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Abstract B

An accurate inverse method for the y ratio of specific heats )
numerical calculation of the supersonic flow e shock distance, measured along axis of
around an axisymmetric blunt body is presented, symmetry
By a suitable transformation the field under J. polar angle (fls-l)
consideration is mapped on a rectangular strip. ¢ stream function )
Integration of the equations of motion in the T variable, used as co-ordinate and defined
transformed domain is performed by simultaneous by eq (75
application of a third order predictor-corrector p density; Poo = 1
process in the subsonic part, and the method of G shock angle
characteristics in the supersonic part of the
field. Subscripts:

An iterative technique, based on the b refers to "body"
minimization of a certain function along the s refers to "shock"
body contour, is used in order %o obtain the 0 pefers to "o O
correct shock wave shape and flow field belenging o0 refers to "free stream"

to a given body contour at a given Mach number,

Computational results for spherical bodies,
prepared with the assumption of ideal gas proper-
ties, have been obtained, but the method is not
restricted to spherical shaped bodies nor to the
assumption of ideal gas properties,
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1 Introduction

Though the amount of methods and existing
programs for solution of the blunt body
supersonic flow problem is considerable, the
final word in the matter has not yet been
written, It appears namely that the results of
calculations, performed by using different
methods for the same test case, can show a
considerable scatter, When the need for the
availability of accurate information about blunt
nose flow fields in supersonic free stream became
apparent at the NLR, it was decided to develope

a reliable and accurate method, After a comparative

literature study the choice was fixed upon an

inverse method, the basic idea of which was

developed in 1] . It appeared to be possible
to construct a computer program with such
properties, that the first requirement, imposed
by the need of information about blunt nose
fields, could be met, i,e, the flow fields around
spheres could be computed with unique results
for free stream Mach numbers in the range from
infinity down to about 1,8, with the assumption
of ideal gas properties, Unique in the sense:
independent from the stepsizes used (within
certain limits) in the calculation,

Further requirements are the computation
of flow fields around spheres in the range

of Mach numbers below 1,8, and the computation

of flow fields around bodies other than spheres,

The successful operation of the program up to now

and the good hope of successful operation in

more difficult cases are consequences of two
important factors:

(i the accuracy of the inverse computation
and the full control of eventually
occurring instabilities

(ii) application of a powerful technique for
the selection of a new shock wave shape
from previous results, a technique which
is based on the definition of a norm on
the body contour,



2 Basic equations.

In the polar co-ordinate system r, ./
(figure 1) the equations of motion for an axi-
symmetric ideal gas flow can be written as
follows:
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Figure 1 Configuration,

A stream function § can be defined by the
equations

ﬁ_ S pure sind, %;I;- pvr sinJ y (5)

satisfying the continuity equation (3).
From (5) follows

iP= - pr siny (ur ad -vdr)

so that d¢ = O for %%5.- %, hence ¢ = constant

along streamlines, Upstream of the shock wave (P
can be found by integration of

ay = d(% % sinN ).

This formula can be derived on account of the
relations u =-cos
Vv = Bln

. p=1,
valid in the free stream,
With ¢ = O for o = 0, the integration delivers
simply

¢ = % r2 !ian .
Just behind the shock wave lP is then also known,
§ bveing continuous through the shock wave:

¢, = 322 oin’d (6)

the subscript s referring to "shock".
Along the body contour "P-b = 0,

At this point a variable T is introduced,
defined by

2y
Ta (7)
x'2 aian
It follows that f[‘s -1
and T‘b = 0,

Along streamlines holds e’ aineﬂ = constant,
Introducing the co-ordinate system 7/, J and
transforming the equations of motion accordingly,
the following result is obtained:

(pu+‘['cosJ )g—-% +(pv=Tsin J)% =
r2 Sinz‘J ’
=&T:’—F-%-%mnur(v-g-‘9 (8)

[rfsin:a'—pv- %{u ainJ+ v cosJ)] %t’ +[ cos J
dv

+pu- %%{u sind+ v cosJ)] o~ %[v cosd

+sinJ{2u+ gjv" .'}-E(u%u’-& V%)}] (9)

In these equations only u and v occur as
integration variables, The derivatives of p and
p have been eliminated by means of the relation
(4) and the relation

p/oY = F(§). (10)

The equation (10) expresses the constancy of
entropy along streamlines, p/pY being related
to entropy as follows:

1
]7'? o eJ':p{c“r (S-Su,)} "
P T

For the purpose of the elimination of the
derivatives of p and p the following relations
have been used:

2 2
d in“y
(#),7' 25:;1':1235
sinJv cos«T+ u ainQ

oy 2
(cTJ?,"r" P pv = TeinJ

One relation still must be added in order to
complete the set of equations needed for the
description of the flow field, i.e, the
relation,

(%-),7 - ﬂﬁ%’? (11)

The complete set is now available and it consists
of the differential equations (8), (9) and (11),
together with the algebraic relations (4), §7
and (10), The quantity dF/d¥, occurring in (8
is a known quantity as a function of T ,r and J’,
because along the given shock wave F is a known
function of ¥ ,




In the supersonic part of the flow field
real characteristics exist, Because the computa-
tion of this part of the field is performed by
using the method of characteristics, the
characteristic equations and directions will be
given here, These characteristic relations can
most easily be derived by starting from the
equations (1) through (4), obtaining th

AXIS OF SYMMETRY

relations in the co-ordinate system r, /. The
next step ig to transform them to the co-ordinate
system T, «. Finally the derivatives of p and p
are eliminated, using (4) and (10). Three
families, of characteristics are obtained in

this way, characterized by the relations given
below:

(i) :—g. %M (local direction),
pa =T(T+p7)

(pu-v §;+ (Bwu)% =

y-1 day
p a° - T (a+8¥)

HE{“’ -(Bv—u)sin‘&- Bol r” sin v 2 sin” o @}
=2

(characteristic equation),
(ii) g—,’g.'- - %M (1ocal direction),
pq —=T(T-p¥)

(Bm—v)"}ﬁu + (Bv——u :,vr -

y = 1 d

2 2
. Lz V+(pveu) sinv+ E'Q_-A—-Y r_siny is
. pa’~ T (5-67)

(characteristic equation),

2 2
(iii) Tr sin Y = constant (streamlines),
p/pY = constant along each streamline,

The relations (iii) have been used already to
derive (8) and (9) and to eliminate dp/de and
dp/dT from the characteristic differential
relations,

To complete the set of equations one equation
still must be added:

u+v)r Bin‘J

i )

&) (12)

In figure 2 the transformed domain has been
sketched,
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Figure 2 Characteristics of first (i) and second
(ii) family, streamlines (iii) and sonic
line in the T ,J -domain.

2 Boundaries,

In the T ,J-—co—-ordinate system three
boundaries, namely the shock wave, the body
contour and the axis of symmetry coincide with
co-ordinate planes, In the supersonic field a
characteristic of the first family has been
choosen as a boundary, The treatment of the
boundaries will be described now subsequently.,

3,1 The shock wave,
In the inverse problem the shape of the
shock wave is assumed to be known in advance:

ro = ().

In connection to this the following choice has
been made:

(13)

2 2 3
yB-2l{sx—Bax +Cax,

where

ys - .'l‘s sin J.

X =T -rscosJ,

8,0
rs'o - f(O),

and
Ka' Ba and CB are constants (shock parameters),

The subscript "s" refers to "shock",
The slope of the shock wave is determined by the
angle G-, to be obtained from tgG = dy_/dx,

The field quantities just behind %he shock
wave can be expressed as follows:

v



g as il
.-1+1+1 (xzw-amo‘)

7, = (1-5,) cotgG

S B Ay
Pg = g sinzu'- Y1

oo

(y+1) llzm sin’G-

24 (y-1)Mp, 8in‘G"
u = - Es cos v + '175 sina

Vg = ﬁs sin 'J'+ ?B cos‘\r

Thus for T = 1 al]l field quantities are known

as a function of 4/,

Care mst be taken thatdd], where o is the

angle for which the Btreng‘ﬁx of -the shOok is Zero,

i.e, the angle for which applies: sinG = 1/Mgp-
The quantity dF/d{), occurring in (8) and

in the characteristic equations, can be expressed

algebraically in the quantities p, p, vy ¥ ,T ,

K,y B, and C_.

3,2 The axis of symmetry.
For ¥ = O the equations of motion (8) and
(9) degenerate, From (8) can be derived

pu+T =0 (14)

It is possible to compute the exact values of

py u antt p as functions of T , For any T, p can
be solved numerically from the following
equation, derived from (4) by substituting (14)
and noting that v =« O on the axis of symmetry:

12 2y |Ps y-1 2
+ Skl s pl " =14 (15)
LAl P:)J " (v-1) Moo

Next u follows from (14) and p from (4) or from
the entropy relation,

The integration of r along the axis of symmetry
can be accomplished by using the following formula,
derived from (11):

&), « ——— (16)
9.0 2|}(%})J_ 0—1’]

The value of (dv/dJ)J-_ o is determined by

numerical differentiation,

The boundary characteristic and the body

contour,

In the supersonic part of the flow field
the hyperbolic character of the differential
equations allows the generation of a stable
solution of the initial value problem using the
method of characteristics, A natural boundary

for the region of computation is a characteristic
of the first family, as indicated in figure 2,
This boundary is not known in advance, but it is
generated while the computation proceeds. The
solution of the hyperbolic problem then furnishes
a known boundary for computation of the subsonic
flow field.

The integration process ultimately delivers
the field quantities along the line T = 0, As
this line is identified with the body contour, no
interpolation or extrapolation is required in
order to obtain the body quantities,

4 Method of computation,

4,1 The subsonic field,

In order to be able to perform the
computation numerically, a finite difference
lattice network is fixed in the region of
computation and steps of magnitude AT and A '\Tare
assumed,

Treating the problem as an initial value
problem, the quantities at T = 1 being the
initial values, the integration of the egs (8) and
(9) has been achieved using a predictor-corrector
scheme,

It is supposed that for a certain T=T;
(where 0 € T, =wi.AT.%£1;i=0,1,2,~—,N) all
field quanti*fes are knmown in the points
j- = k,AY (k = 0,1,——,n).

herivatives in 4/ =direction along the line
"L'.'['i can be:found by numerical differentiation.
The of —derivatives once being known, T -derivatives
can be calculated from the egs (8) and (9).

The application of the predictor-corrector
process is the next step in the computation,
Predictor:

1 du
ST W W AT{3(E) ;

-(:—,“1)1_1'1(} (17)

1k
Corrector:
1 du du
u, oy, . # AT{5(==) +8(==)
i+l,k i,k 2 { Ri-u»l,k Ei,k
du
v (dt)i—l,k} (18)

This integration process, the third order Adams-
Moulton process, is a stable one, the extraneous
roots of the characteristic equation being
located within the unit circle in the complex
plane, provided the stepsize | AT | not being too
large.

In the above AT = T, .-T =1/N, N being the
total number of steps from *‘-1 to T =0, Because
the integration process (17), (18) is not self-
starting, a special arrangement has to be made
in order to achieve the first step AT, For this
purpose the second order Euler-Cauchy process
appears to be very suited and this process is
therefore used, covering the first step AT by
4 second order steps,

In experimental computations the application
of a smoothing technique appeared to have a
favourable influence on the preservation of



stability near the axis of symmetry, especially

at the lower free stream Mach numbers, The
smoothing is realized in the following way.

Taking together a group of 7 or 9 given function
values in the interval to be smoothed, a third
degree polynomiel is fitted to these values in the
sense of least squares, and the polynomial value
of the central point of the group is stored, After
having dealt with the entire interval in this way,
the stored function values are assigned to the
corresponding points, Near the boundaries of the
interval considered, some minor modifications of
the process are necessary,

4,2 The supersonic field.

In the supersonic field the method of
characteristics yields a solution of the flow
problem, The same finite difference network as
used in the subsonic field is applied, except
near the boundary characteristic,

The supersonic and subsonic calculations
are performed simultaneously in the computer
program, but it is also possible in principle
to separate both calculations and to solve
first the supersonic part in a separate program,

In section 2 the characteristic equations
and directions are given, After transformation
of these equations to finite difference form,
an iteration process will yield the numerical
solution,

T = Tigy

Characteristics of first (1) and
second (2) family and streamline (3)
passing through an arbitrary lattice
point fq) in the supersonic field,

Figure

In this iteration process the velocity components
u and v in the lattice point Q (fig.3) are

solved using the finite difference representations
of the characteristic equations along AQ and BQ,
and the radius vector r using the finite
difference equivalent of (12) along AQ, the
positions of A and B being included in the
iteration cycle using the finite difference
representations of the equations for the
characteristic directions, The quantities p and

p can be found at any T and Y from the eqs (4)
and (10) when u, v and r are known. Quadratic
interpolation along the line T= T is used

in order to obtain u, v and r in the points A and
B-

5 Generation of the desired
body contour.,

Once the problem of the calculation of the
body contour belonging to a given shock wave
shape being solved, there remains the problem
of changing the shock contour such, that a
prescribed body contour results,

In order to solve this problem a norm has
been defined, on the basis of which can be
checked to what extent an obtained body contour
deviates from the desired bedy contour and which
gives a rule for changing the shock wave shape in
order to adjust the body shape, This norm has been
defined to be the minimum value of a function
F(Bs, C,) of the two variables By and C_, where F
has been defined as follows:

v, )2
F(B,yC, )=(By-By )40 z gi{(%}-}) o } (19)
b

In this formula B_ and C, are shock parameters
(see (13)), while By is a body parameter, the body
contour being represented by the equation

¥2 = 2K (x-e)-By (x-¢)’ (20)

Here € is the shock distance, measured along the
axis of symmetry.

Tap G and g; are weight factors.,

is the desired body parameter value,
while is the value of this parameter obtained.
by fitting the equation (20) to the body points
belonging to the shock described by B_ and Cs. The
derivative (dy/hx) is the slope of tge desired
body shape at the given location y;j while ?./ﬁ;
is the slope of the obtained body contour at the
same location y;

A gradient method has been applied to find
the minimum value of the function F(BB,CB),
starting with an approximating set Bs.Cs.

By means of the factor G the influence of the
second expression on the right side of (19) can
be increased, A value of about 20 appears to be
favourable, The factors g; have been chosen in
such a way that the weight gradually increases when
moving along the body surface in streamdirection,

The choice (19) for the function F and the
choice of the above mentioned values for the
weight factors furnish quite satisfactory results,
The accent which is laid on the correct
representation of the flow expansion rate in the
supersonic region is an important reason for the
successful operation of the shock selection
subroutine, and such an accent even seems
absolutely necessary for the purpose of obtaining
representative flow field results,

During the iterative shock selection process
the parameter K  is held constant, Once having
found the final shock wave, the scale of the
computational result can be changed, if desired,
by changing Kg, cs and some additional parameters.



6 A numerical example.

The field around a spherically shaped nose
cap has been computed using the program described
vefore, The free stream Mach number has been
chosen to be 1,8,

Starting with a trial shock wave obtained,
by extrapolation, from results of computations
performed at higher Mach numbers and specified by

Kg,0 = 2:2
B, = -0.46
c, =0.1,

seven iteration steps were needed before the
resulting field was satisfactory, The shock
parameters, obtained then, were

K = 2,2
s,0

By =-0,51424

Cs = 0,04426,
and the radius of the spherical nose cap
appeared to be 0,9536 + .0008, In order to
normalize the mean body radius to 1 the scale
was changed, an operation which resulted in the
following shock parameters:

KB,O = 2,30694
By, = -0.51424
C = 0,04221.

s

At last the final computation was performed.
Some results are presented here in graphical

form,
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1 Concluding remarks.

The primary purpose of this paper has been
to describe a method for the accurate inverse
computation of blunt nose flow fields, It
appears from literature that, especially at
lower free stream Mach numbers, a considerable
scatter is present in the results of different
methods when applied to one test case, The above
mentioned method gives very satisfactory
results in the case of spherical bodies, down
to a Mach number of 1,8, It may be expected
that extension to lower Mach numbers and to non-
spherical bodies will not be a serious problem,
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