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Abstract

In this paper the behaviour of sandwich
plates under a step heat input is investi-
gated. With neglect of coupling, the problem
considered separates into two distinct prob-
lems to be solved consecutively. The first
is a problem of heat conduction, the second
a problem of thermoelasticity which is the
more direct concern of this paper. Solving
this very last problem the use is made of
the theory of sandwich plates given in pre-
vious papers of the author (3),(4),(5),(6).
Similarly to R.D.Mindlin and L.E.Goodman
(8) the solution is found as the sum of two
partial solutions. The first solution is
identical to that of thermal bending while
the second one represents free forced vibra-
tions of sandwich plates under the pulsating
force consisting of the negative of inertia
forces corresponding to the first solution.
To illustrate the procedures employed the
problem solved by B.A.Boley (1) for homoge-
neons plates is considered. Limiting process
to the homogeneous plate enables the compa-
rison of numerical results with those recei-
ved by Boley.

I. Introduction

The sandwich plate under consideration
has its middle plane in t, , £; -plane (Fig.
1). In the 1, - direction the thickness of
the lower face extends from & --/ to #--5 ,
the core from 4 --5 to 4 -5 and the upper
face layer from £ -5 to % -/ . The two face
layers are of the same physical properties,
and perfect bond between the adjacent lay-
ers is assumed. Individual layers in this
analysis are assumed to be elastic orthotro-
pic continua with main axes of orthotropy

in the f, =-dairections (/ = 1,2,3).
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Figure 1. Planform and structure of sand-
wich plate considered

The following general assumptions are
used in the derivation of the basic rela-
tions:

a) No heat is generated within the bedy
b) Thermal conductivity # of each lay-
er is constant throughout the layer
for the heat conduction problem, and
1) Transverse normel strain ¢ of the pla-
te ie negligible
2) Transverse normal stress G; of the pla-
te can be neglected
3) Supporting of the plate is arranged
in such a way that it does not enable
the motion of the plate as a whole
4) The Kirchhoff-Love s hypothesis on
normals is not accepteble
for the thermoelastic problem, respect.

II. Heat conducticn problem

The time - dependent heat conduction
problem in an orthotropic body is governed
by the Fourier’s equation

g 2 P -
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provided the effect of the stresses and de-
formations upon the tempersture distribu-
tion is quite small and can be neglected.
In Eq.(1) the following notation is used:
£ denotes thermal conductivity in the 4
- direction, ¢ the specific heat, o the
density of the material, /* time, snd 7*
the temperature.

In eddition to Eq.(1) it is necessary
to specify the appropriste boundary and i-
nitial conditions in order to describe
fully the problem. There are five principal
boundery conditions which are used in the
mathematical theory of heat conducticn. In
what follows the use will be made of the
conditions given by Boley - Weiner (2),
Initial condition defines the temperature
distribution in /*- 7f

T* L") =T"(h) (2)

where the point 7 is inside the body and
I* is & given function.

(1)

In the case of a sandwich plate with
orthotropic layers, Eq.(1) can be written
for each layer separetely. Boundary condi-
tions of two bodies in perfect thermal
contact then hold true for the contact
surfaces 1, =f5, Cver the surfaces ;=4
either the prescribed heat flux, the pres-
cribed surface temperature or the convec-
tion boundary conditions are tc be consi-
dered. Along the boundsry /7 of the plate,
the surface tempersture is usuelly pres-
cribed.



Derote the temperature distribution /7
in the upper layer by the symbol 7%, in
the core by 7°, end in the lower layer by

s

J

Deriving the aprroximate fcrmulation of
the heat conduction prcblem, we follow the
same procedure as is used in the thecory of
homcgenecus plates:

Have functions /7 (/7 =1,2,3) continu-
oug and smooth in the corresponding doma-
ins of definition of the respective functi-
ons 7* (/ =1,2,3), These functions-simi-
larly to the functicns [* - define obvious-
ly certain piecewise smcoth function 7** in
the regicn (/=4 = R), Substituting
functions  ** instead of 7* intc equations
(1) written for each layer, we find these
equations generally not to be satisfied, i.
e. the right - hand sides of these eguati-
ons will no more be zeros but certain fun-
ctions, sey ¢ (/7 =1,2,3). We can now
speak of a piecewise continuous function @
defined by the following relations

455, in the region (S<4, <44R)
(7 =\¢, in the region (5= 4 =S 4)

@, ir the region (/<4 <-4 R)

According to this definition, we obviously

have
& (7")=0 everywhere in (-h=z,</4R)
Now, the function 7** satisfying the condi-
tions 4
/{,’ G(7"")de, =0 (i-01) everywhere  (3)
B in l?

may be expected to be @ good approximation
to the function /*.

In the next step in the derivation the
functions 7** ( / = 1,2,3) will be consi-
dered to be of the following form

4
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where £; , 4 denote the thermal conducti-
vities in the ¢, - direction of the faces
and the core, respect, & , / are certain
functions of the variables ¢, , £; having
in A all necessary conditions. With these
expressions, the conditions of perfect ther-
mal contacts in 4 = #5 planee are satisfi-
ed, The differential equations for the fun-
ctions & , 4 are obtained when applying
the conditions (3), i.e. the equations
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Assume & step heat input ¢) ( ¢ ) const-
ant in 4 , to be epplied over the surface
4=h (4 =-4h), Then, substituting for
7 from (‘4) into (5), integreting with
respect to #; in corresponding limits, and
empleying the conditions of prescribed heat
flux in ¢ -#/ and of perfect thermal con-
tact in #;-#5, we find that the governing
equations read
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where to simplify the writing the following
symbols have been intrcduced

2, P 7 y 2 2
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The dots in (6) mean the time derivatives.
Analogical trensformations of boundary con-
ditions slong /” , and of initial cendition
(2) result in

a=f" b-f*81cng /7 (9)
and
all*)-A"  4)-8" (10)
respectively, where
4 4
/%/fﬂ}, /- 1 Ve (11)
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and / denotes the prescribed temperature
along /" .

Eqs.(6) are partial differential equati-
ons of parabolic types. The solution of
these equations will now be shown for the
cese of an infinite plate in ¥, , 4, -plane.
In such a case o b are obviously fun-
ctionas of one B:I.ngie independent variable
- the time /* , and are easily found to be

LR AL (12)
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To illustrate the problem consider an
infinite sandwich plate with isotropic la-
yers under & uniform step heat input 2
over the face 4=/ while the second
face 4 ~--/ is inaula{ed. The initial tem-
perature /* for {*=( 1let be zero.

Substitution of the appropriate parasme-
ters

A=8%0 gp-2) 250 44 b=k

of the example considered into Eqs.(12) re-
sults in

(13)

_4r
2T U wilrne 2 (14)
T SRy LR
where »
r-—‘-}{— (15}
44y

is a nondimensional time parameter.

Let us further calculate a certain quan-

tity #7,) eccording to the general for-
mula 4
o - (16)
K0 d T
-4
with
£
L * "/
4‘4 (@ ’“/'1,“3}), L= g

f /f/:/"f

where 4 are Young‘s moduli of elssticity,

the Poisson’s ratios, and <, the
coefficients of thermal expension. This
quentity will be later called the thermal
bending moment.

Since

La
-2

for isotropic material, it follows from
Eqs. (16), (4), (14) that

oal¥ 4 4 3 s i (
2L . i 19)

(18)

G-z, 4-4-
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Limiting process to a homogeneous plate

bk, 40, 84, a-a,, b=Ly | pop, A0

r
i.e.
r-0 02 (21)
leads to the relations
* -2
. 2" L (22)
a ; r .b”(/f )

With these quantities Eqs.(4) reduce to one
single equation

-Rr
T, 7)= iff-([rfﬁ -6 )/ (23)
and Eq.(19) reads
. TlF e (24)

Mir)= #07) (7-¢

Nondimensional plote of the thermal mo-
ments #’ against ~ according to the
formula (24), and according to the formula
given by Boley-Weiner (2), resp., are shown
in Fig. 2.
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Figure 2. Thermal bending moment according
to the present paper (heavy line)
and according to Boley-Weiner
(dashed 11ne§

III. Thermoelastic problem

Formulation of the problem

In the first step in the development of
the theory components of displacement ¢
;;' e 1,2,3) are chosen in the following

orm

4=y, #/25 r (4,7 5) —Jl[—'{,’—'({, zs)’ 4y * (25)
: _ . 74 .
-] (7)) 79) T, (-42)
Us= Uy
in the faces, and
Y=yt 4y, (712) 4=y, (26)

in the core. Upper (lower) sign in (25)
holde true for the upper (lower) layer,

+ Cf the papers by the author given in Ref.



and X denotes the ratio of core shearing
modulus . - p and face sheering modulus /., .

Veking use of the strain - displacement
relations, the components of strein o
# ) are then found. Similerly, employ-
ing the stress - strain relations, the com-
ponents of stress ( G , 7,/ ) are arrived at.
However, it is convenient in the plate the-
cry to deal with forcees and moments per
unit length rather than with the stresses
themselves; these new quantities are now
defined by the foruulae

irj-’f’f‘kf, i J;, 2%, f/ 7z, (27)
4
4 4
}{'- [Jé:dll, /?l=% /J Ze oz, 4 {"}'é"//?j i#)
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%, 0 &, a (
0 Z) Uy 0 %, 28)
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where
(29)
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and furth%r

§ = [4T" de, =l (4t + 4, 5)
¥ AR

/ a"/’”a’z-—é/:/’n/ 2 14)4, ]

(30)
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we obtein simple relations for the quanti-
ties (27)
oH”

R X P Ll

"o T " /

(31)

M= My lik=(2; i#h)

The conditions of equilibrium of the 1li-
near theory read

2 g
e N8 i (32
2wl 2 32)
[-f%ﬂhﬁ FEL o Gy 3
I J‘f

4 / i=f 0K

where Y denotes the eventual transverse
loaeding.

The equations (32) imply the existence
of a stress function /(¥ £,) defined by
the relations

7

f..-i—z/- Sy =- GA=12; ipk) (34)
7 i(: ’ Tk ﬁz‘.ﬁ!‘ it F i
the differential equation .
J‘/— « 97
Aﬂ' i 4 (214,1 A_g)az[az Af? h? (35)

=-(tfﬂ14’ zzaz/‘f ( fzg’)"(

in A ,_&and the proper boundary conditiona
along /7 . The constants A5 1in (35) a
expressed in terms 4, as ¥ollows

¢ tip) A * f e
A.=(-/) . N -L G112 (36)

4 AyAse Pee 4#! ” A
For plates with isotropic layers (35) redu=-

ces to A i1
b {4
V'F 7

where /° denotes the Laplacian operator.

e T’ o o (37)

Similarly, Eqs. (33) imply the existence
of a displacement function wi¥, ;) defi=-
ned by the relations

9,'40, C/"f‘fj') (38)

the differential equation
Ly (39)

lw=-f f,-z; V%

in # , an by proper boundary conditions’
along / . Symbols 4/ , [ in Eqs. (38),
(39) stand for certain partial differential
operators which can be found in (3). In the
case of isotropic layers, the expressions
for these operators read simply

7 (40)
i 'd-la , (=12)

4.

4 2
L-800-)V(4,7-8),

t A1l the boundary conditions mentioned can
be found in (3).



L=(9,7°8)(8,7°8) L=, 7"8)(4,7%8) (40)

In the present problem the applied lo-
ads consist entirely of the negative of,
inertia forces, according to d Alembert s
principle; then

/7-—/0‘25"- -m'y, = -my " (41)
provided that only deflections in the 4; =
direction need be considered. Symbol m*
represents the mass of the plate element
of height 7/

2P+ 8
m’: /f’ 0’1' )=Z(Jﬂ

# , 7+ denote the specific gravities of
the face and core meterials, resp., 10* .
£f are the corresponding densities, and
the gravity constant. The dots mean
again the time derivatives.

Inserting the inertia forces (41) into
Eq.(39), we obtain

(43)

<

. . L M
Lo -m" o=}

it et

/)

In addition to the boundary conditions,
the appropriate initial conditions for
/* ( are to be given., Assume the follo=-
wing form of these conditions
o 0 . ] fa
%-[Ju.@f , %’=%=[Jw=;‘;} for tl J (44)

’ V‘

¢ represent given functions

where ¢,
oft ¥, § W'

Solution of the problem

The solution of the problem defined in
the preceding Section consists of the so-
lution of plane stress problem for the
stress function £ , and of the solution
of the plate problem for the displacement
function w ., These two solutions may be
derived independently of each other. Since
the first problem is formally identical to
that of the theory of plane stress of ho-
mogeneous orthotropic bodies and has been
discussed in many papers, we shall confine
our attention to the solution of the se-
cond problem.

The problem for the displacement functi-
on « consists generally of a nonhomogene-
ous differential equation (43), and of non-
homogeneoue boundary and initial conditi-
ons, resp. Because of the linearity of the
problem the solution can be expressed in
the form

U-f\/f"'wz (45)
where «, denotes the usual solution, name-

ly one in which inertia effects are disre-
garded, and w, is the solution which takes

inertia into account. Following Boley-Weiner
(2), the function «, will be called here
the static solution, similarly, the function

«, will be referred to as the dynamic so-
lution.

It may thus be seen that the static solu-

tion «, satisfies the equation
/ : (46)
“TH W
in # , and the given boundary conditions
along / . The dynamic sclution «, satisfi-
es the differential equation
# . ¥ =
hyMQ@ = n'l,¢, (47)

in the region # , and the corresponding
homogeneous boundary conditions at the
boundary . For 7/*=0 the function w;
fulfills the initial conditions according
to Eqs. (44), (45)

Z_,.:‘i?‘ -r -l for =0

5, -4y (48)

o
L, = 4-Lya,

Qur problem thus reduces to two particu-
lar problems = the static and dynamic one,
respect. The static problem is identical
to that of thermal bending and is solved in
(3); the dynamic problem representing free
forced vibrations of sandwich plates under
the(gglsating force (41) has been solved
in .

IV, Example

To illustrate the solution of problems
considered assume a rectangular simply-
supported sandwich plate with isotropic la-
yers occupying the space

rp/ﬂ-‘t}-ffj /'-—-,/2/ r'/,vzljzé

with the boundary / ( 4 =0 |, £=4
/=1,2) end £, = +4 , respect. A step heat
input ¢* , constant in y is assumed to
be applied over the face 4=/ , while the
face ¢, =-4 18 insulated. Initial deflection
vy 5 velocity #,; , and temperature [*
of the plate let altogether equal zero.

(49)

In the preceding Article, we have found
that the thermal bending moment #7/7) due
to the temperature considered is given by
Eq.(19).0nce the quantity #77) has been
found the particular solutions of the sta-
tic and dynamic problems, resp., can be
sought.

The static problem is defined by the dif
ferential equation (46), the relations (40)
and by the boundary conditions of simple
supporting. In (3)we have shown that this
formulation can betransformed into a more
convenient form, namely,

2 r
‘eﬂ% 0, ) Ve = H
in #=#+/ , and

(50)



o R L (51)
4 5’(12, -,)

along /7 , the solution of which is found
to be

ﬂ{”r y (52)
Y ig-g) BL N s (o
where 3
i %4 bod 4 (53)
- fe '%)I; mn{m’,&/lnl} i 4
Jon = 7 Zrl} ow ?2['

According to (3) the reduced form of o-
perators / , L, in the case of a plate
with simply supported edges and isotropic
layers is

/=81 )7 L - ——(073) L=07%8 (54)

(.rl ey 4
The static part of the deflection ¢ is
obtained in the form

st r

4 =L, “//Za',,}’,,,,, (m,n 00) (55)
The dynamic problem is now defined by

the differential e?uation (47) which with

respect to Eqs.(52), (54) yields

Zc;,-m"éa{ ='Wl Ja,, A (m,n 0d7) (56)

in the region # , and by boundary condi-
tions

@, = Fc‘:z‘, =/ (57)
at /7 . For {*-0 the initial conditions
T
Z‘fp"”’%%“mﬁ,, (58)
Ly = -f//?" ”Z” - ARY 8 (7, 0d)
take place. Denoting
i ?‘0/" 7- & (59)
4 Db
and further by
re { .?([A (60)
L g~ i “ £ 0r-4)'77
the time derivative of # et /"-/ , Egs.

(58) can be rewritten to the form
L, =0 Ly -—(/‘/) Za o Yon , (B7007) (61)

The present problem.ia solved in the ve-
ry same manner as used in isothermal prob=-

lems of free forced vibrations. In (5) we
have found the natural frequencies 7»»
. of the plate under consideration to be as

- follows

(62)

A 7‘:’(,,:7;:) I/F L Y
!

A 9}"/&1,‘ !”2) m#
/5’;"

The corresponding eigen-functions (natural
modes of vibrations) represent the functi-
ons ¥», according to Eqs.(53). The eigen-
values /) of the problem are given by
the simple formula

p{nn) w4

=m7pm

Expanding the function «, into an infinite
series in eigen-functions ¥,

Yy =,é c;'m [f“)mﬂ

substituting (64) into (56), we arrive at
the equations

(63)
(64)

Ty -9t .. (6
o M

because of the relations

[nm 4 ? mn “m

(M) = '//‘/270-?5* ZJKM = 'ﬁm Yowr (66)
A, 3 _[ 171”1) + B

r

) (mn) ¥
1./;{'” o ZJ;’.” -/ ﬂm}rm i Z;aéa Yoo

the last of which implies the fact pfm)il
the eigen-value of the problem considered.

The general solution of (65) can be ex=-
pressed as follows

(67)
5 (,y)/e ra? ru/mhﬁ vy
(m 7 0dd)
where da, , bmy are certain constants to be
calculated from the initial conditions (61).
Making use of these conditions, we obtain
PR A B (mnodd)  (68)

Vith these results Eqs.(54), (64), (67)
yleld the dynamic part of the deflection

"”ﬂmm

2" /0l
. @.(ﬁ/j quﬁ,, 7% fp m/” - ;—m ?_’}99)

(m, 7 0dd)

Summarizing ff}” and b_’,o the total deflec-

tion ¢4 1is obtained.



V. Conclusion

At conclusion let us analyze the results
obtained in the preceding Article. Denoting

Y U,
Pl (ovaty (70)
(3 Mar %:{
we can write
mar 4y = max 4 (1+9) (71)

In order to gain a better insight into the
significance of the parameter /5 1let us
now consider, without any loss of generali=-
ty, an infinite strip in the s, =-direction.
By performing the appropriate limiting pro-
cess, we obtain first

4 /)
_.f_g. _L (ﬂad‘/)’ 2:7‘2_”_’!

mi
W 73 !

(72)

and denoting
/

Zh 0'43
e
d

B =
? ‘;V_- m

further
m-f
M*‘z = o —_— fﬁjm?l(l?j)
SEHOEY->
2 2
p 47 ﬂm’ﬂh m"?; ) (m 0dd)
/!
provided
sl
G,y (74)

8t

The time perameter 7 corresponds, to a
practically stationary value of 4% ; the
following value can be adopted for this pa-
rameter

- 24

[g= /.f'ﬂf?(y’—’ (75)

8 0x

The function 4 (4) according to (73), (75)
can often be approximated by a piecewise
smooth curve

z;' -/ for ﬂs’@e’ﬂ..‘f(?s)

0 210557082 -8 (103575 (2)1 tox t5<B < f

¢'=Zﬁg;'4

If another limiting process, namely the
trensition to & homogeneous beam is perfor-
med, a comparison between the results of
the present paper and of Boley-Weiner (2)
can be made., Nondimensional plots of redu=-
ced values of deflection

for 5;2'/

A
7 = _i‘?_-’...... at - !_:
4 /9/’;3‘2(5” z
according to the present paper (heavy line)
and to Boley-weiner (2) (dashed line) are

shown in Fig.J. It is seen that the dynamic
solution oscillates about the static one in
a very similar manner

Us
0.08
0.06
0.0k l/:\ B°=oo /:\
h ¥ S\‘
002 |0 {\ / Bo1
4 \\./ B-o \\
0.00 L

0 0.2 0.4 06 0.8 1.0 1.2 1.4

Figure 3. Deflection of heated plate accor-
ding to present paper (heavy line)
and accordi to Boley-weiner
(dashed line

Collecting our results we conclude that
the effect of inertis is to be taken into
account whenever the characteristic parsme-

ter
4
é: l/; F’//#;")ﬂ

of the sandwich plate is lower or equal to
three. Even in the cases J<§ <#4 this
effect seems to be worth noting. The signi-
ficance of this effect can be evaluated by
means of the formula (71) with /* instead
of /4 . With certain amount of inaccuracy
we can say that the effect of inertia will
be considerable in the case of relativel
(small £=4/¢, ) or asbsolutely (small #
thin plates, or in the case of plates with
very thin facings.

(77)
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