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Abstract

An accurate inverse method for the
numerical calculationof the supersonicflow
around an axisymmetricblunt body is presented.
By a suitable transformationthe field under
considerationis mapped on a rectangularstrip.
Integrationof the equations of motion in the
transformeddomain is performed by simultaneous
applicationof a third order predictor-corrector
process in the subsonic part, and the method of
characteristicsin the supersonic part of the
field.

An iterative technique, based on the
minimizationof a certain function along the
body contour, is used in order to obtain the
correct shock wave shape and flow field belonging
to a given body contour at a given Mach number.

Computationalresults for sphericalbodies,
prepared with the assumption of ideal gas proper-
ties, have been obtained, but the method is not
restricted to spherical shaped bodies nor to the
assumptionof ideal gas properties.
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List of symbols


parameters in shock or body equation
Ili
cv specific heat at constant volume

F p/p1 (sections2 and 3);
function defined along body contour(section5)
weight factor
weight factor
parameter in shock or body equation

M Mach number
number of steps AT in inverse computation

p dimensionlesspressure, measured relative
to poo q2 2 2'
total velocity Vi(u+v ); q . 1oo
polar radius (fig.1)
entropy
componentsof velozity in directionof

vi increasingr and ki respectively

ii componentsof velocity in directionof

i7 increasingx and y respectively
x co-ordinatealong axis of symmetry fig.1

	

y cylindricalco-ordinate i


Subscripts:

b refers to "body"
s refers to "shock"

refers to "j. 0"
oo refers to "free stream"

1 Introduction


Though the amount of methods and existing
programs for solution of the blunt body
supersonicflow problem is considerable,the
final word in the matter has not yet been
written. It appears namely that the results of
calculations,performed by using different
methods for the same test case, can show a
considerablescatter. When the need for the
availabilityof accurate informationabout blunt
nose flow fields in supersonicfree stream became
apparent at the NLR, it was decided to develope
a reliable and accurate method. After a comparative
literature study the choice was fixed upon an
inverse methodi the basic idea of which was
developed in [13 . It appeared to be possible
to construct a computer program with such
properties, that the first requirement, imposed
by the need of informationabout blunt nose
fields, could be met, i.e. the flow fields around
spheres could be computed with unique results
for free stream Mach numbers in the range from
infinity down to about 1.8, with the assumption
of ideal gas properties.Unique in the sense:
independentfrom the stepsizesused (within
certain limits) in the calculation.

Further requirements are the computation
of flow fields around spheres in the range
of Mach numbers below 1.8, and the computation
of flow fields around bodies other than spheres.
The sucoessfilloperationof the program up to now
and the good hope of successfuloperation in
more difficult cases are consequencesof two
important factors:
(0 the accuracy of the inverse computation

and the full control of eventually
occurring instabilities

(ii) application of a powerful technique for
the selection of a new shock wave shape
from previous results, a technique which
is based on the definitionof a norm on
the body contour.
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2 Basicequations.

In thepolarco-ordinatesystemr„).
(figure1) the equationsof motionfor an axi-
symmetricidealgas flowcanbe writtenas
follows:

du v du 1 dp v2
u + - — + - —
dr r p dr r

Figure1 Configuration.

A streamfunctiontP canbe definedby the
equations

i.- pur2sinj, g pvr 5iflV, (5)


satisfyingthe continuityequation(3).
From (5)follows

dqr.— pr sinj (urdj-vdr)

so thatd4) 0 for7 717.. 7r,hence4) constant1 dr u

alongstreamlines.Upstreamof the shockwave cp
canbe foundby integrationof

2 i2d.; 4 r sn(P j ).(1

Thisformulacanbe derivedon accountof the
reAations u .-cosj

v . sinJ
p 1,

validin the fretstream.
With 4) 0 forNT.0, the integrationdelivers
simply 

122r siu4,

JustLind the shockwave(pis thenalsoknown,
4)beingcontinuousthroughthe shockwave:

1 2 1,(pe. 7 re sin2V (6)


the subscripts referringto "shock".
Alongthebodycontourq,b= 0.
At thispointa variablefris introduced,
definedby

2q)

r2 sin2,17

It followsthatTs= 1

Alongstreamlinesholdsrr2 sin2. constant.

and yrb . 0.

Introducingtheco-ordinatesystem'e,p'and
transformingtheequationsof motionaccordingly,
the followingresultis obtained:

(pu+Tcosn7)1iL:sin j)114

2 . 2
pr sin v  dF 1 . duN

- 2(1-y) F
74, 7 sin.kv-7 ,

sink ku sin+ v).-pv--73
Tou,,y co4)] +[(rcos17

cos4Y)] = [11 COBAT+pu- sinj+ v
YP

+sinilf2u+ *u5+ 44/01] (9)

In theseequationsonlyu andv occuras

p havebeeneliminatedby meansof therelation
integrationvariables.The derivativesof p and

(4)and therelation

	

PADY= F4). (10)

The equation(10)expressesthe constancyof
entropyalongstreamlines,p/p7beingrelated
to entropyas follows:

±2 exp cv
PY 141703

For thepurposeof theeliminationof the
derivativesof p and p thefollowingrelations
havebeenused:

2 . 2v
rg21 Qv r sinv 

‘crri,72(pv-17sin

d+ er_2psirlv cosj+ u sin Y

pv - ersin

One relationstillmustbe addedin orderto
completethesetof equationsneededfor the
descriptionof theflowfield,i.e.the
relation,

(dr) 	 r sinj 

2(pv

The completesetis now availableand it consists
of the differentialequations(8),(9)and (11),
togetherwiththealgebraicrelations(4), and(10).ThequantitydF/d40,occurringin 8 2

is a knownquantityas a functionof 17,rmmij,
becausealongthegivenshockwaveF is a known
functionof(1)

dv v dv 1 (12 uv
u dr ,57,f+pr d4,- r

17(pur2sinj)+ izi(pvrsinj) = 0

u2 1124.LI z . 4. 2

(Y-1)MO0
y-1 p

(7)

(8)
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In the supersonic part of the flow field
real characteristicsexist. Because the compute,
tion of this part of the field is performed by
using the method of characteristics,the
characteristicequations and directionswill be
given here. These characteristicrelations can
most easily be derived by startingfrom the
equations (1) through (4), obtainingthg
relations in the co-ordinatesystem r,1T. The
next step iE to transform them to the co-ordinate
system V,,T. Finally the derivativesof p and p
are eliminated,using (4) and (10). Three
families, of characteristicsare obtained in
this way, characterizedby the relations given
below:

d: 1 ov_osin: 

(0 -air2 2 _ - (local direction),

pq JT(u+pv)

(3u—v)
g (13v+u)cg

y 2.2 A
2I -(8v-u)sinITPo r si.

n
v

dp

a_	 y-1 ay
.2

p q2 - er(a+BV)

}

(characteristicequation),

,1 1(13.) sinJ 

(localdirection),(ii ) - - 2 2

pq

(0114-V4 (pv-Ofrim

2 22 ii+(pv+u)siniT+ PoY r sinAT dF
Y 1 7.4)

2
Pc1 1-(-07)

(characteristicequation),

4.
(iii)Tr 2 sin2v . constant (streamlines),

p/pY constant along each streamline.

The relations (iii) have been used already to
derive (8)and (9) and to eliminatedp/deand
dp/dr from the characteristicdifferential
relations.
To complete the set of equations one equation
still must be added:

(ALdr)
(BAYu+v)r sin

char.of2 (pq2jr(ii+P)1
fam.(i)

(12)

In figure 2 the transformed domain has been
sketched.

RXISOFSYMMETRY
SwOCKWRvE

BODYCONTOUR

Figure 2, Characteristicsof first (i) and second
(ii) family, streamlines(iii) and sonic
line in the 1- 0;r-domain.

1 Boundaries.

In theft:07-co-ordinate system three
boundaries, namely the shock wave, the body
contour and the axis of symmetry coincide with
co-ordinate planes. In the supersonicfield a
characteristicof the first family has been
choosen as a boundary. The treatment of the
boundaries will be described now subsequently.

1,2..The shock wave.

In the inverse problem the shape of the
shock wave is assumed to be known in advance:

r

In connection to this the following choice has
been made:

2
ye 2 KBx - Bsx2 + Csx3, (13)

where

ys rs sinJ,

r - COB
0,0 s

r f(0),
5,0

and

KB, Bs and Cs are constants (shock parameters).

The subscript "s" refers to "shock".
The slope of the shock wave is determined by the
angle G-, to be obtained from term dy Ax.

The field quantities just behind the shock
wave can be expressed as follows:

T.1
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Ti

•

. 1 . —z— (1—— sin2a7)y+1 m200

cotgCr

lymio

(y+1) M200s1n2G

Ps '
)40 sin2G2+6.-1 -

U •••• U8- cos +

 

sin

V sin COSir

Thus for T - 1 all field quantitiee are known
as a function ofii.
Care must be taken that tiOrmaxwhere is the
angle for which the strength of the shoak is zero,
i.e. the angle for which applies: sinCr = 1/Moo.

The quantity dF/dCfr, occurring in (8) and
in the characteristic equations, can be expressed
algebraically in the quantities p, p, r, ,Ir ,

KB B8 and Cs.

1,2 The axis of symmetry.

For 1Y 0 the equations of motion (8) and
(9)degenerate. From (8) can be derived

pu + 17= 0 (14)

It is passible to compute the exact values of
p, u anh p as functions ofr r . For any fr,p can
be solved numerically from the following
equation, derived from (4)by substituting (14)
and noting that v . 0 on the axis of symmetry:

T 2
2+

a-(138) y-1 2 

1-1 Ay

„y.0

. 1 +
(y-1) Ma*

	

2 (1 5)

Next u follows from (14)and p from k41 or from
the entropy relation.
The integration of r along the axis of symmetry
can be accomplished by using the following formula,
derived from (11):

(14) 2[(cd4) —T1

The value of (dv/dJ)j... 0 is determined by

numerical differentiation.

(1 6)

141 The boundary characteristic and the body  
contour.

In the supersonic part of the flow field
the hyperbolic character of the differential
equations allows the generation of a stable
solution of the initial value problem using the
method of characteristics. A natural boundary 


for the region of computation is a characteristic
of the first family, as indicated in figure 2.
This boundary is not known in advance, but it is
generated while the computation proceeds. The
solution of the hyperbolic problem then furnishes
a known boundary for computation of the subsonic
flow field.

The integration process ultimately delivers
the field quantities along the line fr. 0. As
this line is identified with the body contour, no
interpolation or extrapolation is required in
order to obtain the body quantities.

1 Method of computation.

11.1 The subsonic field. 


In order to be able to perform the
computation numerically, a finite difference

computation and steps of
lattice network is fixed

magnitude Air and A 'rare
in the region of

assumed.
Treating the problem as an initial value

problem, the quantities at fr. 1 being the
initial values, the integration of the eqs (8) and
(9) has been achieved using a predictor-corrector
scheme.

It is supposed that for a certain "1".V...
(where OliirtAdar.gr i4i=0,1,2,--,N) all -
f4eld quanti es are known in the points

- k.A (k .
Derivatives in4r-direction along the line

17-Ti can be.found by numerical differentiation.
TheA7 -derivatives once being known, fr-derivatives
can be calculated from the eqs (8) and (9).

The application of the predictor-corrector
process is the next step in the computation.
Predictor:

ui+1,k-ui,k 2i,k-‘dT/
1 AT ,(du) iduN

i-1,k1
(1 7)

Corrector:

1  u
i+1,k =ui,k

AlittduN  AfduN

"  j‘drii+1,k+'‘ICIi,k 12

-

(18)

This integration process, the third order Adams-
Moulton process, is a stable one, the extraneous
roots of the characteristic equation being
located within the unit circle in the complex
plane, provided the stepsize IATInot being too
large.




In the above dr. N being the
i+1

total number of steps from /7.1 to 17.0. Because
the integration process (17), (18) is not self-
starting, a special arrangement has to be made
in order to achieve the first step T. For this
purpose the second order Euler-Cauchy process
appears to be very suited and this process is
therefore used, covering the first step Arby
4 second order steps.

In experimental computations the application
of a smoothing technique appeared to have a
favourable influence on the preservation of

PB y+1 y+1
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stabilitynear theaxisof symmetry,especially
at the lowerfree streamMachnumbers.The
smoothingis realizedin thefollowingway.
Takingtogethera groupof 7 or 9 givenfunction
valuesin the intervalto be smoothed,a third
degreepolynomialis fittedto thesevaluesin the
senseof leastsquares,and thepolynomialvalue
of thecentralpointof thegroupis stored.After
havingdealtwith the entireintervalin thisway,
the storedfunctionvaluesareassignedto the
correspondingpoints.Neartheboundariesof the
intervalconsidered,someminormodificationsof
theprocessarenecessary.

4,1 The supersonicfield.

In the supersonicfieldthemethodof
characteristicsyieldsa solutionof theflow
problem.The samefinitedifferencenetworkas
usedin the subsonicfieldis applied,except
neartheboundarycharacteristic.

The supersonicand subsoniccalculations
are performedsimultaneouslyin thecomputer
program,but it is also possiblein principle
to separateboth calculationsand to solve
firstthe supersonicpartin a separateprogram.

In section2 the characteristicequations
and directionsare given.Aftertransformation
of theseequationsto finitedifferenceform,
an iterationprocesswillyieldthenumerival
solution.

-{17c1i,

Ti.+1

Figure3 Characteristicsof first(1)and
second(2)familyand streamline(3)
passingthroughan arbitrarylattice
point(Q) in the supersonicfield.

In thisiterationprocessthevelocitycomponents
u andv in the latticepointQ (fig.3)are
solvedusingthe finitedifferencerepresentations
of the characteristicequationsalongAQ and BQ,
and theradiusvectorr usingthefinite
differenceequivalentof (12)alongAQ, the
positionsof A and B being includedin the
iterationcycleusingthefinitedifference
representationsof the equationsfor the
characteristicdirections.The quantitiesp and
p canbe foundat anyrand,Y fromthe eqs (4)
and (10)whenu, v and r areknown.Quadratic
interpolationalongthe lineI'mr4 is used
in orderto obtainu, v andr in tnepointsA and
B.

Generationof thedesired 
bodycontour.

Oncethe problemof thecalculationof tha
bodycontourbelongingto a givenshockwave
shapebeingsolved,thereremainsthe problem
of changingthe shockcontoursuch,thata
prescribedbody contourresults.

In orderto solvethisproblema normhas
beendefined,on thebasisof whichcanbe
checkedto what extentan obtainedbodycontour
deviatesfromthedesiredbodycontourand which
givesa rulefor changingthe shockwave shapein
orderto adjustthebodyshape.Thisnormhasbeen
definedto be the minimumvalueof a function
F(Bs, Cs) of the twovariablesBs and Cs, whereF
has beendefinedas follows:

} 2
10(BB,C9).(Mb-B:)2.,G g .1(1X)

clx u.

In thisformulaB andCB el

(see(13)),whileBb is a
contourbeingrepresented

2
yb = 2Kb(x=e)-H.b(x-e)2

Here is the shockdistance,measuredalongthe
axisof symmetry.

The G and gi areweightfactors.
.is thedesiredbodyparametervalue,

while is thevalueof thisparameterobtained

by fittingthe equation(20)to thebody points
belongingto the shockdescribedby Bp and Cs. The
derivative(dy/dx)iis the slopeof taedesired
bodyshapeat the given locationyi; whileVA
is the slopeof theobtainedbody contourat ihe
samelocation

A gradientmethodhasbeenappliedto find
theminimumvalueof thefunctionF(Bs,Cs),
startingwith an approximatingsetBs,Cs.

By meansof thefactorG the influenceof the
secondexpressionon therightsideof (19)can
be increased.A valueof about20 appearsto be
favourable.The factorsgi havebeen chosenin
sucha way thattheweightgraduallyincreaseswhen
movingalongthebodysurfacein streamdirection.

The choice(19)for thefunctionF and the
choiceof the abovementionedvaluesfor the
weightfactorsfurnishquitesatisfactoryresults.
The accentwhichis laidon the correct
representationof theflowexpansionrate in the
supersonicregionis an importantreasonfor the
successfuloperationof the shockselection
subroutine,and suchan accentevenseems
absolutelynecessaryfor thepurposeof obtaining
representativeflowfieldresults.

Duringthe iterativeshockselectionprocess
the parameterKs is heldconstant.Oncehaving
foundthe finalshockwave,the scaleof the
computationalresultcanbe changed,if desired,
by changingKs, Cs and someadditionalparameters.

(19)

are shockparameters
body parameter, the body
by the equation

(2o)
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6 A numericalexample.

The fieldarounda sphericallyshapednose
caphasbeencomputedusingtheprogramdescribed
before.The freestreamMachnumberhasbeen
chosento be 1.8.

Startingwitha trialshockwaveobtained,
by extrapolation,fromresultsof computations
performedat higherMachnumbersand specifiedby

K8,0
= 2.2

B -0.46

CB 0.1,

seveniterationstepswereneededbeforethe
resultingfieldwas satisfactory.The shock
parameters,obtainedthen,were

Ks,0
. 2.2

Bs --0.51424

Cs 0.04426,

and theradiusof the sphericalnosecap
appearedto be 0.9536+ .0008.In orderto
normalizethemeanbodyradiusto 1 the scale
was changed,an operationwhichresultedin the
followingshockparameters:

Ks,û 2.30694

BB -0.51424

C 0.04221.

At lastthe finalcomputationwasperformed.

Someresultsare presentedherein graphical
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Concludingremarks.

The primary purpose of this paper has been
to describe a method for the accurate inverse
computationof blunt nose flow fields. It
appears from literature that, especiallyat
lower free stream Mach numbers, a considerable
scatter is present in the results of different
methods when applied to one test case. The above
mentioned method gives very satisfactory
results in the case of sphericalbodies, down
to a Mach number of 1.8. It may be expected
that extension to lower Mach numbers and to non-
sphericalbodies will not be a serious problem.
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