoutStrap (Case 1)
_._.WithiStrap (Case 2 and 3)

0 0.5 1.0
Stringer

Fig. 10 Stresses Along Mid-line Between


Two Adjacent Rings (x=0)

\ ../.' .
.....-layyouter fiber-1!)1('

....... \

4717.......,-:...-.-_75:5-y_sinnerfiber\ ...-
..-'"

_-
\




axx outer f4bet4T---....

vcrxxinner

---- Without Strap (Case 1) \_._. With Strap (Case
,and i) 


[

a = 143"
p = 1 psi
b = 7.8"

Iii=1=M=,1M  MIL

0 0.5

Fig. 11 Along Quarter-lineBetween


Two Adjacent Rings (x=5")

1 0

Stringer

20

1
a = 143" p = 1 psi

Txy = 0 b = 7.8"

17-0xxinner fiber

._Elayy.inner fiber

ayy outer fiber-li

fiber

axx outer fiber

---- Without Strap (Case 1)

_._. With Strap (Case 2 and 3)
1 I1

0.5 1.0z oxx outer fiber

Stringer

Fig. 12 Skin Stresses Along


the Ring (x=10")

Y/1)

cs,
s
0

10

Discussion


The solution of cylindricalshells with uniform
as well as non-uniform thicknessorthogonally
stiffenedby uniform stiffenerssubjected to in-
ternal pressure is obtained by treating the stiff-
eners as separate elements. The deformationand
stress condition can be calculated for any point in
the structure. Numerical examples based on C-5A
fuselagematerial parametersand dimensions are
presented. The results indicate that the variation
of displacementof the shell along the longitudinal
as well as the circumferentialdirections is sig-
nificant for the cases where the circumferential
bands are not included;as a result, large bending
stresses are introduced. For a shell with inter-
mediate bands, however, the variation of displace-
ments and stresses along the circumferentialdi-
rection is negligibly small, and the variations
along longitudinaldirections are small but detect-
able. As a result, stress levels are equalized and
maximum stress levels are reduced. This reduction
will increase the fatigueendurance where fuselage
pressurizationand de-pressurizationare predomi-
nant, and in resistance to damage propagation. In
short, it appears that the insertion of circumfer-
ential bands is structurallyeffective according
to the cases considered. While the example pro-
blems consider only one strap located midway be-
tween every two rings, the analysis and computer
program for IBM 7094 are prepared for multiple
straps at variable locations.
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